
Journal of Pure and Applied Algebra 206 (2006) 111–122
www.elsevier.com/locate/jpaa

Iterating lowering operators

V.V. Shchigolev
Ulyanovsk State University, Russia

Received 26 November 2004; received in revised form 8 April 2005
Available online 29 August 2005

Dedicated to Eric M. Friedlander on his 60th birthday

Abstract

For an algebraically closed base field of positive characteristic, an algorithm to construct some
non-zero GL(n − 1)-high weight vectors of irreducible rational GL(n)-modules is suggested. It is
based on the criterion proved in this paper for the existence of a set A such that Si,n(A)f�,� is a
non-zero GL(n− 1)-high weight vector, where Si,n(A) is Kleshchev’s lowering operator and f�,� is
a non-zero GL(n − 1)-high weight vector of weight � of the costandard GL(n)-module ∇n(�) with
highest weight �.
© 2005 Elsevier B.V. All rights reserved.

MSC: 20G05

1. Introduction

Classical lowering operators were introduced by Carter in [2]. Kleshchev used them
in [4] to define generalized lowering operators. Following [1] and [5], we denote these
operators by Si,j (A). Kleshchev’s lowering operators are useful in constructing GL(n−1)-
high weight vectors from the first level of irreducible rational GL(n)-modules. In fact, [4,
Theorem 4.2] shows that every such vector has the form Si,n(A)v+, where v+ is the GL(n)-
high weight vector. A natural idea is to continue to apply lowering operators Si,n(A) to the
GL(n− 1)-high weight vectors already obtained in order to construct new GL(n− 1)-high
weight vectors belonging to higher levels. For example, this method was used in [5] to
construct all GL(n − 1)-high weight vectors of irreducible modules Ln(�), where � is a
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generalized Jantzen–Seitz weight. The main aim of this paper is to find all GL(n− 1)-high
weight vectors that can be constructed in this way (Theorem 13 and Remark 2).

Let K be an algebraically closed field of characteristic p > 0 and GL(m) denote the
group of invertible m × m-matrices over K. We generally follow the notations of [5] and
[1] and actually work with hyperalgebras rather than algebraic groups. For the connection
between representations of the latter two, we refer the reader to [3]. Let U(m, Z) denote
the Z-subalgebra of the universal enveloping algebra U(m, C) of the Lie algebra gl(m, C)

that is generated by the identity element and

X
(r)
i,j :=

(Xi,j )
r

r! for 1� i, j �m, i �= j and r �1,

(
Xi,i

r

)
:= Xi,i(Xi,i − 1) · · · (Xi,i − r + 1)

r! for 1� i�m and r �1,

where Xi,j denotes the m×m-matrix with 1 in the ij-entry and zeros elsewhere. We define

the hyperalgebra U(m) to be U(m, Z)⊗ZK . For 1� i < j �m we denote by E
(r)
i,j and F

(r)
i,j

the images of X
(r)
i,j and X

(r)
j,i , respectively and for 1� i�m denote by (

Hi

r
) the image of

(
Xi,i

r
) under the above base change. If r = 1 then we omit the superscripts in the above

definitions and write Hi for (
Hi

1 ). We also put E
(r)
i := E

(r)
i,i+1 and F

(r)
i,i := 1.

Let U0(m) denote the subalgebra of U(m) generated by 1 and (
Hi

r
) for 1� i�m and

r �1 and X+(m) denote the set of integer sequences (�1, . . . , �m) such that �1 � · · · ��m.
We say that a vector v of a U(m)-module has weight � ∈ X+(m) if (

Hi

r
)v = (

�i

r
)v for any

1� i�m and r �1. If moreover E
(r)
i v = 0 for any 1� i < m and r �1, then we say that v

is a U(m)-high weight vector.
Throughout [i..j ], (i..j ], [i..j ), (i..j) denote the sets {a ∈ Z : i�a�j}, {a ∈ Z :

i < a�j}, {a ∈ Z : i�a < j}, {a ∈ Z : i < a < j}, respectively. For any condition P, let
�P be 1 if P is true and 0 if it is false. Given a pair of integers (i, j), let resp(i, j) denote
(i − j)+ pZ, which is an element of Z/pZ. For any set A ⊂ Z and two integers i�j , let
Ai..j = {a ∈ A : i < a < j}. If moreover A ⊂ (i..j) then we put FA

i,j = Fa0,a1 · · ·Fak,ak+1 ,

where A∪{i, j}={a0 < · · ·< ak+1}. Thus F ∅i,j=Fi,j . For i < j and A ⊂ (i..j), the lowering
operator Si,j (A) is defined as (see [1, Remark 4.8])

Si,j (A) :=
∑

B⊂(i..j)

FB
i,jHi,j (A, B).

