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Abstract

To any cleft Hopf Galois object, i.e., any algebra αH obtained from a Hopf algebra H by twisting its
multiplication with a two-cocycle α, we attach two “universal algebras” Aα

H
and Uα

H
. The algebra Aα

H
is

obtained by twisting the multiplication of H with the most general two-cocycle σ formally cohomologous
to α. The cocycle σ takes values in the field of rational functions on H . By construction, Aα

H
is a cleft

H -Galois extension of a “big” commutative algebra Bα
H

. Any “form” of αH can be obtained from Aα
H

by
a specialization of Bα

H
and vice versa. If the algebra αH is simple, then Aα

H
is an Azumaya algebra with

center Bα
H

. The algebra Uα
H

is constructed using a general theory of polynomial identities that we set up for
arbitrary comodule algebras; it is the universal comodule algebra in which all comodule algebra identities
of αH are satisfied. We construct an embedding of Uα

H
into Aα

H
; this embedding maps the center Zα

H
of Uα

H
into Bα

H
when the algebra αH is simple. In this case, under an additional assumption, Aα

H
∼= Bα

H
⊗Zα

H
Uα

H
,

thus turning Aα
H

into a central localization of Uα
H

. We completely work out these constructions in the case
of the four-dimensional Sweedler algebra.
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0. Introduction

In this paper we deal with algebras αH obtained from a Hopf algebra H by twisting its multi-
plication with a two-cocycle α. This class of algebras coincides with the class of so-called cleft
Hopf Galois extensions of the ground field; strongly G-graded algebras and certain G-algebras,
where G is a finite group, belong to this class. As has been stressed many times (see e.g. [28]),
Hopf Galois extensions can be viewed as noncommutative analogues of G-torsors or of principal
fiber bundles where the role of the structural group is played by a Hopf algebra. Hopf Galois
extensions abound in the world of quantum groups and of noncommutative geometry (see, e.g.,
[11–13,19,20,23]).

To the algebra αH we attach two “universal algebras” Uα
H and Aα

H , using two constructions of
a very different nature. The algebra Uα

H is a graded quotient of the tensor algebra over the under-
lying vector space of H . To construct this quotient, we set up a theory of polynomial identities for
comodule algebras. We define Uα

H as the universal comodule algebra in which all H -comodule
algebra identities of αH are satisfied.

The second universal algebra, Aα
H , is obtained by twisting the multiplication of H with a

two-cocycle σ taking values in the field of rational functions on H . The cocycle σ can be viewed
as the most general cocycle formally cohomologous to α. By construction, Aα

H is a cleft H -
Galois extension of the commutative algebra Bα

H generated by the values of the cocycle σ and
of its convolution inverse. We show that any “form” of αH can be obtained from Aα

H by a
specialization of Bα

H . Conversely, any central specialization of Aα
H is a form of αH . Thus, the

set of algebra morphisms Alg(Bα
H ,K) parametrizes the isomorphism classes of K-forms of αH

and Aα
H can be viewed as a flat deformation of αH over the commutative algebra Bα

H ; it is a
noncommutative analogue of a versal deformation space or a versal torsor in the sense of Serre
(see [18, Chapter I]). We also prove that, if αH is a simple algebra, then Aα

H is an Azumaya
algebra with center Bα

H .
We relate the algebras Uα

H and Aα
H by constructing an injective comodule algebra morphism

μσ : Uα
H →Aα

H . The morphism μσ sends the center Zα
H of Uα

H to the center Bα
H of Aα

H when the
algebra αH is simple. Under an additional assumption we prove that μσ induces an isomorphism
of H -comodule algebras Bα

H ⊗Zα
H
Uα

H
∼= Aα

H . We thus obtain the “versal deformation space” Aα
H

as a central localization of the universal H -comodule algebra Uα
H .

Most of the results presented here generalize results obtained in the group case by the first-
named author jointly with D. Haile and M. Natapov, see [3]. In this important special case,
additional results are obtained in [3] such as a characterization of the pairs (G,α) consisting of
a finite group G and a two-cocycle α for which Aα

H is a division algebra, see also [4]. Since we
deal with arbitrary Hopf algebras, our results, whose proofs are not straightforward extensions
of those of [3], cover situations that can be radically different from the group case. Our general
framework also leads to the emergence of new interesting questions on Hopf algebras such as the
one posed in Section 5.4.

In [21,22] a project aimed at classifying Hopf Galois extensions was started. The results pre-
sented in this paper can be considered as first steps towards the construction of universal Hopf
Galois extensions. Although we do not obtain universal extensions (which may well not exist),
we manage to construct versal deformation spaces. We believe that such deformation spaces are
of interest and that they deserve to be computed for many Hopf Galois extensions.

The paper is organized as follows. In Section 1 we recall some well-known facts on comodule
algebras.
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In Section 2 we define the concept of an H -identity for an H -comodule algebra and in Sec-
tion 3 we associate to each H -comodule algebra A the universal algebra UH (A).

In Section 4 we restrict ourselves to the case of H -comodule algebras A that are isomor-
phic as comodules to B ⊗ H , where B is the subalgebra of coinvariants of A, assumed to be
central in A. For each such H -comodule algebra we construct a comodule algebra morphism
whose kernel turns out to be exactly the ideal of H -identities for A. This allows us to embed the
universal algebra UH (A) into a more controllable algebra, namely the tensor product of A by a
(commutative) polynomial algebra.

We construct the two-cocycle σ and the commutative algebra Bα
H in Section 5. In Section 6

we define the “universal twisted algebra” Aα
H and show that, if αH is (semi)simple, then Aα

H is
“generically” (semi)simple, i.e., Kα

H ⊗Bα
H
Aα

H is (semi)simple, where Kα
H is the field of fractions

of Bα
H .

In Section 7 we define forms of αH and show how specializations of Bα
H give rise to forms

of αH and vice versa. We also prove that Aα
H is an Azumaya algebra if αH is a simple algebra.

In Section 8 we embed Uα
H into Aα

H and we show in Section 9 that, if αH is simple, then the
previous embedding maps the center Zα

H of Uα
H into Bα

H , resulting in the isomorphism

Bα
H ⊗Zα

H
Uα

H
∼= Aα

H .

We illustrate our results in Section 10 on the four-dimensional Sweedler Hopf algebra. In this
example the base of our versal deformation space is a quadric hypersurface in a five-dimensional
affine space deprived of two hyperplanes.

The paper ends with two appendices related to the constructions of Section 5. In Appendix A
we construct a map needed for the construction of the cocycle σ . In Appendix B we relate
the algebra S(tH )Θ defined in Section 5.3 to Takeuchi’s free commutative Hopf algebra over
a coalgebra. It follows that S(tH )Θ is obtained from a polynomial algebra by inverting certain
canonical polynomials. These polynomials extend Dedekind’s group determinants to the frame-
work of coalgebras.

1. Preliminaries

Throughout the paper, we fix a ground field k over which all our constructions are defined. As
usual, unadorned tensor products mean tensor products over k.

All algebras that we consider are associative unital k-algebras. The unit of an algebra A will
be denoted 1A, or 1 if no confusion is possible. All algebra morphisms are supposed to preserve
the units. We denote the set of algebra morphisms from A to A′ by Alg(A,A′).

All coalgebras are coassociative counital k-coalgebras. We denote the comultiplication of a
coalgebra C by Δ and its counit by ε. We use the Heyneman–Sweedler sigma notation (see [1,
Section 2.1.1], [29, Section 1.2]):

Δ(x) =
∑
(x)

x(1) ⊗ x(2)

for the comultiplication of x ∈ C and

Δ(2)(x) =
∑
(x)

x(1) ⊗ x(2) ⊗ x(3)

for the iterated comultiplication Δ(2) = (Δ ⊗ idC) ◦ Δ = (idC ⊗ Δ) ◦ Δ, and so on.
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Let H be a Hopf algebra with comultiplication Δ, counit ε, and antipode S. An H -comodule
algebra is an algebra A equipped with a right H -comodule structure whose (coassociative, couni-
tal) coaction

δ : A → A ⊗ H

is an algebra morphism (we will not use left comodules). A coaction δ is called trivial if δ(a) =
a ⊗ 1 for all a ∈ A.

Given two H -comodule algebras A and A′ with respective coactions δ and δ′, an algebra
morphism f : A → A′ is an H -comodule algebra morphism if

δ′ ◦ f = (f ⊗ idH ) ◦ δ.

We denote by AlgH the category whose objects are H -comodule algebras and arrows are H -
comodule algebra morphisms.

The space of coinvariants of an H -comodule algebra A is the subspace AH of A defined by

AH = {
a ∈ A

∣∣ δ(a) = a ⊗ 1
}
.

The subspace AH is a subalgebra and a subcomodule of A. It is the largest subcomodule of A on
which the coaction is trivial.

We shall later use the following lemma.

Lemma 1.1. Let f : A1 → A2 be an injective H -comodule algebra morphism. Then

AH
1 = {

a ∈ A1
∣∣ f (a) ∈ AH

2

}
.

Proof. If a ∈ AH
1 , then δ(a) = a ⊗ 1. Therefore, δ(f (a)) = f (a) ⊗ 1, which shows that f (a)

belongs to AH
2 .

Conversely, let a ∈ A1 be such that δ(f (a)) = f (a) ⊗ 1. Let {1} ∪ {hi}i∈I be a basis of H .
Expanding δ(a) = a0 ⊗ 1 +∑

i∈I ai ⊗ hi in this basis, we obtain

f (a) ⊗ 1 = δ
(
f (a)

)= (f ⊗ idH )
(
δ(a)

)
= (f ⊗ idH )

(
a0 ⊗ 1 +

∑
i∈I

ai ⊗ hi

)

= f (a0) ⊗ 1 +
∑
i∈I

f (ai) ⊗ hi.

This implies that f (ai) = 0 for all i ∈ I . Since f is injective, ai = 0 for all i ∈ I . Therefore,
δ(a) = a0 ⊗ 1. Applying idA1 ⊗ ε to both sides of the previous equality, we obtain a = a0. It
follows that a ∈ AH

1 . �
We end these preliminaries with two well-known classes of comodule algebras.
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Example 1.2. The group algebra H = k[G] of a group G is a Hopf algebra with comultiplication,
counit, and antipode given for all g ∈ G by

Δ(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.

It is well known (see [10, Lemma 4.8]) that an H -comodule algebra A is the same as a G-graded
algebra

A =
⊕
g∈G

Ag.

The coaction δ : A → A⊗H is given by δ(a) = a ⊗g for a ∈ Ag and g ∈ G. We have AH = Ae,
where e is the neutral element of G.

Example 1.3. Let G be a finite group and H = kG be the algebra of k-valued functions on a
finite group G. This algebra can be equipped with a Hopf algebra structure that is dual to the
Hopf algebra k[G] above. An H -comodule algebra A is the same as an algebra equipped with a
left action of G on A by group automorphisms. If we denote the action of g ∈ G on a ∈ A by ga,
then the coaction δ : A → A ⊗ H is given by

δ(a) =
∑
g∈G

ga ⊗ eg,

where {eg}g∈G is the basis of H consisting of the functions eg defined by eg(h) = 1 if h = g,
and 0 otherwise. The subalgebra of coinvariants of A coincides with the subalgebra of G-
invariant elements: AH = AG.

2. H -identities

Let H be a Hopf algebra. We first build up the formal setting in which the identities will live.

2.1. The tensor algebra

Let XH be a copy of the underlying vector space of H . We denote the identity map from H

to XH by h 
→ Xh for all h ∈ H . By definition we have

Xλ1h1+λ2h2 = λ1Xh1 + λ2Xh2

for all λ1, λ2 ∈ k and h1, h2 ∈ H .
The vector space XH is naturally an H -comodule whose coaction δ is induced by the comul-

tiplication Δ of H , i.e., for all h ∈ H we have

δ(Xh) =
∑

Xh(1)
⊗ h(2) ∈ XH ⊗ H. (2.1)
(h)
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Consider the tensor algebra T (XH ) of the vector space XH over the ground field k:

T (XH ) =
⊕
r�0

T r(XH ),

where T r(XH ) = k if r = 0, T r(XH ) = XH if r = 1, and T r(XH ) = X⊗r
H for all r � 2. If {hi}i∈I

is a basis of H , then T (XH ) is the free noncommutative algebra over the set of indeterminates
{Xhi

}i∈I .
We equip T (XH ) with an H -comodule algebra structure with the coaction induced by (2.1).

On T r(XH ) (r � 2) the coaction is given by

δ(Xh[1] · · ·Xh[r]) =
∑

(h[1]),...,(h[r])
X

h
[1]
(1)

· · ·X
h

[r]
(1)

⊗ h
[1]
(2) · · ·h[r]

(2) (2.2)

for all h[1], . . . , h[r] ∈ H .
By the universal property of T (XH ), any algebra morphism from T (XH ) to an algebra A is

determined by its restriction to its degree-one summand T 1(XH ) = XH . We thus have a natural
bijection

Alg
(
T (XH ),A

)∼= Hom(XH ,A) = Hom(H,A).