In this formula, Hi,j (A, B) is the element of U0(m) obtained by evaluating the rational
expression

Hi,j (A, B) :=
∑

D⊂B\A
(−1)|D|

∏
t∈A (xt − xDi(t))∏
t∈B (xt − xDi(t))

,

where Di(t) = max{s ∈ D ∪ {i} : s < t}, at xk := k − Hk . Elements Hi,j (A, B) are well
defined, since Hi,j (A, B) ∈ Z[xi, . . . , xj−1], which is proved in [1, Lemma 4.6(i)]. We
additionally assume that Si,i(∅)= 1.
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Quite easy proofs of all the properties of the operators Si,j (A) we need here, can be found
in [1], where the specialization v �→ 1 should be made.

In this paper, we work with costandard modules∇n(�), where� ∈ X+(n), and its non-zero
U(n− 1)-high weight vectors f�,�, where � ∈ X+(n− 1) and �i ��i ��i+1 for 1� i < n.
If the last conditions hold we write � ←− �. We also denote the element f�̄,�, where

�̄= (�1, . . . , �n−1), by f�. It is a U(n)-high weight vector generating the simple submodule
Ln(�) of ∇n(�). The definitions of all these objects can be found in [5]. Moreover using [5,
Lemma 2.6(ii)] and multiplication by a suitable power of the determinant representation of
GL(n), we may assume that f� and f�,�, where � ←− � and ai := ∑i

s=1 (�s − �s), are

chosen so that E
(a1)
1 · · ·E(an−1)

n−1 f�,� = f�.

2. Graph of sequences

For the remainder of this paper, we fix an integer n > 1 and weights � ∈ X+(n), � ∈
X+(n − 1) such that � ←− �. For i = 1, …, n − 1, we put ai := ∑i

j=1 (�j − �j ). The
following formulas can easily be checked by calculations in U(n, Z).

Lemma 1. Let 1� i < j �n, 1� l < n, m�1 and A ⊂ (i..j). We have

(i) E
(m)
l FA

i,j = FA
i,jE

(m)
l if l /∈A ∪ {i} and l + 1 /∈A ∪ {j},

(ii) E
(m)
l FA

i,j = FA
i,jE

(m)
l − F

Ai..l

i,l F
Al+1..j

l+1,j E
(m−1)
l if l ∈ A ∪ {i} and l + 1 /∈A ∪ {j},

(iii) E
(m)
l FA

i,j = FA
i,jE

(m)
l + F

Ai..l

i,l F
Al+1..j

l+1,j E
(m−1)
l if l /∈A ∪ {i} and l + 1 ∈ A ∪ {j},

(iv) E
(m)
l FA

i,j = FA
i,jE

(m)
l + F

Ai..l

i,l (Hl −Hl+1 + 1−m)F
Al+1..j

l+1,j E
(m−1)
l if l ∈ A ∪ {i} and

l + 1 ∈ A ∪ {j}.

We shall use the abbreviation E(i, j)=Ei · · ·Ej . Let 1� i�k�j �n and A ⊂ (i..j). It
follows from Lemma 1 that E(k, j−1)Si,j (A)=ukEk+· · ·+uj−1Ej−1+Mk

i,j (A), where

uk, . . . , uj−1 ∈ U(n) and Mk
i,j (A) is a linear combination of elements of the form FB

i,kH ,

where H ∈ U0(n). In what follows, we stipulate that any not necessarily commutative
product of the form

∏
i∈A xi , where A= {a1 < · · ·< am} ⊂ Z, equals xa1 · · · xam .

Lemma 2. Given integers 1� i1 < j1 < · · ·< is−1 < js−1 < is < js �n, sets A1 ⊂ (i1..j1),

. . . , As ⊂ (is ..js) and integers k1, . . . , ks such that it �kt �jt for t = 1, . . . , s and js = n

implies ks = n, we put

v = E(k1, j1 − 1)Si1,j1(A1) · · ·E(ks, js − 1)Sis ,js (As)f�,�.

Then we have

(i) v =X1 · · ·Xsf�,�, where each Xt is either E(kt , jt − 1)Sit ,jt (At ) or M
kt

it ,jt
(At ),

(ii) E
(m)
l v = 0 if 1� l < n− 1 and m�2,

(iii) E
(m)
l v = 0 if m�1 and l ∈ [1..n− 1)\([i1..k1) ∪ · · · ∪ [is ..ks)),
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(iv) If it < kt < n then

Ekt−1v =
(

t−1∏
r=1

E(kr , jr − 1)Sir ,jr (Ar)

)
E(kt − 1, jt − 1)Sit ,jt (At )

×
(

s∏
r=t+1

E(kr , jr − 1)Sir ,jr (Ar)

)
f�,�,

(v) If l ∈ [it ..kt − 1) then

Elv = c

(
t−1∏
r=1

E(kr , jr − 1)Sir ,jr (Ar)

)
Sit ,l((At )it ..l )

× E(kt , jt − 1)Sl+1,jt ((At )l+1..jt
)

(
s∏

r=t+1

E(kr , jr − 1)Sir ,jr (Ar)

)
f�,�,

where c = 0 except the case l ∈ At ∪ {it }, l + 1 /∈At , in which c =−1.

Proof. (i) Applying Lemma 1, we prove by induction on t (starting from t = s) that

v = E(k1, j1 − 1)Si1,j1(A1) · · ·E(kt−1, jt−1 − 1)Sit−1,jt−1(At−1)

×M
kt

it ,jt
(At ) · · ·Mks

is ,js
(As)f�,�.

Using this formula for t = 1, we obtain the required result by induction on s.
(ii), (iii) follow from part (i) for Xt =M

kt

it ,jt
(At ) and Lemma 1.

(iv) Applying part (i) (possibly for different parameters), we get

Ekt−1v = Ekt−1M
k1
i1,j1

(A1) · · ·Mkt−1
it−1,jt−1

(At−1)

× E(kt , jt − 1)Sit ,jt (At ) · · ·E(ks, js − 1)Sis ,js (As)f�,�

=M
k1
i1,j1

(A1) · · ·Mkt−1
it−1,jt−1

(At−1)E(kt − 1, jt − 1)Sit ,jt (At )

× E(kt+1, jt+1 − 1)Sit+1,jt+1(At+1) · · ·E(ks, js − 1)Sis ,js (As)f�,�.

Now the required formula follows from part (i).
(v) Since El and E(kt , jt − 1) commute in this case, we get by [1, 4.11(i), (ii)] and parts

(i), (ii) of the current lemma that

Elv =M
k1
i1,j1

(A1) · · ·Mkt−1
it−1,jt−1

(At−1)E(kt , jt − 1)ElSit ,jt (At )

×E(kt+1, jt+1 − 1)Sit+1,jt+1(At+1) · · ·E(ks, js − 1)Sis ,js (As)f�,�

=cM
k1
i1,j1

(A1)· · ·Mkt−1
it−1,jt−1

(At−1)Sit ,l((At )it ..l )E(kt , jt − 1)Sl+1,jt ((At )l+1..jt
)

× E(kt+1, jt+1 − 1)Sit+1,jt+1(At+1) · · ·E(ks, js − 1)Sis ,js (As)f�,�.

Now the required formula follows similarly to (iv). �
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For 1� i < j �n and A ⊂ (i..j), we define the polynomial Ki,j (A) of Z[xi, . . . , xj−1,

yi+1, . . . , yj ] as in [1, 4.12] by the formula

Ki,j (A) :=
∑

B⊂(i..j)

⎛
⎝Hi,j (A, B)

∏
t∈B∪{i}

(yt+1 − xt )

⎞
⎠ .

We define H
�
i,j (A, B) by evaluating Hi,j (A, B) at xq := resp(q, �q) and define K

�,�,k

i,j (A)

by evaluating Ki,j (A) at

xq := resp(q, �q) for 1�q < n,

yq := resp(q, �q + 1) for 1 < q �k,

yq := resp(q, �q + 1) for k < q < n, (1)

where 1+�j=n(n−1)�k�n. For 1� i� t < n and 1+�t+1=n(n−1)�k�n, let B�,�,k(i, t)

denote the element of Z/pZ obtained from yt+1−xi by substitution (1). We also abbreviate

K
�,�
i,j (A) := K

�,�,n

i,j (A) and B�,�(i, t) := B�,�,n(i, t).