If we restrict this bijection to H -comodule algebra morphisms, we obtain a bijection

AlgH
(
T (XH ),A

)∼= HomH (XH ,A) = HomH (H,A),

which is functorial in A ∈ AlgH . Here AlgH is the category of H -comodule algebras and HomH

is the category of H -comodules.
Let us give a typical example of a coinvariant element of T (XH ).

Lemma 2.1. For any h[1], . . . , h[r] ∈ H ,

Ph[1],...,h[r] =
∑

(h[1]),...,(h[r])
X

h
[1]
(1)

· · ·X
h

[r]
(1)

X
S(h

[1]
(2)

···h[r]
(2)

)

is a coinvariant element of T (XH ).

Proof. By (2.2), the element δ(Ph[1],...,h[r]) ∈ T (XH ) ⊗ H is equal to

∑
(h[1]),...,(h[r])

,X
h

[1]
(1)

· · ·X
h

[r]
(1)

X
S(h

[1]
(4)

···h[r]
(4)

)
⊗ h

[1]
(2)

· · ·h[r]
(2)

S
(
h

[1]
(3)

· · ·h[r]
(3)

)

=
∑

(h[1]),...,(h[r])
X

h
[1]
(1)

· · ·X
h

[r]
(1)

X
S(h

[1]
(3)

···h[r]
(3)

)
⊗ ε

(
h

[1]
(2)

) · · · ε(h[r]
(2)

)
1,

which is clearly equal to Ph[1],...,h[r] ⊗ 1. �
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2.2. H -identities for comodule algebras

Let A be an H -comodule algebra. An element P ∈ T (XH ) is called an H -identity for A if
μ(P ) = 0 for all H -comodule algebra morphisms μ : T (XH ) → A.

Our H -identities for H -comodule algebras generalize graded identities for group-graded al-
gebras. Indeed, let H = k[G] be the Hopf algebra of a group G. The set {Xg}g∈G forms a
basis of XH . Let A be an H -comodule algebra; by Example 1.2, it is a G-graded algebra:
A = ⊕

g∈G Ag . An H -comodule algebra morphism μ : T (XH ) → A is then an algebra mor-
phism such that μ(Xg) ∈ Ag for all g ∈ G, and an H -identity for A is what is called a graded
identity, see [3,7].

Our definition of identities for Hopf comodule algebras should also be compared to the defi-
nition of identities for Hopf module algebras appearing in [6].

Let IH (A) be the set of all H -identities for A. By definition,

IH (A) =
⋂

μ∈AlgH (T (XH ),A)

Kerμ. (2.3)

Proposition 2.2.

(a) The set IH (A) is a two-sided ideal and a right H -coideal of T (XH ).
(b) The ideal IH (A) is preserved by all H -comodule algebra endomorphisms of T (XH ).

This result allows us to paraphrase the classical theory of rings with polynomial identities
(see, e.g., [27]) by saying that IH (A) is a T -ideal.

Proof. (a) For each μ ∈ AlgH (T (XH ),A) the kernel Kerμ is a two-sided ideal of T (XH ).
Hence so is the intersection IH (A).

Let us show that Kerμ is a right H -coideal of T (XH ) for each comodule algebra morphism
μ : T (XH ) → A. If we fix a basis {hi}i∈I of H , then there is a family of linear endomorphisms
{δi}i∈I of T (XH ) such that the coaction of H on T (XH ) can be written

δ(P ) =
∑
i∈I

δi(P ) ⊗ hi

for all P ∈ T (XH ). If P ∈ Kerμ, then∑
i∈I

μ
(
δi(P )

)⊗ hi = (μ ⊗ idH )δ(P ) = δ
(
μ(P )

)= 0.

It follows that μ(δi(P )) = 0 for all i ∈ I , hence δ(P ) belongs to Kerμ ⊗ H . We have thus
established that Kerμ is a right H -coideal of T (XH ). Using a similar argument, one proves that
the intersection IH (A) is a right H -coideal.

(b) If f : T (XH ) → T (XH ) is an H -comodule algebra morphism, then so is μ ◦ f :
T (XH ) → A for all μ ∈ AlgH (T (XH ),A). Hence, if P ∈ IH (A), then μ(f (P )) = 0 for all
μ ∈ AlgH (T (XH ),A), which implies that f (P ) belongs to IH (A). �

The tensor algebra has a natural grading for which T r(XH ) (r � 0) is the subspace of all
elements of T (XH ) of degree r . Eq. (2.2) implies that
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δ
(
T r(XH )

)⊂ T r(XH ) ⊗ H. (2.4)

Proposition 2.3. If k is infinite, then the submodule IH (A) of T (XH ) is graded with I r
H (A) =

IH (A) ∩ T r(XH ) for all r � 0.

Proof. Expand P ∈ IH (A) into a finite sum with homogeneous parts:

P =
∑
r�0

Pr,

where Pr ∈ T r(XH ). It suffices to show that Pr ∈ IH (A) for all r � 0.
Given λ ∈ k, consider the algebra endomorphism λ∗ of T (XH ) defined by λ(Xh) = λXh for

all h ∈ H . It is easy to check that λ∗ is an H -comodule map. If μ : T (XH ) → A is an H -
comodule algebra morphism, then so is μ ◦ λ∗. Consequently,

∑
r�0

λrμ(Pr) = (μ ◦ λ∗)(P ) = 0.

The A-valued polynomial
∑

r�0 λrμ(Pr) takes zero values for all λ ∈ k. By the assumption on k,
this implies that its coefficients are all zero, i.e., μ(Pr) = 0 for all r � 0. Since this holds for all
μ ∈ AlgH (T (XH ),A), we obtain Pr ∈ IH (A) for all r � 0. �
Proposition 2.4. Let k be an infinite field.

(a) We have I 0
H (A) = {0}.

(b) If there is an injective comodule map H → A, then I 1
H (A) = {0}.

Proof. (a) The dimension of I 0
H (A) is at most one. Since μ(1) = 1 = 0 for all μ ∈

AlgH (T (XH ),A), there cannot exist nonzero H -identities in degree zero.
(b) Any element of T (XH ) of degree one is of the form Xh for some h ∈ H . Let u : H → A be

an injective comodule map. It extends to a morphism μ ∈ AlgH (T (XH ),A) uniquely determined
by μ(Xh) = u(h) for all h ∈ H . If Xh ∈ IH (A), then u(h) = μ(Xh) = 0. By the injectivity of u,
we have h = 0, hence Xh = 0. �

When the condition of Proposition 2.4(b) is not satisfied, there may exist H -identities of
degree one, as shown by Proposition 2.5 below.

Let H be a Hopf algebra and A = k be the trivial one-dimensional H -comodule algebra. (In
this case there are no injective comodule maps H → A unless dimH = 1.) Let us determine the
ideal IH (k) of H -identities for k. It is well known (see [1, Section 3.3.1]) that the vector space
of H -comodule maps H → k coincides with the vector space of right integrals for H and that
this vector space is either zero or one-dimensional.

If H has no nonzero right integrals, then any element of the augmentation ideal T +(XH ) =⊕
r�1 T r(XH ) is an H -identity for k. Hence,

IH (k) = T +(XH ). (2.5)



E. Aljadeff, C. Kassel / Advances in Mathematics 218 (2008) 1453–1495 1461
Let us now consider the case where H has a nonzero right integral. This is the case for instance
when H is a finite-dimensional Hopf algebra.

Proposition 2.5. If N : H → k is a nonzero right integral, then

I 1
H (k) = {

Xh ∈ T 1(XH )
∣∣N(h) = 0

}
,

and IH (A) is the two-sided ideal of T (XH ) generated by I 1
H (k).

Proof. Let μ : T (XH ) → k be an H -comodule algebra morphism. Its restriction to T 1(XH ) ∼= H

is an H -comodule map, hence a right integral for H , which is necessarily a scalar multiple of N .
It follows that an element of T 1(XH ) is an H -identity for k if and only if it is in the kernel of N .

Let {hi}i∈I be a basis of Ker(N) and h0 ∈ H such that N(h0) = 1. Any element of T (XH ) is
a linear combination of monomials in the indeterminates Xhi

(i ∈ I ) together with the indeter-
minate X = Xh0 . Clearly, μ vanishes on any monomial containing at least an indeterminate Xhi

,
where i ∈ I . On the contrary, if μ = 0, then μ takes a nonzero value on any monomial that is
a pure power of X. Therefore, IH (A) is the ideal generated by the indeterminates Xhi

, where
i ∈ I . �
Remarks 2.6. (a) Instead of defining the H -identities in the tensor algebra T (XH ), we could
define them in the reduced tensor algebra T̄ (XH ), which we define as the quotient of T (XH )

by the two-sided ideal generated by X1H
− 1, where 1H is the unit of the algebra H . Certain

identities would be simpler in T̄ (XH ), but we would lose the natural grading of T (XH ) as the
ideal generated by X1H

− 1 is not graded.
(b) If we have a family (Aα)α of H -comodule algebras, we define an H -identity for the family

(Aα)α to be an element P ∈ T (XH ) that is an H -identity for each H -comodule algebra Aα of
the family. We may then consider the intersection

⋂
α IH (Aα), which is a two-sided ideal and a

right H -coideal of T (XH ).

2.3. Central polynomials

Let A be an H -comodule algebra. We say that P ∈ T (XH ) is a central polynomial for A if
PQ − QP is an H -identity for A for all Q ∈ T (XH ). Since

P(Q1Q2) − (Q1Q2P) = (PQ1 − Q1P)Q2 + Q1(PQ2 − Q2P)

for all Q1,Q2 ∈ T (XH ), we conclude by induction on the degree that P is a central polynomial
for A if and only if

PXh − XhP ∈ IH (A)

for all h ∈ H . To check that P is a central polynomial, it is therefore enough to check that μ(P )

commutes with μ(Xh) in A for all μ ∈ AlgH (T (XH ),A) and all h ∈ H .
In Section 4.4 we shall establish under certain assumptions that each element Ph[1],...,h[r] ∈

T (XH ) of Lemma 2.1 is a central polynomial.
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3. The universal H -comodule algebra

Let A be an H -comodule algebra and IH (A) the two-sided ideal of H -identities for A defined
by (2.3). Consider the quotient algebra

UH (A) = T (XH )/IH (A). (3.1)

Proposition 3.1.

(a) The algebra UH (A) has a unique structure of an H -comodule algebra such that the projec-
tion T (XH ) → UH (A) is an H -comodule algebra morphism.

(b) Any μ ∈ AlgH (T (XH ),A) induces an H -comodule algebra morphism

μ : UH (A) → A.

Proof. (a) This is an immediate consequence of Proposition 2.2(a).
(b) This follows from the vanishing of μ(IH (A)). �
By definition of UH (A), all H -identities for A are satisfied (i.e., vanish) in UH (A) and any

quotient H -comodule algebra of T (XH ) in which all H -identities for A are satisfied is a homo-
morphic image of UH (A). In this sense, UH (A) is the universal algebra in which all H -identities
for A are satisfied. We call UH (A) the universal H -comodule algebra of A.

By Proposition 2.3, if k is infinite, then IH (A) is graded. For each r � 0, let U r
H (A) be the

image of T r(XH ) in UH (A) under the projection map T (XH ) → UH (A). We have 1 ∈ U0
H (A).

Proposition 3.2. If k is infinite, then the H -comodule algebra UH (A) is graded, namely

UH (A) =
⊕
r�0

U r
H (A),

U r
H (A)U s

H (A) ⊂ U r+s
H (A) and δ

(
U r

H (A)
)⊂ U r

H (A) ⊗ H

for all r , s � 0.

Proof. Clearly, UH (A) =∑
r�0 U r

H (A). To prove that this sum is direct, it suffices to check that,
if {ur}r�0 is a family of elements of UH (A) such that ur ∈ U r

H (A) for all r � 0 and
∑

r�0 ur = 0,
then ur = 0 for all r � 0. Represent each ur by an element wr ∈ T r(XH ). We have

∑
r�0 wr ∈

IH (A). By Proposition 2.3, IH (A) is graded. This implies that wr ∈ IH (A) for each r � 0.
Therefore, ur = 0 for each r � 0, as desired.

The inclusion U r
H (A)U s

H (A) ⊂ U r+s
H (A) follows from the fact that T (XH ) is a graded algebra,

and the inclusion δ(U r
H (A)) ⊂ U r

H (A) ⊗ H from (2.4). �
We now use Proposition 2.5 to give a simple example for which we can compute UH (A). In

this example, A is the trivial H -comodule algebra k.
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Proposition 3.3.

(a) If there are no nonzero right integrals for H , then UH (k) ∼= k.
(b) If there is a nonzero right integral for H , then UH (k) is isomorphic as an H -comodule

algebra to k[X] with trivial coaction.

Proof. (a) This is a consequence of (2.5).
(b) The isomorphism UH (k) ∼= k[X] follows from the proof of Proposition 2.5. It remains to

show that the coaction on k[X] is given by δ(X) = X ⊗ 1. We resume the notation of the second
part of the proof of Proposition 2.5. Expand

Δ(h0) = h0 ⊗ x0 +
∑
i∈I

hi ⊗ xi,

where x0 and {xi}i∈I are elements of H . Since N : H → k is a comodule map,

N(h0) ⊗ x0 +
∑
i∈I

N(hi) ⊗ xi = (N ⊗ idH )
(
Δ(h0)

)= N(h0)1 ⊗ 1.

Replacing N(hi) by its value, we obtain 1 ⊗ x0 = 1 ⊗ 1, hence x0 = 1. Therefore, by definition
of the coaction of H on T (XH ),

δ(X) = X ⊗ 1 +
∑
i∈I

Xhi
⊗ xi ∈ X ⊗ 1 + IH (k) ⊗ H.

We obtain the desired conclusion by passing to the quotient by IH (k). �
We end this section with a few questions on the structure of UH (A).

(i) If A is free as a module over the subalgebra of coinvariants, does the same hold for UH (A)?
(ii) If A is free as a module over its center, is UH (A) free over its center ZH (A), possibly after

some localization of the latter?
(iii) Is a suitable central localization of UH (A) a flat deformation of A over the center ZH (A)?

How is Z(A) ⊗ZH (A) UH (A) related to A, where Z(A) is the center of A?

In the sequel we shall provide answers to these questions under some hypotheses.

4. Detecting H -identities

We again fix a Hopf algebra H . The aim of this section is to construct an H -comodule algebra
morphism whose domain is T (XH ) and whose kernel is IH (A) for any H -comodule algebra A

satisfying the following assumptions.

4.1. The assumptions

Let A be an H -comodule algebra and B = AH be the subalgebra of coinvariant elements
of A. We make the following assumptions on A:
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(i) B is central in A, and
(ii) there is a B-linear H -comodule isomorphism u : B ⊗H → A, where the coaction on B ⊗H

is equal to idB ⊗ Δ.

In Section 5 we shall give examples of H -comodule algebras for which these assumptions
hold.

4.2. The symmetric algebra

Let tH be another copy of the underlying vector space of H . We denote the identity map from
H to tH by h 
→ th (h ∈ H ).

Let S(tH ) be the symmetric algebra over the k-vector space tH . It is a quotient of the tensor
algebra T (tH ) and inherits the grading of the latter. For each r � 0, let us denote Sr(tH ) the
subspace of elements of degree r . We have

S(tH ) =
⊕
r�0

Sr(tH )

with S0(tH ) = k, and S1(tH ) = tH . If {hi}i∈I is a basis of H , then S(tH ) is isomorphic to the
polynomial algebra over the indeterminates {thi

}i∈I .
The linear isomorphism t : H → tH extends to an injective linear map H → S(tH ), which we

still denote t and whose image is S1(tH ). The algebra S(tH ) satisfies the following well-known
universal property: for any commutative algebra R and any linear map g : H → R, there is a
unique algebra morphism f : S(tH ) → R such that f ◦ t = g.

4.3. The universal evaluation morphism

Given an algebra A, we endow the tensor product S(tH )⊗A with its natural algebra structure.
The grading of S(tH ) induces a grading on the algebra S(tH ) ⊗ A: for each r � 0, the subspace
of elements of degree r in S(tH ) ⊗ A is equal to Sr(tH ) ⊗ A.

If, in addition, A is an H -comodule algebra, then S(tH ) ⊗ A is an H -comodule algebra with
the S(tH )-linear coaction

idS(tH ) ⊗ δ : S(tH ) ⊗ A → S(tH ) ⊗ A ⊗ H,

where δ : A → A ⊗ H is the coaction of A.
Suppose now that A satisfies the assumptions of Section 4.1. Using the H -comodule alge-

bra T (XH ) of Section 2, we consider the algebra morphism

μA : T (XH ) → S(tH ) ⊗ A

defined for all h ∈ H by

μA(Xh) =
∑
(h)

th(1)
⊗ u(1B ⊗ h(2)), (4.1)

where u : B ⊗ H → A is the isomorphism of Section 4.1.
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Lemma 4.1.

(a) The algebra morphism μA : T (XH ) → S(tH ) ⊗ A sends T r(XH ) into Sr(tH ) ⊗ A for each
r � 0.

(b) The morphism μA is injective on T 0(XH ) ⊕ T 1(XH ) = k ⊕ XH and its kernel is contained
in
⊕

r�2 T r(XH ).

Proof. (a) This follows from (4.1).
(b) Since μA(1) = 1 ⊗ u(1B ⊗ 1H ) = 0, the morphism μA is injective on T 0(XH ). It is

injective on T 1(XH ) = XH since

(
(idS(tH ) ⊗ ε) ◦ (idB ⊗ u−1) ◦ μA

)
(Xh) =

∑
(h)

th(1)
⊗ ε(h(2))1B = th ⊗ 1B

for all h ∈ H . �
The morphism μA possesses the following important properties.

Lemma 4.2.

(a) The morphism μA : T (XH ) → S(tH ) ⊗ A is an H -comodule algebra morphism.
(b) For every μ ∈ AlgH (T (XH ),A) there is a unique algebra morphism

λ : S(tH ) → B

such that μ = (λ ⊗ idA) ◦ μA.

In view of the previous lemma, we call μA the universal evaluation morphism for A.

Proof. (a) It is enough to check that the restriction of μA to XH is an H -comodule map. Now,
μA = (idS(tH ) ⊗ u) ◦ μ′

A, where

μ′
A : XH → S(tH ) ⊗ B ⊗ H

is the linear map defined by μ′
A(Xh) =∑

(h) th(1)
⊗1B ⊗h(2) for all h ∈ H . Using the definition of

the coaction on XH and on S(tH )⊗B ⊗H , and the coassociativity of the comultiplication of H ,
one checks easily that μ′

A is a comodule map. Since u also is a comodule map, the conclusion
follows.

(b) Since we are dealing with algebra morphisms, it suffices to consider their restriction
to XH . Moreover, u : B ⊗ H → A being B-linear, it is enough to prove that for every μ ∈
HomH (XH ,B ⊗H) there is a unique linear map λ : tH → B such that μ = (λ⊗ idB ⊗ idH )◦μ′

A.
We first prove the uniqueness of λ. If μ = (λ ⊗ idB ⊗ idH ) ◦ μ′

A, then (idB ⊗ ε) ◦ μ =
λ ⊗ idB ⊗ ε. Hence, for all h ∈ H ,

(idB ⊗ ε)
(
μ(Xh)

)=
∑
(h)

λ(th(1)
)1Bε(h(2))

=
∑

λ(th(1)ε(h(2))) = λ(th).
(h)
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This shows that λ is uniquely determined.
Let us next prove the existence of λ. For μ ∈ AlgH (T (XH ),B⊗H) and h ∈ H , expand μ(Xh)

in B ⊗ H in the form

μ(Xh) =
∑
j

μj (h) ⊗ νj (h),

where μj (h) ∈ B and νj (h) ∈ H . If we set λ(th) =∑
j μj (h)ε(νj (h)) ∈ B , then

(
(λ ⊗ idB ⊗ idH ) ◦ μ′

A

)
(Xh) =

∑
(h)

λ(th(1)
) ⊗ h(2)

=
∑
j,(h)

μj (h(1))ε
(
νj (h(1))

)⊗ h(2)

=
∑

j,(νj (h))

μj (h) ⊗ ε
(
νj (h)(1)

)
νj (h)(2)

=
∑
j

μj (h) ⊗ νj (h) = μ(Xh)

for all h ∈ H . The third and fourth equalities follow respectively from the facts that μ is a
comodule map and ε is the counit. �

Part (b) of the previous proof can be summarized by the following sequence of natural bijec-
tions:

AlgH
(
T (XH ),A

)∼= HomH (H,A)

∼= HomH (H,B ⊗ H)

∼= Hom(H,B)

∼= Alg
(
S(tH ),B

)
,

where the last bijection holds because the algebra B is commutative.
We now state the main result of this section: it implies that the H -identities for A are detected

by the morphism μA.

Theorem 4.3. Let A be an H -comodule algebra satisfying the assumptions of Section 4.1.

(a) We have Ker(μA : T (XH ) → S(tH ) ⊗ A) ⊂ IH (A).
(b) If the ground field k is infinite, then

IH (A) = Ker
(
μA : T (XH ) → S(tH ) ⊗ A

)
.

Proof. (a) Let P ∈ T (XH ) such that μA(P ) = 0. By Lemma 4.2(b), any morphism μ ∈
AlgH (T (XH ),A) is of the form μ = (λ ⊗ idA) ◦ μA for some λ ∈ Alg(S(tH ),B). Therefore,
μ(P ) = (λ ⊗ idH )(μA(P )) = 0. Hence, P ∈ IH (A).
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(b) By part (a) it is enough to check that any P ∈ IH (A) belongs to the kernel of μA. Since
idS(tH ) ⊗ u is a linear isomorphism, it suffices to check that μ′

A(P ) = 0 for any P ∈ IH (A),
where μ′

A : XH → S(tH ) ⊗ B ⊗ H is the map introduced in the proof of Lemma 4.2. Expanding
μ′

A(P ) in a basis {hi}i∈I of H , we have

μ′
A(P ) =

∑
i∈I

μ
(i)
A (P ) ⊗ hi ∈ S(tH ) ⊗ B ⊗ H,

where μ
(i)
A (P ) ∈ S(tH ) ⊗ B for all i ∈ I . By Lemma 4.2(b), if P ∈ IH (A), then

∑
i∈I

λ
(
μ

(i)
A (P )

)⊗ hi = (λ ⊗ idB⊗H )
(
μ′

A(P )
)= 0

for all λ ∈ Alg(S(tH ),B). Therefore, for each i ∈ I , we have λ(μ
(i)
A (P )) = 0 for all algebra mor-

phisms λ : S(tH ) → B . This means that the B-valued polynomial μ
(i)
A (P ) takes only zero values.

Since k is an infinite field, this implies that μ
(i)
A (P ) = 0 for all i ∈ I . Hence, μ′

A(P ) = 0. �
We have the following consequence of Lemma 4.1 and of Theorem 4.3 for the universal H -

comodule algebra UH (A) defined by (3.1).

Corollary 4.4. Let k be an infinite field and A be an H -comodule algebra satisfying the assump-
tions of Section 4.1.

(a) The universal evaluation morphism μA induces an injective H -comodule algebra morphism

μA : UH (A) = T (XH )/IH (A) ↪→ S(tH ) ⊗ A.

(b) We have U0
H (A) ∼= k and U1

H (A) ∼= XH .

The previous corollary has an interesting consequence, which guarantees the existence of
nonzero H -identities for A in the finite-dimensional case.

Corollary 4.5. Let k be an infinite field and A be an H -comodule algebra satisfying the assump-
tions of Section 4.1. If H and A are finite-dimensional and H = k, then IH (A) = 0.

Proof. If IH (A) = 0, then Corollary 4.4 implies that T r(XH ) injects into Sr(tH ) ⊗ A. Set n =
dimH and d = dimA. We then have

nr = dimT r(XH ) � dim
(
Sr(tH ) ⊗ A

)= d

(
r + n − 1

n − 1

)
,

which is impossible for n > 1 and large r . �
Remark 4.6. Suppose that the map u : B ⊗ H → A of Section 4.1 preserves the units. Since the
universal evaluation morphism μα sends X1H

to the central element t1 ⊗ u(1B ⊗ 1H ) = t1 ⊗ 1A,
it induces an H -comodule algebra morphism μ̄α : T̄ (XH ) → S̄(tH ) ⊗ A, where T̄ (XH ) is the
reduced tensor algebra of Remark 2.6(a) and S̄(tH ) = S(tH )/(t1 − 1). As can be seen from the
H
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computations in Section 10, using the morphism μ̄α would simplify certain formulas, but these
formulas would no longer be homogeneous with respect to the gradings of T (XH ) and of S(tH ).

4.4. The coinvariants of UH (A)

The following proposition shows how we can use μA to detect the coinvariant elements
of UH (A).

Proposition 4.7. Let k be an infinite field and A be an H -comodule algebra satisfying the as-
sumptions of Section 4.1. Then

UH (A)H = {
P ∈ UH (A)

∣∣ μA(P ) ∈ S(tH ) ⊗ B
}
.

Proof. This follows from Lemma 1.1, Corollary 4.4(a), and from the easily checked fact that the
subalgebra of coinvariants of S(tH ) ⊗ A is S(tH ) ⊗ B . �

We give an interesting consequence of Proposition 4.7 for the elements Ph[1],...,h[r] ∈ T (XH )

introduced in Lemma 2.1.

Corollary 4.8. Under the hypotheses of Proposition 4.7, Ph[1],...,h[r] is a central polynomial for A

for all h[1], . . . , h[r] ∈ H .