Remark 1. Clearly B�,�,k(i, t)=t−i+�i−�t+1 for k� t and B�,�,k(i, t)=t−i+�i−�t+1

for k > t . In particular, B�,�,k(i, t) = B�,�,i (i, t) for k� i and B�,�,k(i, t) = B�,�,t+1(i, t)

for k > t .

The next result is actually proved in [5, Proposition 4.5]. Recall that we have defined
at =∑t

j=1 (�j − �j ).

Proposition 3. Given integers 1�d1 < d ′1 �d2 < d ′2 � · · · �dr < d ′r �n, we have

(
n−1∏
t=1

E
(at+�t∈G)
t

)
Fd1,d

′
1
· · ·Fdr ,d ′r f�,� =

r∏
q=1

(�dq
− �dq+1)f�,

where G= [d1..d
′
1) ∪ · · · ∪ [dr ..d

′
r ).

Lemma 4. Under the hypothesis of Lemma 2, we have

(
n−1∏
t=1

E
(at+�t∈G)
t

)
v =K

�,�,k1
i1,j1

(A1) · · ·K�,�,ks

is ,js
(As)f�,

where G= [i1..k1) ∪ · · · ∪ [is ..ks).

Proof. By Lemma 1, we have E(kt , jt − 1)FB
it ,jt
≡ F

Bit ..kt

it ,kt

∏
q∈B∪{it },q �kt

(Hq − Hq+1)

modulo the left ideal of U(n) generated by Ekt , . . . , Ejt−1. Thus taking into account
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[1, Remark 4.8], we get

v =
s∏

t=1

∑
Bt⊂(it ..jt )

⎛
⎜⎜⎝H

�
it ,jt

(At , Bt )F
(Bt )it ..kt
it ,kt

∏
q∈Bt∪{it }

q �kt

(�q − �q+1)

⎞
⎟⎟⎠ f�,�. (2)

By Proposition 3, we have(
n−1∏
t=1

E
(at+�t∈G)
t

)
F

(B1)i1 ..k1
i1,k1

· · ·F (Bs)is ..ks

is ,ks
f�,� =

s∏
t=1

∏
q∈Bt∪{it }

q<kt

(�q − �q+1)f�.

Substituting this into (2) completes the proof. �

Let Vn be the set of all sequences x = ((i1, k1, j1, A1), . . . , (is, ks, js, As)) such that

1� i1 < j1 < · · ·< is < js �n; A1 ⊂ (i1..j1), . . . , As ⊂ (is ..js),

i1 �k1 �j1, . . . , is �ks �js; js = n implies ks = n.

Moreover, we put �(x) := E(k1, j1 − 1)Si1,j1(A1) · · ·E(ks, js − 1)Sis ,js (As) and

K�,�(x) := K
�,�,k1
i1,j1

(A1) · · ·K�,�,ks

is ,js
(As). In what follows, we assume that the product of two

finite sequences a= (a1, . . . , as) and b= (b1, . . . , bt ) equals ab= (a1, . . . , as, b1, . . . , bt ).

Let x, x′ ∈ Vn. We write x
l−→ x′ if there exists a representation x=a((i, k, j, A))b such

that one of the following conditions holds:

• x′ = a((i, k − 1, j, A))b, l = k − 1, i < k < n,
• x′ = a((i + 1, k, j, A))b, l = i, i + 1 /∈A, i < k − 1,
• x′ = a((i, l, l, Ai..l), (l + 1, k, j, Al+1..j ))b, l ∈ (i..k − 1), l ∈ A, l + 1 /∈A.

The above definitions are made exactly to ensure the following property.

Lemma 5. Let x, x′ ∈ Vn. If x
l−→ x′ then El�(x)f�,� =±�(x′)f�,�.

Proof. Follows directly from Lemma 2(iv), (v). �

We say that x′ follows from x if there are x0, . . . , xm ∈ Vn and integers l0, . . . , lm−1 such

that x=x0, x′ =xm and xt
lt−→ xt+1 for 0� t < m. In particular, every element of Vn follows

from itself.

Theorem 6. Let x ∈ Vn. The equality �(x)f�,� = 0 holds if and only if K�,�(x′) = 0 for
any x′ following from x.