Proof. By Lemma 2.1, Ph[1],...,h[r] is coinvariant. Thus, by Proposition 4.7, its image
μA(Ph[1],...,h[r]) in S(tH )⊗A belongs to S(tH )⊗B . Since S(tH )⊗B is central in S(tH )⊗A, the
element μA(Ph[1],...,h[r]) commutes with μA(Xh) for all h ∈ H . By Lemma 4.2(b), μ(Ph[1],...,h[r])
then commutes with μ(Xh) for all μ ∈ AlgH (T (XH ),A) and all h ∈ H . This shows that
Ph[1],...,h[r] is a central polynomial. �
5. The universal cocycle attached to a twisted algebra

Let H be a Hopf algebra.

5.1. Twisted algebras

Consider the following general construction. Let α : H × H → B be a convolution invertible
bilinear map with values in a commutative algebra B . Consider the twisted algebra B ⊗ αH ,
which is the vector space B ⊗ H equipped with the product ·α given by

(b ⊗ x) ·α (c ⊗ y) =
∑

(x),(y)

bcα(x(1), y(1)) ⊗ x(2)y(2) (5.1)

for all b, c ∈ B and x, y ∈ H . If α is a two-cocycle of H , which means that it satisfies the
equations

∑
α(x(1), y(1))α(x(2)y(2), z) =

∑
α(y(1), z(1))α(x, y(2)z(2)) (5.2)
(x),(y) (y),(z)
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for all x, y, z ∈ H , then the product ·α is associative. If in addition α is normalized, i.e., if

α(x,1) = α(1, x) = ε(x)1 (5.3)

for all x ∈ H , then 1 ⊗ 1 is a unit for the product ·α .
The algebra A = B ⊗ αH is an H -comodule algebra with coaction

δ = idB ⊗ Δ : A = B ⊗ H → A ⊗ H = B ⊗ H ⊗ H.

Its subalgebra AH of coinvariants coincides with B ⊗ k1. It is easy to check from (5.1) that
AH lies in the center of A. The assumptions of Section 4.1 are satisfied for A with B = AH

and u = idB⊗H .
The twisted algebras of the form B ⊗ αH considered here coincide with the central cleft H -

Galois extensions of B , see [9,15], [26, Prop. 7.2.3]. (By central we mean that B lies in the center
of the extension.)

5.2. The two-cocycle σ

Let α : H ⊗ H → k be a normalized convolution invertible two-cocycle with values in the
ground field k and k ⊗ αH be the corresponding twisted algebra. To simplify notation, we hence-
forth denote k ⊗ αH by αH .

To the two-cocycle α we associate a two-cocycle

σ : H × H → KH

taking values in the field of fractions KH of S(tH ) and defined by

σ(x, y) =
∑

(x),(y)

tx(1)
ty(1)

α(x(2), y(2))t
−1
x(3)y(3)

(5.4)

for all x, y ∈ H . In (5.4) we have used the map t−1 : H → KH uniquely defined by Eq. (A.1) of
Appendix A.

By [26, Chapter 7], σ is a two-cocycle on H and it is cohomologous to α in KH . We call σ

the universal cocycle attached to α; it can be viewed as the most general two-cocycle on H that
is cohomologous to α.

Since α is convolution invertible, so is σ . Its convolution inverse σ−1 is given for all x, y ∈ H

by

σ−1(x, y) =
∑

(x),(y)

tx(1)y(1)
α−1(x(2), y(2))t

−1
x(3)

t−1
y(3)

, (5.5)

where α−1 is the convolution inverse of α.
The two-cocycle σ is almost normalized in the following sense.

Lemma 5.1. For all x ∈ H ,

σ(1, x) = σ(x,1) = ε(x)t1 and σ−1(1, x) = σ−1(x,1) = ε(x)t−1
1 .
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Proof. By (5.3), (5.4), and (A.1),

σ(1, x) =
∑
(x)

t1tx(1)
α(1, x(2))t

−1
x(3)

=
∑
(x)

t1tx(1)
ε(x(2))t

−1
x(3)

=
∑
(x)

t1tx(1)
t−1
x(2)

= ε(x)t1.

The other computations are similar. �
5.3. Two algebras of rational fractions

Let α : H ⊗ H → k and σ : H ⊗ H → KH be as in Section 5.2.
We define S(tH )Θ to be the subalgebra of KH generated by tH = t (H) and t−1

H = t−1(H),
where t−1 : H → KH is the map defined in Appendix A.

This algebra depends only on the coalgebra structure of H . A description of S(tH )Θ as an
explicit localization of S(tH ) is given in Appendix B.

By definition of the universal two-cocycle σ , both σ and its convolution inverse σ−1 take
values in S(tH )Θ .

We recover the cocycle α from the universal cocycle σ as follows.

Lemma 5.2. There is a unique algebra morphism ε : S(tH )Θ → k such that

ε(tx) = ε
(
t−1
x

)= ε(x)

for all x ∈ H . Moreover, ε(σ (x, y)) = α(x, y) and ε(σ−1(x, y)) = α−1(x, y) for all x, y ∈ H .

Proof. There is a unique algebra morphism ε : S(tH ) → k such that ε(tx) = ε(x) for all x ∈ H .
In order to check that this morphism extends to S(tH )Θ , it suffices by (A.1) to check that

∑
(x)

ε(tx(1)
)ε
(
t−1
x(2)

)=
∑
(x)

ε
(
t−1
x(1)

)
ε(tx(2)

) = ε(x)1. (5.6)

for all x ∈ H . Now,

∑
(x)

ε(tx(1)
)ε
(
t−1
x(2)

)=
∑
(x)

ε(x(1))ε(x(2)) = ε

(∑
(x)

x(1)x(2)

)
= ε(x)1.

The other equality is proved in a similar way.
We also have

ε
(
σ(x, y)

)= ε

( ∑
(x),(y)

tx(1)
ty(1)

α(x(2), y(2))t
−1
x(3)h(y)

)

=
∑

(x),(y)

ε(tx(1)
)ε(ty(1)

)α(x(2), y(2))ε
(
t−1
x(3)y(3)

)

=
∑

ε(x(1))ε(y(1))α(x(2), y(2))ε(x(3)y(3))
(x),(y)
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=
∑

(x),(y)

ε(x(1))ε(y(1))α(x(2), y(2))ε(x(3))ε(y(3))

= α(x, y).

The computation of ε(σ−1(x, y)) is done in a similar way. �
There is a smaller algebra in which both σ and σ−1 take values, namely the subalgebra Bα

H

of KH generated by the values of σ and of σ−1. The algebra Bα
H depends on the two-cocycle α

and is a subalgebra of S(tH )Θ :

Bα
H ⊂ S(tH )Θ ⊂ KH .

Proposition 5.3. The algebras Bα
H and S(tH )Θ have the following properties.

(a) They are augmented.
(b) They have no zero-divisors.
(c) If H is finite-dimensional, then they are finitely generated.

Proof. (a) This follows from Lemma 5.2.
(b) This holds since both algebras lie in the field KH .
(c) If {hi}i is a basis of H , then the algebra Bα

H (respectively S(tH )Θ ) is generated by the
elements σ(hi, hj ) and σ−1(hi, hj ) (respectively by the elements thi

and t−1
hi

). If H is finite-
dimensional, these generators are in finite number. �

It is natural to ask how Bα
H depends on the two-cocycle α. In particular, if two arbitrary two-

cocycles α,β : H × H → k are cohomologous, do we have Bα
H = Bβ

H inside S(tH )Θ? We do
not know the answer to this question in general. Nevertheless, there is a positive answer in the
following case.

Proposition 5.4. Suppose that α,β : H × H → k are normalized convolution invertible two-
cocycles such that there is a convolution invertible linear form λ : H → k verifying the following
two conditions for all x, y ∈ H :

β(x, y) =
∑

(x),(y)

λ(x(1))λ(y(1))α(x(2), y(2))λ
−1(x(3)y(3)), (5.7)

where λ−1 is the convolution inverse of λ, and

∑
(x)

λ(x(1))x(2) =
∑
(x)

x(1)λ(x(2)). (5.8)

Then Bα = Bβ .
H H
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Condition (5.7) states that α and β are cohomologous two-cocyles. Condition (5.8) states that
the linear form λ is lazy in the sense of [8, §1]; this condition is automatically satisfied when H

is cocommutative.

Proof. Let σ and σ ′ : H × H → S(tH )Θ be the universal cocycles attached to α and β , respec-
tively. By definition (see (5.4)),

σ ′(x, y) =
∑

(x),(y)

tx(1)
ty(1)

β(x(2), y(2))t
−1
x(3)y(3)

.

Let us express σ ′(x, y) in terms of the elements σ(x, y) given by (5.4). For all x, y ∈ H , we have

σ ′(x, y) =
∑

(x),(y)

tx(1)
ty(1)

β(x(2), y(2))t
−1
x(3)y(3)

=
∑

(x),(y)

tx(1)
ty(1)

λ(x(2))λ(y(3))α(x(3), y(3))λ
−1(x(4)y(4))t

−1
x(5)y(5)

=
∑

(x),(y)

λ(x(1))λ(y(1))tx(2)
ty(2)

α(x(3), y(3))t
−1
x(4)y(4)

λ−1(x(5)y(5))

=
∑

(x),(y)

λ(x(1))λ(y(1))σ (x(2), y(2))λ
−1(x(3)y(3)).

The third equality follows from condition (5.8) on λ and from the same condition on λ−1 (the
latter is an immediate consequence of the former). Denoting σ ′−1 the convolution inverse of σ ′,
we similarly obtain

σ ′−1(x, y) =
∑

(x),(y)

λ−1(x(1))λ
−1(y(1))σ

−1(x(2), y(2))λ(x(3)y(3))

for all x, y ∈ H . Thus, the generators σ ′(x, y) and σ ′−1(x, y) of Bβ
H are linear combinations of

the generators of Bα
H . It follows that Bβ

H ⊂ Bα
H . Exchanging the roles of α and β , we obtain the

reverse inclusion. �
Remarks 5.5. (i) The transcendence degree of the field of fractions of Bα

H over k cannot exceed
the dimension of H over k.

(ii) In the case where H is finite-dimensional, one can obtain a presentation of Bα
H by gen-

erators and relations using standard monomial order techniques of commutative algebra (see,
e.g., [17, Chapter 15]). In Section 10 we shall give a presentation of Bα

H for Sweedler’s Hopf
algebra.

5.4. The integrality of S(tH )Θ over Bα
H

We end this section by asking the following question: under which conditions on the Hopf
algebra H and on the two-cocycle α is S(tH )Θ integral over Bα ? If the answer to this question
H
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is positive, then the field of fractions KH of S(tH )Θ is an algebraic extension of the field of
fractions Kα

H of Bα
H . The integrality of S(tH )Θ over Bα

H will be needed in Theorem 7.2 below.
We do not know how to answer this question in general. We do not even have an example

where S(tH )Θ is not integral over Bα
H . The question has a positive answer in the following case.

Proposition 5.6. If H = k[G] is the Hopf algebra of a finite group G, then S(tH )Θ is integral
over Bα

H .

Proof. It follows from the definition of the comultiplication in k[G] and the definitions of t−1

and of σ that

σ(g,h) = α(g,h)
tgth

tgh

∈ Bα
H (5.9)

for all g,h ∈ G. Since α(g,h) is nonzero for all g,h ∈ G, the fraction tgth/tgh belongs to Bα
H .

By an easy induction, for each grouplike element g and each integer k � 1, we conclude that
tkg /tgk belongs to Bα

H . Since by Lagrange’s theorem there is N such that gN = 1, it follows
that tNg /t1 belongs to Bα

H . Now, t1 = σ(1,1) ∈ Bα
H by Lemma 5.1. Therefore, tNg ∈ Bα

H . Since

by Example B.4 of Appendix B, the elements t±1
g (g ∈ G) generate S(tH )Θ , the conclusion

follows. �
6. The universal twisted algebra

We have observed in Section 5.3 that the universal cocycle σ takes values in Bα
H . Therefore

we may apply the construction of Section 5.1 and consider the twisted algebra

Aα
H = Bα

H ⊗ σH. (6.1)

The product ·σ of Aα
H is given for all b, c ∈ Bα

H and x, y ∈ H by

(b ⊗ x) ·σ (c ⊗ y) =
∑

(x),(y)

bcσ (x(1), y(1)) ⊗ x(2)y(2). (6.2)

Lemma 6.1. The twisted algebra Aα
H is an associative unital algebra with unit t−1

1 = 1/t1.

Proof. The associativity follows from the fact that σ is a two-cocycle. The fact that t−1
1 is the

unit follows from (6.2) and Lemma 5.1. �
We call Aα

H the universal twisted algebra attached to the two-cocycle α. Note that the subal-
gebra of coinvariants of Aα

H is equal to Bα
H ⊗ k1; this subalgebra is central in Aα

H .
Consider the restriction ε : Bα

H → k of the algebra morphism ε : S(tH )Θ → k of Lemma 5.2
and the maximal ideal

mε = Ker
(
ε : Bα

H → k
)
.

We can recover the original twisted algebra αH from Aα as follows.
H
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Proposition 6.2. There is an isomorphism of H -comodule algebras

Aα
H /mεAα

H
∼= αH.

Proof. We have the obvious isomorphisms of H -comodules

Aα
H /mεAα

H
∼= (

Bα
H /mε

)⊗ H ∼= H.

The fact that the product ·σ on Aα
H given by (6.2) turns into the product ·α on H given by (5.1)

follows from the equality ε ◦ σ = α of Lemma 5.2. �
We record the following structure theorem for Aα

H . It involves the field of fractions Kα
H of Bα

H .

Theorem 6.3. Let k be a field of characteristic zero and H a finite-dimensional Hopf algebra. If
the algebra αH is semisimple, then so is Kα

H ⊗Bα
H
Aα

H .

By [26, Th. 7.4.2], if H is a finite-dimensional semisimple algebra, then αH is semisimple for
any two-cocycle α. Note that there are non-semisimple Hopf algebras with two-cocycles α such
that αH is (semi)simple, e.g., Sweedler’s algebra detailed in Section 10.

Proof. Let A be a B-algebra, where B is a commutative algebra. Suppose that A is free of finite
rank as a B-module with basis {ai}i=1,...,d . The trace form of A is the B-bilinear form defined
for all a, a′ ∈ A by

〈a, a′〉A = Tr(Raa′),

where Raa′ is the right multiplication by aa′ and Tr : EndB(A) → B is the trace map. It is well
known that, if B is a field, then A is semisimple if and only if the trace form 〈 , 〉A is nondegen-
erate. The latter is equivalent to the nonvanishing of the determinant det((〈ai, aj 〉A)i,j=1,...,d ).

Let f : B → B ′ be a morphism of commutative algebras. We denote by the same letter f the
induced algebra morphism A → A′ = B ′ ⊗B A. The trace forms of A and A′ are related by the
formula

〈
f (a), f (a′)

〉
A′ = f

(〈a, a′〉A
)

for all a, a′ ∈ A.
We apply this to the case where B = Bα

H and A = Aα
H . If {hi}i=1,...,d is a basis of H , then it

is also a basis of Aα
H considered as a Bα

H -module. Set

D = det
((〈hi, hj 〉Aα

H

)
i,j=1,...,d

) ∈ Bα
H .

By the remarks above, the trace form of Kα
H ⊗Bα

H
Aα

H is the image of the trace form of Aα
H

in Kα
H . Therefore, Kα

H ⊗Bα
H
Aα

H is semisimple if D = 0 in Kα
H , hence in Bα

H . In order to prove
the nonvanishing of D, it is enough to map it to a nonzero element. Consider the augmentation
map ε : Bα

H → k of Section 5.3. By Proposition 6.2,

k ⊗Bα Aα = Aα /mεAα ∼= αH.

H H H H
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The trace form of αH is the image under ε of the trace form of Aα
H . Now,

ε(D) = det
((〈hi, hj 〉αH

)
i,j=1,...,d

) ∈ k

is nonzero since αH is semisimple. Therefore, D = 0. �
Below we shall show under the same hypotheses as in Theorem 6.3 that Kα

H ⊗Bα
H
Aα

H is a
simple algebra if αH is simple. Let us first establish the following result.

Lemma 6.4. If the center of the algebra αH is trivial, that is, consists of the scalar multiples of
the unit, then the center of Aα

H is equal to Bα
H ⊗ 1.

Proof. Since the universal cocycle σ takes values in S(tH )Θ (see Section 5.3), we may apply
the construction of Section 5.1 and consider the twisted algebra

S(tH )Θ ⊗ σH, (6.3)

which is clearly isomorphic to the algebra S(tH )Θ ⊗Bα
H
Aα

H . It follows from Lemma 6.1 that

S(tH )Θ ⊗ σH is an associative algebra with unit t−1
1 = 1/t1.

Eq. (5.4) makes sense in S(tH )Θ . It can be interpreted as saying that the two-cocycles σ and α

are cohomologous in S(tH )Θ . By [9] and [14] (see also [26, Section 7]), the linear map

ϕ : S(tH )Θ ⊗ σH → S(tH )Θ ⊗ αH

given for all b ∈ S(tH )Θ and h ∈ H by

ϕ(b ⊗ h) =
∑
(h)

bth(1)
⊗ h(2) (6.4)

is a S(tH )Θ -linear isomorphism of H -comodule algebras. Note that the inverse map

ϕ−1 : S(tH )Θ ⊗ αH → S(tH )Θ ⊗ σH

is given for all b ∈ S(tH )Θ and h ∈ H by

ϕ−1(b ⊗ h) =
∑
(h)

bt−1
h(1)

⊗ h(2). (6.5)

The center of S(tH )Θ ⊗ σH is isomorphic to the center of S(tH )Θ ⊗ αH under ϕ. Now it is
easy to check that, under the hypothesis of the lemma, the center of S(tH )Θ ⊗ αH is the sub-
algebra S(tH )Θ ⊗ 1. The isomorphism ϕ being S(tH )Θ -linear and sending the unit t−1

1 ⊗ 1 ∈
S(tH )Θ ⊗ σH to the unit 1 ⊗ 1 ∈ S(tH )Θ ⊗ αH , the center of S(tH )Θ ⊗ σH is equal to

t−1
1 S(tH )Θ ⊗ 1 = S(tH )Θ ⊗ 1.

Now, let ω ∈ Aα
H = Bα

H ⊗ σH be a central element. It remains central when considered
in S(tH )Θ ⊗ σH . By the above argument, we have ω = b ⊗ 1 for some b ∈ S(tH )Θ . Since
Bα

H ⊂ S(tH )Θ , it follows that b ∈ Bα
H . �
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Corollary 6.5. Let k be a field of characteristic zero and H a finite-dimensional Hopf algebra.
If the algebra αH is simple, then so is the algebra Kα

H ⊗Bα
H
Aα

H .

Proof. By Theorem 6.3, Kα
H ⊗Bα

H
Aα

H is semisimple. By Lemma 6.4, the center of Aα
H is Bα

H ⊗1.
Therefore, the center of KH ⊗Bα

H
Aα

H is KH ⊗ 1. The conclusion follows immediately. �
Under the hypotheses of Corollary 6.5, we may wonder what the index of the central simple

algebra Kα
H ⊗Bα

H
Aα

H is and how it depends on the two-cocycle α. Such questions are open even
in the case of group algebras; for partial answers, see [3, §3].

7. Forms of αH

As in Section 5, we fix a Hopf algebra H and a normalized convolution invertible two-cocycle
α : H × H → k. We consider the corresponding twisted algebra αH .

Given a normalized convolution invertible two-cocycle β : H × H → K with values in a
(field) extension K of k, we say that the twisted H -comodule algebra K ⊗ βH is a K-form of
αH if there is an extension L of K and an L-linear isomorphism of H -comodule algebras

L ⊗K

(
K ⊗ βH

)∼= L ⊗k
αH.

We now state two theorems relating forms of αH to central specializations of the universal
twisted algebra Aα

H introduced in the previous section.

Theorem 7.1. For any K-form K ⊗ βH of αH , where β : H × H → K is a normalized convo-
lution invertible two-cocycle with values in an extension K of k, there are an algebra morphism
λ : Bα

H → K and a K-linear isomorphism of H -comodule algebras

K ⊗Bα
H
Aα

H
∼= K ⊗ βH.

The algebra morphism λ : Bα
H → K equips K with a natural Bα

H -module structure so that it
makes sense to consider the algebra K ⊗Bα

H
Aα

H as in the previous statement.

Proof. Since there is an L-linear isomorphism of H -comodule algebras

L ⊗K

(
K ⊗ βH

)∼= L ⊗k
αH

for some extension L of K , by [9,16] there is a convolution invertible linear map λ0 : H → L

such that for all g,h ∈ H ,

β(x, y) =
∑

(x),(y)

λ0(x(1))λ0(y(1))α(x(2), y(2))λ
−1
0 (x(3)y(3)), (7.1)

where λ−1
0 is the convolution inverse of λ0. Define an algebra morphism λ : S(tH ) → L by

λ(th) = λ0(h) for all h ∈ H . This morphism extends to an algebra morphism, which we still
denote by λ, from S(tH )Θ to L such that λ(t−1

h ) = λ−1
0 (h) for all h ∈ H . We obtain an algebra

morphism λ : Bα → L by restricting λ to the subalgebra Bα .
H H
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It follows from (5.4), (5.5), and (7.1) that λ sends the generators σ(x, y) and σ−1(x, y) of Bα
H

respectively to β(x, y) and to β−1(x, y), where β−1 is the convolution inverse of β . Since β(x, y)

and β−1(x, y) belong to K , we conclude that λ(Bα
H ) ⊂ K . Thus, λ ⊗ idH defines a map

Aα
H = Bα

H ⊗ σH → K ⊗ βH.

Since λ ◦ σ = β , this map is an algebra morphism; it is also a comodule map. Therefore, the
algebra morphism λ : Bα

H → K induces an H -comodule algebra isomorphism K ⊗Bα
H
Aα

H
∼=

K ⊗ βH. �
Under the integrality condition of Section 5.4, Theorem 7.1 has the following converse.

Theorem 7.2. If the algebra S(tH )Θ is integral over the subalgebra Bα
H , then for any extension

K of k and any algebra morphism λ : Bα
H → K , the H -comodule K-algebra K ⊗Bα

H
Aα

H is a
K-form of αH .

Proof. Let m be the kernel of an algebra morphism λ : Bα
H → K ; it is a maximal ideal of Bα

H ,
and the image k′ = Bα

H /m of λ is an extension of k contained in K . It follows from the integrality
assumption that there is a maximal ideal M of S(tH )Θ such that mS(tH )Θ ⊂ M (see e.g., [24,
Chapter IX, Proposition 9]). Let λ̃ be the projection S(tH )Θ → L = S(tH )Θ/M. We have the
following commutative square in which the top horizontal map is the inclusion Bα

H ↪→ S(tH )Θ :

Bα
H

λ

S(tH )Θ

λ̃

k′ L

The bottom horizontal map k′ → L in the previous square is injective since k′ and L are fields.
Applying λ̃ to (5.4) and setting β = λ̃ ◦ σ : H × H → L, we obtain

β(g,h) = λ̃
(
σ(g,h)

)
=

∑
(g),(h)

λ̃(tg(1)
)̃λ(th(1)

)̃λ
(
α(g(2), h(2))

)̃
λ
(
t−1
g(3)h(3)

)

for all g, h ∈ H . Since λ̃ is an algebra morphism, λ̃ ◦ t−1 is the convolution inverse of λ̃ ◦ t . It
follows that β is an invertible two-cocycle, which is cohomologous to λ̃ ◦ α = α. Therefore,

L ⊗ αH ∼= L ⊗ βH = L ⊗K

(
K ⊗Bα

H

(
Bα

H ⊗ σH
))= L ⊗Bα

H
Aα

H ,

which shows that K ⊗Bα
H
Aα

H is a K-form of αH . �
Corollary 7.3. If S(tH )Θ is integral over Bα

H , then for any extension K of k there is a surjective
map

Alg
(
Bα

H ,K
)→ FormsK

(
αH

)
from the set of algebra morphisms Bα → K to the set of isomorphism classes of K-forms of αH .
H
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Proof. For any algebra morphism λ : Bα
H → K , the H -comodule K-algebra

λ∗
(
Bα

H

)= K ⊗Bα
H
Aα

H

is a K-form of αH by Theorem 7.2. By Theorem 7.1, the map λ 
→ λ∗(Bα
H ) maps Alg(Bα

H ,K)

surjectively onto the set FormsK(αH). �
This corollary allows us to consider the cleft H -Galois extension Bα

H ⊂ Aα
H as a versal

deformation space for the forms of αH (this space is not universal since the algebra mor-
phism λ : Bα

H → K in Theorem 7.1 is not necessarily unique). As a further consequence, if
Bα

H
∼= k[u1, . . . , ur ]/(P1, . . . ,Ps), then the polynomials P1, . . . ,Ps ∈ k[u1, . . . , ur ] are invari-

ants of forms of αH .
In case the twisted algebra αH is simple, we have another important consequence of Theo-

rem 7.2.

Theorem 7.4. If S(tH )Θ is integral over Bα
H and if the algebra αH is simple, then Aα

H is an
Azumaya algebra.

Proof. By Lemma 6.4, Bα
H is the center of Aα

H . By [5, Th. 15], in order to prove the theorem, it
suffices to check that Aα

H /mAα
H is simple for any maximal ideal m of Bα

H . Now, by Theorem 7.2,

Aα
H /mAα

H = (
Bα

H /m
)⊗Bα

H
Aα

H

is a Bα
H /m-form of the simple algebra αH . Therefore, it is simple. �

8. Relating the universal comodule algebra to the universal twisted algebra

From now on we assume that the ground field is infinite. As in Section 5, we fix a Hopf
algebra H and a normalized convolution invertible two-cocycle α : H ×H → k, and we consider
the corresponding twisted algebra αH . Since αH satisfies the assumptions of Section 4.1 with
B = k and u = idH , we may apply the constructions and the results of Section 4 to αH .