Proof. It follows from Lemmas 5 and 4 that �(x)f�,� = 0 implies K�,�(x′)= 0 for any x′
following from x.
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Let x = ((i1, k1, j1, A1), . . . , (is, ks, js, As)). We prove the reverse implication by in-
duction on

∑s
t=1 (kt − it ). The induction starts by noting that this sum is always non-

negative. So we suppose that the reverse implication is true for smaller values of this sum.
By Lemma 2(ii),(iii), we get E

(m)
l �(x)f�,� = 0 if l < n − 1 and m > 1 or if m�1 and

l ∈ [1..n− 1)\([i1..k1) ∪ · · · ∪ [is ..ks)).
However El�(x)f�,� = 0 also for l ∈ [1..n− 1) ∩ ([i1..k1) ∪ · · · ∪ [is ..ks)) by Lemma

5 and the inductive hypothesis. Thus �(x)f�,� is a U(n− 1)-high weight vector of weight
�= �−∑s

t=1 (�it − �kt ), where �i = (0i−1, 1, 0n−1−i ) for i < n and �n= (0n−1). It follows
from [5, Corollary 3.3] that �(x)f�,� = 0 if � ←− � does not hold and that �(x)f�,� =
cf �,� for some c ∈ K if � ←− �. We need to consider only the latter case. By the last
equation of the introduction and Lemma 4, we have cf � = X(cf �,�) = X�(x)f�,� =
K�,�(x)f�=0, where X=∏n−1

t=1 E
(at+�t∈G)
t and G=[i1..k1)∪· · ·∪[is ..ks). Hence c=0 and

�(x)f�,� = 0. �

The next corollary follows from Theorem 6 and the following simple fact: if x ∈ Vn and
x= x1x2 then x′ follows from x if and only if there are sequences x′1 and x′2 following from
x1 and x2, respectively, such that x′ = x′1x′2.

Corollary 7. Let x ∈ Vn and x = x1x2. Then �(x)f�,� = 0 if and only if �(x1)f�,� = 0 or
�(x2)f�,� = 0.

3. Main result

We say that a map � : A→ Z, where A ⊂ Z, is weakly increasing (weakly decreasing) if
�(a)�a (resp. �(a)�a) for any a ∈ A. We need the following facts about the polynomials
Ki,j (A).

Proposition 8. Let 1� i < j �n, 1 + �j=n(n − 1)�k�n, A ⊂ (i..j) and there exists a
weakly increasing injection � : (i..j)\A → (i..j) such that B�,�,k(t, �(t)) = 0 for any
t ∈ (i..j)\A. Then

K
�,�,k

i,j (A)=
∏

t∈[i..j )\Im �

B�,�,k(i, t).

Proof. The result is obtained from [5, Lemma 4.4] by substitution (1). �

Lemma 9. For i < j − 1 and A ⊂ (i..j), we have

(i) Ki,j (A)=Ki,j−1(A) if j − 1 /∈A,
(ii) Ki,j (A) =Ki,j−1(A\{j − 1})(yj − xk) + �k �=i Ki,j−1({k} ∪ A\{j − 1}), where

k =max[i..j )\A, if j − 1 ∈ A.

Proof. We put Ā= (i..j)\A. In this proof, we use [1, Lemma 4.13(i)] for a self-contained
form of Ki,j (A) and the following notation of [1]: if D ⊂ (i..j) and k > i then Di(k) =
max{t ∈ D ∪ {i} : t < k}.
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(i) If D ⊂ Ā\{j − 1} then (D∪{j − 1})i(t)=Di(t) for t < j , (D∪{j − 1})i(j)= j − 1
and Di(j)=Di(j − 1). Hence we get

Ki,j (A)

=
∑

D⊂Ā\{j−1}
(−1)|D|

(∏
t∈(i..j ] (yt − xDi(t))∏

t∈Ā (xt − xDi(t))
−
∏

t∈(i..j ] (yt − x(D∪{j−1})i (t))∏
t∈Ā (xt − x(D∪{j−1})i (t))

)

=
∑

D⊂Ā\{j−1}
(−1)|D|

( ∏
t∈(i..j−1] (yt − xDi(t))∏
t∈Ā\{j−1} (xt − xDi(t))

(yj − xDi(j−1))− (yj − xj−1)

xj−1 − xDi(j−1)

)

=Ki,j−1(A).

(ii) If k = i then A = (i..j), Ki,j (A) = ∏t∈(i..j ] (yt − xi), Ki,j−1(A\{j − 1}) =∏
t∈(i..j−1] (yt − xi) (by part (i)) and the required formula follows.
Therefore, we consider the case k �= i. We have

Ki,j (A)= (yj − xk)
∑
D⊂Ā

(−1)|D|
∏

t∈(i..j−1] (yt − xDi(t))∏
t∈Ā (xt − xDi(t))

+
∑
D⊂Ā

(−1)|D|(xk − xDi(j))

∏
t∈(i..j−1] (yt − xDi(t))∏

t∈Ā (xt − xDi(t))
.

Part (i) shows that the first sum equals Ki,j (A\{j − 1}). Let us look at the second sum. If
k ∈ D then Di(j)= k and the summands corresponding to such sets D can be omitted. If
k /∈D then Di(j)=Di(k) and this summand equals

(−1)|D|
∏

t∈(i..j−1] (yt − xDi(t))∏
t∈Ā\{k} (xt − xDi(t))

.

Thus the second sum equals Ki,j−1({k} ∪ A\{j − 1}). �

Next, we are going to prove the result similar to [4, Proposition 3.2], where we replace the
U(n)-high weight vector v+ by the U(n− 1)-high weight vector f�,�. The general scheme
of proof is borrowed from [4, Proposition 3.2], although some changes are necessary. We
shall use Theorem 6 and Lemma 9 to make them. In what follows, we say that a formula
M = [b1..c1] ∪ · · · ∪ [bN ..cN ] is the decomposition of M into the union of connected
components if bi �ci for 1� i�N and ci < bi+1 − 1 for 1� i < N .

Definition 10. Let 1� i < j �n, M ⊂ (i..j) and M = [b1..c1] ∪ · · · ∪ [bN ..cN ] be the
decomposition of M into the union of connected components. We say that M satisfies the

condition ��,�
i,j (v) if 1�v�N + 1 and for any k = 1+ �bv−1=n(n− 1), . . . , n there exists

a weakly increasing injection �k : {i} ∪ [b1..c1] ∪ · · · ∪ [bv−1..cv−1] → [i..bv − 1) such
that B�,�,k(x, �k(x))= 0 for any admissible x, where we assume bN+1 = j + 1.
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Lemma 11. Let 1� i < j �n and A ⊂ (i..j) be such that (i..j)\A satisfies ��,�
i,j (v) for

some v. Then K
�,�,k

i,j (A)= 0 for 1+ �j=n(n− 1)�k�n.

Proof. Let (i..j)\A = [b1..c1] ∪ · · · ∪ [bN ..cN ] be the decomposition into the union of
connected components. Note that if v = N + 1, then the required equalities immediately
follow from Proposition 8.

Indeed, take any k= 1+ �j=n(n− 1), . . . , n. Since in this case bv − 1= j , Definition 10
ensures that there exists a weakly increasing injection �k : {i} ∪ ((i..j)\A)→ [i..j ) such
that B�,�,k(x, �k(x)) = 0 for any admissible x. Taking the restriction of �k to (i..j)\A for
� in Proposition 8, we obtain

K
�,�,k

i,j (A)=
∏

t∈[i..j )\Im �

B�,�,k(i, t).

The last product equals zero, since B�,�,k(i, �k(i))= 0 and �k(i) ∈ [i..j )\Im �.
Let us prove the lemma by induction on j − i. The case j − i= 1 follows from the above

remark. Now let v�N , j − i > 1 and suppose that the lemma is true for smaller values of
this difference. Take any k = 1+ �j=n(n− 1), . . . , n. By Lemma 9, we have

K
�,�,k

i,j (A)=K
�,�,k

i,j−1(A\{j − 1})B +K
�,�,k

i,j−1({cN } ∪ A\{j − 1})

if cN < j − 1 and

K
�,�,k

i,j (A)=K
�,�,k

i,j−1(A)

if cN = j − 1, where B is the element of Z/pZ obtained from yj − xcN
by substitution (1).

Clearly, the sets (i..j − 1)\(A\{j − 1}) and (i..j − 1)\({cN } ∪ A\{j − 1}) in the former

case and the set (i..j − 1)\A in the latter case satisfy the condition ��,�
i,j−1(v). �

Theorem 12. Let 1� i < j �n and A ⊂ (i..j). Then Si,j (A)f�,�=0 if and only if (i..j)\A
satisfies ��,�

i,j (v) for some v.