Let μα : T (XH ) → S(tH )⊗ αH be the universal evaluation morphism defined by (4.1). In the
present situation,

μα(Xh) =
∑
(h)

th(1)
⊗ h(2) (8.1)

for all h ∈ H . For short, we denote UH (αH) by Uα
H . By Corollary 4.4, μα induces an injective

H -comodule algebra morphism

Uα
H ↪→ S(tH ) ⊗ αH,

which we still denote μα . It follows from Proposition 4.7 that P ∈ Uα
H is coinvariant if and only

if μα(P ) ∈ S(tH ) ⊗ 1.
Recall the H -comodule algebra isomorphism

ϕ−1 : S(tH )Θ ⊗ αH → S(tH )Θ ⊗ σH
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given by (6.5). Define μσ : Uα
H → S(tH )Θ ⊗ σH by

μσ = ϕ−1 ◦ μα, (8.2)

where we now view μα as a morphism with values in S(tH )Θ ⊗αH . It follows from the definition
and from Corollary 4.4 that μσ is an injective H -comodule algebra morphism.

Lemma 8.1.

(a) We have μσ (Xh) = 1 ⊗ h for all h ∈ H .
(b) The morphism μσ maps Uα

H into Aα
H .

Proof. (a) It suffices to check that ϕ(1 ⊗ h) = μα(Xh) for all h ∈ H . These equalities follow
from (6.4) and (8.1).

(b) By part (a) and by (6.2),

μσ (XgXh) =
∑

(g),(h)

σ (g(1), h(1)) ⊗ g(2)h(2)

for all g,h ∈ H . Using (6.2) repeatedly, we see that μσ sends all monomials in the variables Xh,
hence all elements of Uα

H , to Bα
H ⊗ σH = Aα

H . �
Let Z(αH) be the center of αH . We characterize the center Zα

H of Uα
H as follows.

Proposition 8.2. An element w ∈ Uα
H belongs to the center Zα

H if and only if μα(w) belongs
to S(tH ) ⊗ Z(αH).

Proof. Suppose first that μα(w) ∈ S(tH ) ⊗ Z(αH). The elements of the latter are clearly central
in S(tH ) ⊗ αH . Therefore, μα(w) commutes with all elements μα(Xh), where h runs over H .
Since μα is an injective algebra morphism, w commutes with all generators Xh of Uα

H . Hence,
μα(w) ∈ Zα

H .
Conversely, any element w ∈ Zα

H commutes with all generators Xh of Uα
H . Therefore, by

Lemma 8.1, its image μσ (w) commutes with μσ (Xh) = 1⊗h for all h ∈ H . Since S(tH )Θ ⊗ σH

is generated as an algebra by 1⊗H and the central subalgebra S(tH )Θ ⊗1, it follows immediately
that μσ (w) commutes with all elements of S(tH )Θ ⊗ σH . Consequently, μα(w) = ϕ(μσ (w))

commutes with all elements of S(tH )Θ ⊗ αH , i.e., belongs to the center of the latter. Write

μα(w) =
∑
j∈J

sj ⊗ hj ,

where {sj }j∈J is a basis of S(tH )Θ over the ground field and hj ∈ H for all j ∈ J . Using brackets
to denote commutators, we obtain

∑
sj ⊗ [hj ,h] =

[∑
sj ⊗ hj ,h

]
= [

μα(w),1 ⊗ h
]

j∈J j∈J
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for all h ∈ H . This implies that [hj ,h] = 0 for all h ∈ H and j ∈ J . Therefore, hj ∈ Z(αH) for
all j ∈ J , from which it follows that μα(w) lies in S(tH )Θ ⊗Z(αH). Since μα(w) ∈ S(tH )⊗αH ,
it lies in S(tH ) ⊗ Z(αH). �
Corollary 8.3. The center Zα

H of Uα
H has no zero-divisors if Z(αH) has none.

Proof. By Corollary 4.4 and Proposition 8.2, μα embeds Zα
H into the algebra S(tH )Θ ⊗Z(αH),

which has no zero-divisors if Z(αH) has none. �
9. The case of nondegenerate cocycles

Let H be a Hopf algebra and α : H ×H → k a normalized convolution invertible two-cocycle.
Generalizing terminology used for group cocycles, we say that α is nondegenerate if the center
of the twisted algebra αH is trivial, i.e., if Z(αH) = k1.

Restricting to nondegenerate two-cocycles allows us to relate Zα
H to Bα

H as follows.

Proposition 9.1. If α is a nondegenerate two-cocycle, then μα and μσ map Zα
H into Bα

H ⊗ 1.

Proof. Since α is nondegenerate, it follows from Proposition 8.2 that μα maps Zα
H into

S(tH ) ⊗ Z
(
αH

)= S(tH ) ⊗ 1.

The isomorphism

ϕ−1 : S(tH )Θ ⊗ αH → S(tH )Θ ⊗ σH

being S(tH )Θ -linear, μσ = ϕ−1 ◦ μα maps Zα
H into

ϕ−1(S(tH ) ⊗ 1
)= S(tH )ϕ−1(1 ⊗ 1) = t−1

1 S(tH ) ⊗ 1,

which is contained in S(tH )Θ ⊗ 1. Now, by Lemma 8.1(b), μσ maps Uα
H into Aα

H = Bα
H ⊗ σH .

Since Bα
H ⊂ S(tH )Θ , we conclude that

μσ

(
Zα

H

)⊂ Bα
H ⊗ 1.

To obtain the same inclusion with μα in lieu of μσ , we apply the S(tH )Θ -linear isomorphism ϕ

to the previous inclusion. We obtain

μα

(
Zα

H

)⊂ Bα
H ϕ(1 ⊗ 1) = t1Bα

H ⊗ 1.

We conclude the proof by observing that t1 is an invertible element of Bα
H as a consequence of

Lemma 5.1 applied to x = 1. �
If α is a nondegenerate two-cocycle, as a consequence of Proposition 9.1, we can view the

center Zα
H of Uα

H as a subalgebra of Bα
H , and consider the algebra

Bα
H ⊗Zα

H
Uα

H . (9.1)



E. Aljadeff, C. Kassel / Advances in Mathematics 218 (2008) 1453–1495 1481
Remark 9.2. In [2] nondegenerate cocycles are defined in a more restrictive way than above,
namely as those cocycles α such that the algebra αH is k-central simple. Both definitions coincide
when H is semisimple. Furthermore, one can show that, when H = k[G] is the Hopf algebra of
a group, there exist nondegenerate two-cocycles only if H is semisimple.

Our next objective is to relate Bα
H ⊗Zα

H
Uα

H to the universal twisted algebra Aα
H . This will

be possible under the following additional condition on the two-cocycle: a nondegenerate two-
cocycle α : H × H → k is said to be nice if Bα

H is a localization of μα(Zα
H ) or, equivalently, if

their fields of fractions coincide. If α is nice, then Bα
H is flat as a Zα

H -module and

Bα
H ⊗Zα

H
Bα

H
∼= Bα

H . (9.2)

Theorem 9.3. If α : H × H → k is a nice nondegenerate two-cocycle, then μσ induces an iso-
morphism of H -comodule algebras

Bα
H ⊗Zα

H
Uα

H
∼= Aα

H .

Proof. The H -comodule algebra morphism μσ : Uα
H → Bα

H ⊗ σH induces an H -comodule al-
gebra morphism

id ⊗ μσ : Bα
H ⊗Zα

H
Uα

H → Bα
H ⊗Zα

H
Bα

H ⊗ σH.

Since μσ is injective and Bα
H is flat as a Zα

H -module, id ⊗ μσ is injective. It then follows
from (9.2) that id ⊗ μσ maps Bα

H ⊗Zα
H
Uα

H injectively into Bα
H ⊗ σH = Aα

H .
As an Bα

H -algebra, Aα
H is generated by the elements 1 ⊗ h, where h runs over H . By

Lemma 8.1(a), these elements are in the image of μσ . This proves the surjectivity of id⊗μσ . �
The following is a consequence of Lemma 6.4 and Theorem 9.3.

Corollary 9.4. If α is a nice nondegenerate two-cocycle, then the center of Bα
H ⊗Zα

H
Uα

H is Bα
H .

We do not know if all nondegenerate two-cocycles are nice. In the group case, we have the
following result.

Proposition 9.5. Any two-cocycle on the Hopf algebra k[G] of a group is nice.

Proof. For g,h ∈ G, set Zg = XgXg−1 and Zg,h = XgXhXh−1g−1 ∈ T (XH ), where H = k[G].
Let α : H × H → k be a normalized convolution invertible two-cocycle. Its restriction to G × G

takes nonzero values. An easy computation shows that

μα(Zg) = α
(
g,g−1)tgtg−1 ⊗ 1 (9.3)

and

μα(Zg,h) = α
(
g,g−1)α(h, (gh)−1)tgtht(gh)−1 ⊗ 1. (9.4)
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It follows from these identities and from Proposition 8.2 that Zg and Zg,h represent elements
of the center Zα

H . As an easy consequence of (5.9), (9.3), and (9.4), we obtain the following
identities for all g, h ∈ G:

σ(g,h) = α(g,h)α(gh, (gh)−1)

α(g, g−1)α(h, (gh)−1)
· μα(Zg,h)

μα(Zgh)
.

This shows that the generators σ(g,h) and σ−1(g,h) = 1/σ(g,h) of Bα
H can be expressed as

fractions of elements of μα(Zα
H ). �

10. The Sweedler algebra

We assume in this section that the characteristic of the ground field k is different from 2.

10.1. Definition

The Sweedler algebra H4 is the algebra generated by two elements x, y subject to the relations

x2 = 1, y2 = 0, xy + yx = 0. (10.1)

It is four-dimensional with basis {1, x, y, z}, where z = xy.
It carries a structure of Hopf algebra with comultiplication Δ, counit ε, and antipode S given

by

Δ(1) = 1 ⊗ 1, Δ(x) = x ⊗ x,

Δ(y) = 1 ⊗ y + y ⊗ x, Δ(z) = x ⊗ z + z ⊗ 1,

ε(1) = ε(x) = 1, ε(y) = ε(z) = 0,

S(1) = 1, S(x) = x, S(y) = z, S(z) = −y. (10.2)

The tensor algebra T (XH4) is freely generated by the four elements

X1 = E, Xx = X, Xy = Y, Xz = Z,

whereas S(tH4) is the polynomial algebra over the elements t1, tx , ty , tz.
By (A.6) and (A.7), the elements t−1

1 , t−1
x , t−1

y , t−1
z of the field of fractions KH4 of S(tH4) are

given by

t−1
1 = 1

t1
, t−1

x = 1

tx
, t−1

y = − ty

t1tx
, t−1

z = − tz

t1tx
.

It follows that the algebra S(tH4)Θ is isomorphic to the algebra of Laurent polynomials

S(tH4)Θ
∼= k

[
t1, t

−1
1 , tx, t

−1
x , ty, tz

]
.

(This also follows from Proposition B.2.)



E. Aljadeff, C. Kassel / Advances in Mathematics 218 (2008) 1453–1495 1483
10.2. Twisted algebras

Masuoka [25] classified all Hopf Galois extensions for H4 (we also follow [16]). In particular,
he showed that any H4-Galois extension of k is, up to isomorphism, of the form αH4, where α is
the normalized convolution invertible two-cocycle given by

α(x, x) = a, α(x, y) = 0, α(x, z) = 0,

α(y, x) = b, α(y, y) = c, α(y, z) = −c,

α(z, x) = b, α(z, y) = c, α(z, z) = −ac (10.3)

for some a, b, c ∈ k with a = 0. The four-dimensional algebra αH4 has the same basis as H4 and
1 is its unit. In this basis the multiplication ·α of αH4 is given by

x ·α x = a, x ·α y = z, x ·α z = ay,

y ·α x = b − z, y ·α y = c, y ·α z = −cx + by,

z ·α x = bx − ay, z ·α y = cx, z ·α z = −ac + bz. (10.4)

To indicate the dependence on the scalars a, b, c, we henceforth denote αH4 by Aa,b,c .
It is easy to check that the center of Aa,b,c is trivial, i.e., consists of the scalar multiples of the

unit. Therefore, the two-cocycle α is nondegenerate in the sense of Section 9 for all values of a,
b, c.

It follows from [16, Cor. 2.8] that Aa,b,c
∼= H when b2 − 4ac = 0 and that Aa,b,c is isomor-

phic to a quaternion algebra when b2 − 4ac = 0. Therefore, Aa,b,c is a simple algebra when
b2 − 4ac = 0. If b2 − 4ac = 0, then Aa,b,c is not simple since H contains a nonzero nilpotent
two-sided ideal, namely the one generated by y.

10.3. The commutative algebra Bα
H4

Let us first compute the values of the universal cocycle σ attached to α, using (5.4).