Proof. Let Ā= (i..j)\A and Ā= [b1..c1] ∪ · · · ∪ [bN ..cN ] be the decomposition into the
union of connected components. We put xk = ((i, k, j, A)) for brevity. It should be kept in
mind that �(xj )= Si,j (A).

We prove the theorem by induction on |Ā|. Suppose Ā = ∅. Then all the sequences
following from xj are xk , where i + �j=n(j − i)�k�j . By Theorem 6, �(xj )f�,� = 0 if

and only if K�,�(xk)= 0 for any k = i + �j=n(j − i), . . . , j . Applying Proposition 8, we
see that �(xj )f�,� = 0 if and only if for any k = i + �j=n(j − i), . . . , j there is tk ∈ [i..j )

such that B�,�,k(i, tk)= 0. In view of Remark 1, this assertion is equivalent to ��,�
i,j (1).
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Now suppose that Ā �= ∅ and that the theorem holds for smaller values of |Ā|.
“If part”: By [1, 4.11(ii)] for any m= 1, . . . , N , we have Ebm−1Si,j (A)f�,� =−Si,bm−1

(Ai..bm−1) Sbm,j (Abm..j )f�,�. Note that

Ai..bm−1 = (i..bm − 1)\([b1..c1] ∪ · · · ∪ [bm−1..cm−1]),
Abm..j = (bm..j)\((bm..cm] ∪ · · · ∪ [bN ..cN ]). (3)

If m�v − 1 then (bm..cm] ∪ · · · ∪ [bN ..cN ] satisfies ��,�
bm,j (v −m+ 1− �bm=cm), whence

by the inductive hypothesis Sbm,j (Abm..j )f�,�=0. If m�v then i < bm−1 and [b1..c1]∪· · ·∪
[bm−1..cm−1] satisfies��,�

i,bm−1(v), whence by the inductive hypothesisSi,bm−1(Ai..bm−1)f�,�
=0. Since the elements Si,bm−1(Ai..bm−1) and Sbm,j (Abm..j ) commute, we have in both cases

Ebm−1Si,j (A)f�,� = 0. (4)

Let us prove by induction on s = 0, . . . , j − i that in the case j < n the conditions

K
�,�,j

i,j (A)= 0, . . . , K
�,�,j−s+1
i,j (A)= 0, �(xj−s)f�,� = 0 (5)

imply �(xj )f�,� = 0. It is obviously true for s = 0. Suppose that 0 < s�j − i, conditions
(5) hold and the assertion is true for smaller values of s. By the inductive hypothesis it

suffices to prove that �(xj−s+1)f�,� = 0. Let xj−s+1
l−→ x′. We have either x′ = xj−s or

l = bm − 1 < j − s. Since in the former case �(x′)f�,� = 0 by (5), we shall consider the
latter case. We have

�(x′)f�,� = Ebm−1�(xj−s+1)f�,� = Ebm−1E(j − s + 1, j − 1)Si,j (A)f�,�

=E(j − s + 1, j − 1)Ebm−1Si,j (A)f�,� = 0.

To obtain the last equality, we used (4). Since K�,�(xj−s+1)=K
�,�,j−s+1
i,j (A)= 0, we get

�(xj−s+1)f�,� = 0 by Theorem 6.
Note that nothing follows from xi except itself. Therefore, applying the above asser-

tion for s = j − i and Theorem 6, we see that to prove �(xj )f�,� = 0 in the case

j < n, it suffices to prove K
�,�,k

i,j (A) = 0 for i�k�j . The last equalities follow from
Lemma 11.

If j = n then xj
l−→ x′ holds if and only if l = bm − 1, where 1�m�N . In that case

�(x′)f�,� = 0 by (4). Therefore, applying Theorem 6, we see that to prove �(xj )f�,� = 0

in the case j = n, it suffices to prove K
�,�
i,j (A)= 0. The last equality follows from Lemma

11.
“Only if part”: Suppose Ā satisfies the condition ��,�

i,j (v) for no v. Multiplying the equality
�(xj )f�,�= 0 by Ebm−1, where 1�m�N , we get Si,bm−1(Ai..bm−1)Sbm,j (Abm..j )f�,�= 0
according to [1, 4.11(ii)]. By Corollary 7, either Si,bm−1(Ai..bm−1)f�,�=0 or Sbm,j (Abm..j )

f�,� = 0. The former case is impossible since the inductive hypothesis would yield that

(i..bm−1)\Ai..bm−1 satisfies ��,�
i,bm−1(v) for some v�m (see (3)). But then Ā would satisfy

��,�
i,j (v), which is wrong. Therefore Sbm,j (Abm..j )f�,� = 0 for any m= 1, . . . , N .



V.V. Shchigolev / Journal of Pure and Applied Algebra 206 (2006) 111–122 121

We shall use this fact to prove by downward induction on u=1, . . . , N+1 the following
property:

for any k = 1+ �j=n(n− 1), . . . , n, there is a weakly increasing

injection dk : [bu..cu] ∪ · · · ∪ [bN ..cN ] → (i..j) such that

B�,�,k(x, dk(x))= 0 for any admissible x. (6)

This is obviously true for u=N+1. Therefore, we suppose that 1�u�N and property (6) is
proved for greater u. Fix an arbitrary k=1+�j=n(n−1), . . . , n. Since Sbu,j (Abu..j )f�,�=0,
the inductive hypothesis asserting that the current lemma is true for smaller values of |Ā|
implies that (bu..j)\Abu..j satisfies ��,�

bu,j (v) for some v.As a consequence, there is a weakly
increasing injection ek : [bu..cu] ∪ · · · ∪ [bu+w−1..cu+w−1] → [bu..bu+w − 1) such that
B�,�,k(x, dk(x)) = 0 for any admissible x (here w = v − 1 + �bu=cu and bN+1 = j + 1).
The inductive hypothesis asserting that property (6) holds for u+w allows us to extend ek

to the required injection dk . Thus property (6) is proved.
Take any k = i + �j=n(j − i), . . . , j . Applying property (6) for u = 1, the fact that xk

follows from xj , and Proposition 8, we get

0=K�,�(xk)=K
�,�,k

i,j (A)=
∏

t∈[i..j )\Im dk

B�,�,k(i, t).

Therefore, there is t ′ ∈ [i..j )\Im dk such that B�,�,k(i, t ′) = 0. Putting �k(t) = dk(t) for
t ∈ [b1..c1] ∪ · · · ∪ [bN ..cN ] and �k(i) = t ′, we get a map required in Definition 10. This

fact together with Remark 1 shows that Ā satisfies ��,�
i,j (N + 1), contrary to assumption.

�

Following [5], we introduce the following sets:

C�(i, j) := {a : i < a < j, C�(i, a)= 0},
B�,�(i, j) := {a : i�a < j, B�,�(i, a)= 0},

where C�(i, a) is the residue class of a − i + �i − �a modulo p as in [5].

Theorem 13. Let 1� i < n.

(i) Let A ⊂ (i..n). Then Si,n(A)f�,� is a non-zero U(n−1)-high weight vector if and only if

there is a weakly increasing injection d : (i..n)\A→ (i..n) such that B�,�(x, d(x))=0
for any admissible x and B�,�(i, t) �= 0 for any t ∈ [i..n)\Im d.

(ii) There is some A ⊂ (i..n) such that Si,n(A)f�,� is a non-zero U(n − 1)-high weight

vector if and only if there is a weakly decreasing injection from B�,�(i, n) to C�(i, n).

Proof. (i) It is clear from [1, 4.11(ii)], Theorem 12 and Proposition 8 that Si,n(A)f�,�
is a non-zero U(n − 1)-high weight vector for such A. Conversely, if Si,n(A)f�,� is a
non-zero U(n − 1)-high weight vector then, arguing as in the “only if part” of Theorem
12, we get that there is a weakly increasing injection d : (i..n)\A → (i..n) such that
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B�,�(x, d(x))=0 for any admissible x. Now by Proposition 8, we have 0 �= K�,�(i, n)(A)=∏
t∈[i..n)\Im d B�,�(i, t).
(ii) If � is such an injection, then it suffices to put A= (i..n)\Im �, take for d the inverse

map of � and apply part (i). Conversely, let Si,n(A)f�,� be a non-zero U(n − 1)-high
weight vector for some A ⊂ (i..n) and let d be an injection, whose existence is claimed by
part (i). Now the result follows from the following two observations: B�,�(i, n) ⊂ Im d;
d(x) ∈ B�,�(i, n) implies x ∈ C�(i, n). �

Remark 2. If we obtain a non-zero U(n− 1)-high weight vector in Theorem 13, then it is
a scalar multiple of f�,�, where �= �− �i and �i = (0i−1, 1, 0n−1−i ).
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