Lemma 10.1.

(a) We have

σ(x, x) = at2
x t−1

1 ,

σ (y, y) = σ(z, y) = −σ(y, z) = (
at2

y + bt1ty + ct2
1

)
t−1
1 ,

σ (x, y) = −σ(x, z) = (atxty − t1tz)t
−1
1 ,

σ (y, x) = σ(z, x) = (bt1tx + atxty + t1tz)t
−1
1 ,

σ (z, z) = −(
t2
z + btxtz + act2

x

)
t−1
1 ,

(b) The values of σ−1 on the basis elements of H4 are linear combinations of the values of σ on
the same elements, possibly divided by positive powers of t1 and of σ(x, x) = at2

x t−1
1 .
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Proof. To compute the values of σ and of σ−1, we use (5.4), (5.5), and the following values of
Δ(2) = (Δ ⊗ id)Δ = (id ⊗ Δ⊗)Δ:

Δ(2)(1) = 1 ⊗ 1 ⊗ 1,

Δ(2)(x) = x ⊗ x ⊗ x,

Δ(2)(y) = 1 ⊗ 1 ⊗ y + 1 ⊗ y ⊗ x + y ⊗ x ⊗ x,

Δ(2)(z) = x ⊗ x ⊗ z + x ⊗ z ⊗ 1 + z ⊗ 1 ⊗ 1.

The rest of the computation is tedious and left to the reader. �
The algebra Bα

H4
is the subalgebra of S(tH4)Θ generated by the above values of σ and σ−1.

In order to determine it in terms of the generators of T (XH4) and to obtain a presentation by
generators and relations, we compute certain values of the universal evaluation morphism

μα : T (XH4) → S(tH4) ⊗ αH4.

By (8.1) and (10.2), μα is given on the generators E, X, Y , Z by

μα(E) = t1, μα(X) = txx, (10.5)

μα(Y ) = tyx + t1y, μα(Z) = tz + txz. (10.6)

(In the previous formulas we have left tensor product signs and the unit of H out.)
Set T = XY + YX, U = X(XZ + ZX), V = (XZ)2. Using (10.4)–(10.6), we obtain the

following.

Lemma 10.2. In the algebra S(tH4) ⊗ αH4 we have the following equalities:

μα

(
X2)= at2

x ,

μα

(
Y 2)= at2

y + bt1ty + ct2
1 ,

μα(T ) = tx(2aty + bt1),

μα(U) = at2
x (2tz + btx),

μα(V ) = μα

(
(ZX)2)= at2

x

(
t2
z + btxtz + act2

x

)
,

μα

(
4X2V

)= μα

(
U2 − a−1(b2 − 4ac

)
X6),

μα

(
T 2 − 4X2Y 2)= μα

(
a−1(b2 − 4ac

)
E2X2),

μα(EZ − XY) = t1tz − atxty,

μα

(
EU − X2T

)= 2at2
x (t1tz − atxty).

It follows from Proposition 8.2 and Lemma 10.2 that the elements E, X2, Y 2, T , U , V of Uα
H4

lie in the center Zα . We henceforth identify these elements with their images in Bα .
H4 H4
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Theorem 10.3.

(a) As a k-algebra, Bα
H4

is generated by E±1, (X2)±1, Y 2, T , U , and is isomorphic

to Zα
H4

[E−1, (X2)−1].
(b) Any relation between the generators E±1, (X2)±1, Y 2, T , U of Bα

H4
is a consequence of the

relation

T 2 − 4X2Y 2 = b2 − 4ac

a
E2X2.

Part (a) of Theorem 10.3 implies that the two-cocycle α is nice in the sense of Section 9 for
all values of a, b, c.

Proof. (a) From Lemmas 10.1(a) and 10.2 we deduce the relations

σ(1,1) = σ(1, x) = σ(x,1) = μα(E),

σ (x, x) = μα

(
X2

E

)
,

σ (y, y) = σ(z, y) = −σ(y, z) = μα

(
Y 2

E

)
,

σ (x, y) = −σ(x, z) = μα

(
X2T − EU

2EX2

)
,

σ (y, x) = σ(z, x) = μα

(
X2T + EU

2EX2

)
,

σ (z, z) = −μα

(
V

EX2

)
.

By Lemma 10.1(b), the values of σ−1 are linear combinations of the above values of σ , pos-
sibly divided by positive powers of t1 = μα(E) and of σ(x, x) = μα(X2/E). This shows that
Bα

H4
is generated by E±1, (X2)±1, Y 2, T , U , V . Now, by Lemma 10.2, E, X2, Y 2, T , U , V

belong to Zα
H4

. Therefore, Bα
H4

is obtained from Zα
H4

by inverting E and X2, hence is isomorphic

to Zα
H4

[E−1, (X2)−1].
A computation using Lemma 10.2 yields

V = U2

4X2
− b2 − 4ac

4a
X4,

which shows that V can be expressed in terms of (X2)±1 and U .
(b) Let B0 be the subalgebra of S(tH4)Θ generated by μα(E)±1, μα(X2)±1, μα(Y 2), and

μα(U). Since by part (a),

μα(E)±1 = σ±1(1,1), μα

(
X2)±1 = μα(E)±1σ±1(x, x),

μα

(
Y 2)= μα(E)σ(y, y), μα(U) = μα

(
X2)(σ(y, x) − σ(x, y)

)
,
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we conclude that B0 is a subalgebra of Bα
H4

. Considering the degrees in t1, tx , ty , tz of the poly-

nomials μα(E), μα(X2), μα(Y 2), and μα(U/X2), we easily deduce that these four polynomials
are algebraically independent. It follows that

B0 = k
[
E±1,

(
X2)±1

, Y 2,U
]
.

By part (a), Bα
H4

is generated by T as a B0-algebra. By Lemma 10.2,

T 2 − 4X2Y 2 = b2 − 4ac

a
E2X2 ∈ Bα

H4
. (10.7)

To complete the proof, it suffices to check that Bα
H4

is a free B0-module with basis {1, T }.
By (10.7), the elements 1 and T generate Bα

H4
as a B0-module. Let us show that they are lin-

early independent over B0. Suppose that there exists a relation of the form P + QT = 0, where
P and Q ∈ B0. If we denote the degree in ty by ∂y and if P,Q are nonzero, we have

∂y(P ) = ∂y(Q) + ∂y(T ). (10.8)

We claim that ∂y(P ) and ∂y(Q) are even integers: indeed, of the four generators of B0 only
μα(Y 2) = at2

y + bt1ty + ct2
1 contains ty and its degree in ty is 2. Now, ∂y(T ) = 1 is odd. This

contradicts (10.8). Therefore, P = Q = 0, which shows that {1, T } is a basis of Bα
H4

over B0. We

have thus proved that Bα
H4

= B0[T ]/(T 2 − 4X2Y 2 − [(b2 − 4ac)/a]E2X2). �
Corollary 10.4. We have the following presentation for Bα

H4
:

Bα
H4

∼= k
[
E±1,

(
X2)±1

, Y 2, T ,U
]
/(Pa,b,c),

where Pa,b,c is the polynomial

Pa,b,c = T 2 − 4X2Y 2 − b2 − 4ac

a
E2X2.

It follows that, in order to specify an algebra morphism from Bα
H4

to an extension K of k, it is
enough to pick elements e,x,y, t,u ∈ K verifying e = 0, x = 0, and

t2 − 4xy = b2 − 4ac

a
e2x.

The spectrum of Bα
H4

, which is the quadric hypersurface given by the vanishing of Pa,b,c , is
the base space of the universal noncommutative deformation space Aα

H4
computed below.

Proposition 10.5. The algebra S(tH )Θ is integral over the subalgebra Bα .
4 H4
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Proof. It suffices to check that the generators t±1
1 , t±1

x , ty , tz of S(tH4)Θ are integral over Bα
H4

.

First, t±1
1 = σ±1(1,1) belongs to Bα

H4
. For the other generators, we use the formulas in

Lemma 10.1. For instance,

(
t±1
x

)2 = a∓1σ±1(1,1)σ±1(x, x),

which shows that (tx)
2 and (t−1

x )2 belong to Bα
H4

. The generator ty satisfies a quadratic equation
of the form

at2
y + bt1ty + ct2

1 − σ(1,1) σ (y, y) = 0

whose coefficients belong to Bα
H4

. We finally use the relation

t1tz − atxty = σ(1,1) σ (x, z)

to conclude that tz is integral over Bα
H4

. �
Remark 10.6. The elements W = Y(YZ + ZY) and

∇± = (XZY + YXZ) ± (XYZ + YZX)

also belong to Zα
H4

. Indeed, we have

μα(W) = (2tz + btx)
(
at2

y + bt1ty + ct2
1

)
,

μα(∇+) = tx(2tz + btx)(2aty + bt1),

μα(∇−) = −(
b2 − 4ac

)
t1t

2
x .

Moreover, the relations

X2∇+ = T U and E∇− = 4X2Y 2 − T 2

hold in Zα
H4

. (To prove them, it suffices to check that both sides of each relation have equal
polynomial images under μα .)

10.4. The universal twisted algebra AH4

Since the two-cocycle α is nondegenerate and nice, we may apply Theorem 9.3. It states that

Bα
H4

⊗Zα
H4

Uα
H4

and Aα
H4

= Bα
H4

⊗ σH4

are isomorphic as H4-comodule algebras. Let us give a presentation of these algebras by gener-
ators and relations.

Theorem 10.7. The algebra Aα
H4

is isomorphic to the Bα
H4

-algebra generated by two variables
ξ , η, subject to the relations

ξ2 = X2, η2 = Y 2, ξη + ηξ = T .
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Proof. Let A = Bα
H4

〈ξ, η〉/(ξ2 − X2, η2 − Y 2, ξη + ηξ − T ). We define an algebra morphism
f : A → Aα

H4
by f (ξ) = X and f (η) = Y . It is clear that f is well defined.

Let us first establish that f is surjective. The algebra Aα
H4

is generated by E, X, Y and Z.
Now, E belongs to Bα

H4
and X and Y are obviously in the image of f . From Lemma 10.2 we

deduce that 2X2(EZ − XY) = EU − X2T holds in Uα
H4

. Hence,

Z = 1

E
XY + EU − X2T

2EX2

in Aα
H4

. Since E−1 and (EU − X2T )/2EX2 belong to Bα
H4

, the element Z belongs to the image
of f .

We now prove that f is injective. We observe that ξ2, η2, ξη +ηξ belong to Bα
H4

. Hence, A is
spanned by 1, ξ , η, ξη as a Bα

H4
-module. Consider an arbitrary element ω = γ0 + γ1ξ + γ2η +

γ3ξη of A, where γ0, γ1, γ2, γ3 belong to Bα
H4

. If f (ω) = 0, then

γ0 + γ1X + γ2Y + γ3XY = 0

in Aα
H4

. Let us replace 1, X, Y , XY by their images under μα . We obtain

γ0t1 ⊗ 1 + γ1(tx ⊗ x) + γ2(ty ⊗ x + t1 ⊗ y) + γ3(tz ⊗ 1 + tx ⊗ z) = 0.

Since {1, x, y, z} is a basis of H4, we obtain the system of equations⎧⎪⎪⎨
⎪⎪⎩

γ0t1 + γ3tz = 0,

γ1tx + γ2ty = 0,

γ2t1 = 0,

γ3tx = 0

in S(tH4)Θ . Since t1 and tx are invertible, γi = 0 for i = 0,1,2,3. This proves the injectivity
of f . �
Remarks 10.8. (a) Since Aa,b,c is simple when b2 − 4ac = 0, then so is the algebra
Kα

H4
⊗Bα

H4
Aα

H4
by Corollary 6.5.

If b2 − 4ac = 0, then Pa,b,c = T 2 − 4X2Y 2. Let θ = 2X2η − T ξ ∈ Aα
H4

, where we use the
description of Aα

H4
given in Theorem 10.7. It is easy to check that

θ2 = θξ + ξθ = θη + ηθ = 0.

Thus, θ (= 0) generates a nilpotent two-sided ideal in Kα
H4

⊗Bα
H4

Aα
H4

, which implies that the

latter is not (semi)simple when b2 − 4ac = 0.
(b) It follows from the results of Section 7 and the computations above that the scalar

(b2 − 4ac)/a is an invariant for the forms of Aa,b,c . More precisely, if the comodule alge-
bra Aa′,b′,c′ is a form of Aa,b,c , then necessarily

b′2 − 4a′c′

a′ = b2 − 4ac

a
. (10.9)

It can be shown using [16] that, if (10.9) holds, then Aa′,b′,c′ is a form of Aa,b,c .
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(c) Remark (b) has an important consequence. Let Aa,b,c be as above. Define F =
k0((b

2 − 4ac)/a) to be the field generated by (b2 − 4ac)/a over the prime field k0 of k. Then
there exists an H -comodule algebra AF over the field F such that k ⊗F AF

∼= Aa,b,c . Further-
more, F is the unique minimal field with this property. It follows that, if B is an H -comodule
algebra over a subfield K of the algebraic closure k of k such that k ⊗K B ∼= k ⊗k Aa,b,c , then
the universal twisted algebra Aα

H4,F
corresponding to AF specializes to B .

Appendix A. The map t−1

Let C be a k-coalgebra. Pick a copy tC of the underlying vector space of C and denote the
identity map from C to tC by x 
→ tx (x ∈ C). Let S(tC) be the symmetric algebra over the vector
space tC and KC the field of fractions of S(tC).

Lemma A.1. There is a unique linear map C → KC , x 
→ t−1
x such that for all x ∈ C,

∑
(x)

tx(1)
t−1
x(2)

=
∑
(x)

t−1
x(1)

tx(2)
= ε(x)1. (A.1)

Here we have used the Heyneman–Sweedler sigma notation and ε denotes the counit of C.
Observe that Eq. (A.1) is equivalent to

t ∗ t−1 = t−1 ∗ t = εη, (A.2)

where ∗ is the convolution product on Hom(C,KC) and εη is the neutral element for the convo-
lution product (by definition, (εη)(x) = ε(x)1 for all x ∈ C).

Proof. By (A.2) it suffices to establish that t has a right and a left inverse for the convolution
product. The right and the left inverses necessarily coincide and are unique.

Let us prove that t has a right inverse for the convolution product. First assume that C is
finite-dimensional. Expressing the comultiplication Δ in a basis {x1, . . . , xd} of C, we have

Δ(xi) =
d∑

p,q=0

c
p,q
i xp ⊗ xq, (A.3)

where c
p,q
i ∈ k are the structure constants of Δ. When we reformulate the equations

∑
(x)

tx(1)
t−1
x(2)

= ε(x)1

in the basis, we obtain the matrix equation

M

⎛
⎜⎝

t−1
x1
...

t−1
xd

⎞
⎟⎠=

⎛
⎝ ε(x1)

...

ε(xd)

⎞
⎠ , (A.4)

where M is the d × d-matrix whose entries are given by
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Mi,q =
d∑

p=1

c
p,q
i txp ∈ S(tC) (A.5)

for all i, q = 1, . . . , d . To prove the existence and the uniqueness of the solution of (A.4), it
suffices to check that the determinant det(M) of M is nonzero. Since det(M) is a polynomial in
the variables tx1 , . . . , txd

, it suffices to prove that det(M) is nonzero under a suitable specialization
of the variables.

Let ε : S(tC) → k be the algebra morphism defined by ε(tx) = ε(x) for all x ∈ C. The relation
(ε ⊗ idC) ◦ Δ = idC satisfied by the counit becomes

d∑
p,q=0

c
p,q
i ε(xp)xq = xi

for all i = 1, . . . , d . We can reinterpret this by saying that the scalar matrix ε(M) whose entries
ε(M)i,q are given by

ε(M)i,q =
d∑

p=1

c
p,q
i ε(xp)

satisfies

ε(M)

⎛
⎝ x1

...

xd

⎞
⎠=

⎛
⎝ x1

...

xd

⎞
⎠ .

Therefore, ε(M) is the identity matrix and ε(det(M)) = det(ε(M)) = 1 = 0.
If C is not finite-dimensional, it is a direct limit of finite-dimensional subcoalgebras Cκ . By

what we have just proved, for each κ there is a linear map Cκ → KC , x 
→ t−1
κ,x such that

∑
(x)

tx(1)
t−1
κ,x(2)

= ε(x)1

for all x ∈ Cκ . Since

Hom(C,KC) = Hom
(

lim−→
κ

Cκ,KC

)∼= lim←−
κ

Hom(Cκ,KC),

the maps t−1
κ fit together to form a linear map t−1 : C → KC satisfying the required property.

One proves in an analogous way that t has a left inverse for the convolution product. �
We end this appendix with two elementary computations of values of t−1.
(a) If g ∈ C is a grouplike element, i.e., satisfying Δ(g) = g ⊗ g and ε(g) = 1, then

t−1
g = 1

. (A.6)

tg
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(b) If x ∈ C is skew-primitive, i.e., if ε(x) = 0 and Δ(x) = g ⊗ x + x ⊗ h for some grouplike
elements g, h, then

t−1
x = − tx

tgth
. (A.7)

Appendix B. The algebra S(tC)Θ

We resume the notation of Appendix A, namely C is a coalgebra, S(tC) is the symmetric
algebra over a copy tC of the underlying vector space of C, and KC the field of fractions of S(tC).
We recall the linear maps t : C → S(tC) ⊂ KC and t−1 : C → KC introduced there.

Let S(tC)Θ be the subalgebra of KC generated by t (C) and t−1(C). The aim of this appendix
is to show that S(tC)Θ is isomorphic to the free commutative Hopf algebra on the coalgebra C

introduced by Takeuchi in [30, §11]. This will imply that S(tC)Θ is obtained from S(tC) by
inverting certain “canonical” grouplike elements. We complete the appendix by applying the
theory to three interesting examples of coalgebras.

We first observe that, by definition of S(tC)Θ , the following property holds: for any couple
(g, g−1) of linear maps C → R with values in a commutative ring R satisfying the relations

∑
(x)

g(x(1))g
−1(x(2)) =

∑
(x)

g−1(x(1))g(x(2)) = ε(x)1 (B.1)

for all x ∈ C, there is a unique algebra morphism f : S(tC)Θ → R such that f (tx) = g(x) and
f (t−1

x ) = g−1(x) for all x ∈ C.
For any x ∈ C, set

Δ(tx) =
∑
(x)

tx(1)
⊗ tx(2)

∈ S(tC)Θ ⊗ S(tC)Θ, (B.2)

Δ
(
t−1
x

)=
∑
(x)

t−1
x(2)

⊗ t−1
x(1)

∈ S(tC)Θ ⊗ S(tC)Θ, (B.3)

ε(tx) = ε
(
t−1
x

)= ε(x) ∈ k, (B.4)

S(tx) = t−1
x and S

(
t−1
x

)= tx ∈ S(tC)Θ. (B.5)

Using (B.1), it is easy to check that (B.2)–(B.5) define algebra morphisms Δ : S(tC)Θ →
S(tC)Θ ⊗ S(tC)Θ , ε : S(tC)Θ → k, and an algebra antiautomorphism S : S(tC)Θ → S(tC)Θ ,
turning S(tC)Θ into a Hopf algebra with comultiplication Δ, counit ε, and antipode S.

The Hopf algebra S(tC)Θ satisfies the following universal property.

Lemma B.1. For any commutative Hopf algebra H and any morphism of coalgebras g : C → H ,
there is a unique morphism of Hopf algebras f : S(tC)Θ → H such that f ◦ t = g.

Proof. Since the elements tx and t−1
x (x ∈ C) generate S(tC)Θ as an algebra, f is uniquely

defined by its values on them. By definition, f (tx) = g(x) for all x ∈ C. The Hopf algebra
morphism f preserves the antipodes, which implies for all x ∈ C that

f
(
t−1
x

)= f
(
S(tx)

)= S
(
g(x)

)
,
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where the righmost S denotes the antipode of H . To prove the existence of f , it suffices by (B.1)
to check that

∑
(x)

f (tx(1)
)f
(
t−1
x(2)

)=
∑
(x)

f
(
t−1
x(1)

)
f (tx(2)

) = ε(x)1

for all x ∈ C. Now, since g is a coalgebra morphism, we have

∑
(x)

f (tx(1)
)f
(
t−1
x(2)

)=
∑
(x)

g(x(1))S
(
g(x(2))

)

=
∑
(x)

g(x)(1)S
(
g(x)(2)

)
= ε

(
g(x)

)
1 = ε(x)1.

The relation
∑

(x) f (t−1
x(1)

)f (tx(2)
) = ε(x)1 is proved similarly. It is now easy to check that f is a

morphism of Hopf algebras. �
Takeuchi’s free commutative Hopf algebra generated by the coalgebra C (defined in [30,

Def. 62]) also satisfies the universal property of Lemma B.1. Therefore, it is isomorphic
to S(tC)Θ . This allows us to use the results of [30] to show that S(tC)Θ is obtained from S(tC)

by inverting certain elements, which we now describe.
Assume first that the coalgebra C is finite-dimensional. The dual vector space A = C∗ =

Hom(C, k) carries a natural structure of an algebra. Since this algebra is finite-dimensional, we
can consider the norm map

N : A ⊗ S(tC) → S(tC)

defined for all θ ∈ A ⊗ S(tC) by N(θ) = det(Lθ ), where Lθ is the left multiplication by θ . On
the other hand, consider the linear map

ι : A ⊗ S(tC) = C∗ ⊗ S(tC) → Hom
(
C,S(tC)

)
given by a ⊗ P 
→ (x 
→ 〈a, x〉P), where a ∈ A, x ∈ C, P ∈ S(tC), and 〈 , 〉 is the canonical
duality between A and C. The map ι is an isomorphism since A is finite-dimensional. Using the
inclusion t ∈ Hom(C,S(tC)) and following [30, §11], we define the element ΘC ∈ S(tC) by

ΘC = N
(
ι−1(t)

)
. (B.6)

By [30, Lemma 58], ΘC is a grouplike element of S(tC).
We shall see in Example B.5 below that ΘC is a generalization of Dedekind’s group determi-

nant. For this reason, to denote this element we have used the same symbol Θ as Dedekind. Note
also that ΘC is the determinant of the matrix M defined by (A.5).

In the general case, we have the following.
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Proposition B.2. Let C be a coalgebra and (Cκ)κ be a family of finite-dimensional coalgebras
such that

∑
κ Cκ contains the coradical C0 of C. Then S(tC)Θ is the smallest subalgebra of the

fraction field KC containing S(tC) and all inverses Θ−1
Cκ

:

S(tC)Θ = S(tC)

[(
1

ΘCκ

)
κ

]
.

Moreover, if the coradical C0 is finite-dimensional, then

S(tC)Θ = S(tC)

[
1

ΘC0

]
.

Proof. This is a consequence of [30, Theorem 61 and Corollary 64] together with our identifi-
cation of S(tC)Θ with Takeuchi’s free commutative Hopf algebra on C. �

As a consequence of Proposition B.2, the spectrum of the commutative algebra S(tC)Θ is
obtained from the affine space C by cutting out the zero-loci of the polynomials ΘCκ . We can
reinterpret this as follows: for any field K , a linear map g : C → K extends to an algebra mor-
phism S(tC)Θ → K if and only if its extension f : S(tC) → K as an algebra morphism satisfies
f (Θκ) = 0 for all κ .

We end this appendix with three examples.

Example B.3. Let C be the coalgebra dual to the algebra Mn(k) of n × n-matrices with entries
in k. As a vector space, C has a basis {Xi,j }i,j=1,...,n with comultiplication Δ and counit ε given
by

Δ(Xi,j ) =
n∑

k=0

Xi,k ⊗ Xk,j and ε(Xi,j ) = δi,j (Kronecker symbol)

for all i, j = 1, . . . , n. Set ti,j = tXi,j
. Then ΘC ∈ S(tC) is equal to the determinant of the “gener-

ic” matrix (ti,j )i,j .

Example B.4. Let C be a coalgebra which has a basis G consisting of grouplike elements (for
instance, the coalgebra underlying the Hopf algebra of a group G considered in Example 1.2).
The symmetric algebra S(tC) is the polynomial algebra in the indeterminates (tg)g∈G. By (A.6),
t−1
g = 1/tg for all g ∈ G. Therefore, S(tC)Θ is the algebra of Laurent polynomials

S(tC)Θ = k
[
tg, t

−1
g

∣∣ g ∈ G
]
.

Observe that ΘC =∏
g∈G tg if G is finite.

Example B.5. Let G be a finite group and C = kG the coalgebra underlying the Hopf algebra of
k-valued functions on G considered in Example 1.3. (Over an algebraically closed field, the coal-
gebra kG is a product of matrix coalgebras of type B.3.) In this case ΘC is equal to Dedekind’s
group determinant ΘG, which is the determinant of the matrix

(tgh−1)g,h∈G.
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The determinant ΘG was factored into a product of irreducible polynomials by Dedekind when
G is abelian and by Frobenius for an arbitrary group. The factors can be expressed in terms of
the irreducible characters of G, see [31, Chapter 12, Part B].

If G is an abelian group of exponent N , and k is a field containing a primitive N th root of
unity and having a characteristic not dividing N , then there is an isomorphism of Hopf algebras
C = kG ∼= k[G] provided by the discrete Fourier transform. Under these hypotheses, the algebra
S(tC)Θ is a ring of Laurent polynomials in view of Example B.4.

If G = 〈g | g2 = e〉 is the cyclic group of order two and C = kG, then

ΘC =
∣∣∣∣ te tg
tg te

∣∣∣∣= t2
e − t2

g = (te − tg)(te + tg).

If k is of characteristic two, then S(tC)Θ = k[te, tg, (te + tg)
−2]. One can check that this is not an

algebra of Laurent polynomials.
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