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Abstract

The transient wear process at contact frictional interface of two elastic bodies in relative steady motion induces evolu-
tion of shape of the interface. A steady wear state may be reached with uniform wear rate and fixed contact surface shape.
In this paper, the optimal contact shape is studied by formulating several classes of shape optimization problems, namely
minimization of generalized wear volume rate, friction dissipation power and wear dissipation rate occurring in two
bodies. The wear rule was assumed as a nonlinear dependence of wear rate on friction traction and relative sliding velocity,
similar to the Archard rule. The wear parameters of two bodies may be different. It was demonstrated that different opti-
mal contact shapes are generated depending on objective functional and wear parameters. When the uniform wear rate is
generated at contact sliding surfaces, the steady state is reached. It was shown that in the steady state the wear parameters
of two bodies cannot be independent of each other. The solution of nonlinear programming problem was provided by the
iterative numerical procedure. It was assumed that the relative sliding velocity between contacting bodies results from
translation and rotation of two bodies. In general, both regular and singular regimes of wear rate and pressure distribution
may occur. The illustrative examples of drum brake, translating punch and rotating annular punch (disc brake) provide the
distribution of contact pressure and wear rate for regular and singular cases associated with the optimality conditions. It is
shown that minimization of the generalized wear dissipation rate provides solutions assuring existence of steady wear
states.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In engineering practice, mechanical and thermal interactions between machine or structural elements are fre-
quently modeled as unilateral contact problems. The contact shape optimization is then usually aimed at min-
imizing the maximal contact pressure or effective stress. An extensive survey of contact pressure optimization
problems was presented by Hilding et al. (1999) and by Haslinger and Neittaanmaki (1988). The papers by
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Páczelt (2000) and Páczelt and Szabó (1994, 2002) provide solutions for 2D and 3D contact problems in which
the pressure distribution is partially controlled. The application to roller bearings was presented in Páczelt and
Szabó (2002), in Páczelt and Baksa (2002) with discretization of the domain with p-version finite elements, cf.
Szabó and Babuska (1991), resulting in fast convergence and high order mapping assuring accurate geometry
required for shape optimization.

However, in most engineering problems, when frictional slip and sliding occurs, the accompanying wear pro-
cess induces variation of the contact surface shape and affects the contact pressure distribution. The initial
shape and contact pressure vary during the wear process and evolve toward a steady state. This evolution
can be simulated numerically by applying the wear rule specifying rate of wear in terms of relative slip velocity
and contact pressure. A steady state could then be predicted by means of the incremental time integration pro-
cedure accounting for contact shape and pressure variation at each step. An alternative approach can also be
considered by applying the variational procedure and searching for the optimal contact shape corresponding to
extremum of an objective functional associated with the friction and wear process. It can be expected that for a
properly selected objective functional the optimal shape is the same as that reached in the wear process. In other
words, the wear process generates an adaptive response of the contact inducing optimal regime of interaction
after an initial transient period. The knowledge of such optimal regimes is of fundamental importance for engi-
neering applications by providing the methods of effective design and control of contact interfaces.

The present work is devoted to the analysis of evolution of shape of contact surface and pressure in the
course of wear process. The analytical treatment of contact wear processes was presented in a book by Gorya-
cheva and Dobuchin (1988). Numerical studies of elastic or thermoelastic wear problems were presented by
Strömberg et al. (1996), Strömberg (1998), Páczelt and Pere (1999), Ireman et al. (2002). In general, there
are several classes of problems. The first class occurs when within the contact domain there is an internal stick-
ing zone where no friction slip occurs and an external slip zone where the relative slip induces displacement
discontinuity. Under varying load action the wear process develops in the slip zone with accompanying shape
evolution and progression of slip zone into the sticking zone. This wear mode, called the fretting wear, devel-
ops very slowly as there is no overall sliding at the contact interface. The numerical analysis of contact shape
and pressure evolution by Johansson (1994) well illustrates this class of problems where the relative slip dis-
placement is of order of elastic displacement. The second class of wear problems, called the sliding wear, occurs
when the sliding of two contacting bodies occurs and is accompanied by the progressive wear process and con-
tact shape evolution. For the translation elastic punch motion, the contact shape evolution was numerically
analyzed by Marshek and Chen (1989), indicating uniform pressure and wear distribution in the steady state.
The other class of problems is associated with rolling wear, typical in rail vehicle/track interaction when both
slip and sticking zones develop consecutively at the contact.

In the previous work by Páczelt and Mróz (2005) the optimal shapes generated by wear process were ana-
lyzed by postulating minimization of the wear dissipation power and also the wear volume and the friction
dissipation power. The physically most important criterion is that providing the uniform wear rate in the
steady state of wear. It was shown that in the case of translatory and rotary motion the contact shape evolu-
tion tends to a steady state satisfying the minimum principle of the wear dissipation rate. On the other hand,
minimization of friction dissipation power or wear volume rate provides different contact shapes, not satisfy-
ing the steady state property. In this paper, we shall extend the analysis of Páczelt and Mróz (2005) by deriving
the optimality conditions with account for wear of two bodies and present the solutions for three cases, related
to wear of drum braking system, wear of rotating tubular punch representing disk brake operation and wear
of translating punch transferring resultant normal force and moment to the contact area. It is noted that for
some parameter values the optimal solutions are singular, corresponding to localized contact zones at the
perimeter or center line of the contact area. Both regular and singular optimal solutions are discussed and
the physical relevance of minimum principle of the wear dissipation power is emphasized.

The paper is organized as follows. In Section 2 a brief exposition of contact problem is given with intro-
duction of basic definitions and notations. Next, in Section 3 a brief formulation of wear rules of two contact-
ing bodies with different wear parameters is presented. Section 4 provides the optimality conditions for the
case of wear of two bodies and the necessary conditions of stationary states associated with different objective
functions. Section 5 provides the analysis of two types of drum braking system. The aim of this section is to
demonstrate the applicability of optimality conditions in numerical determination of optimal contact shapes in
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sliding wear regimes and to clarify the character of regular, singular and near-singular solutions. Section 6
contains the solutions of optimal punch profiles interacting with plane contact. The effect of optimal shape
sensitivity with respect to friction coefficient is clearly illustrated.

In Section 7 the optimality conditions for the case of wear of two rotating bodies and the steady state con-
ditions are provided. The singular, near-singular and regular solutions are presented and the role of control
parameter q is discussed. Section 8 summarizes the main results of the paper.

2. Contact problem

Without the restriction of generality, let us consider the contact problem (cf. for instance, Laursen, 2002;
Wriggers, 2002) of two elastic bodies Ba (a = 1,2) with the usual boundary and loading conditions. It will be
assumed that the displacements and the deformations are small. On the boundary surface portion SðaÞu the dis-
placements u

ðaÞ
0 are specified, on the SðaÞt the traction vector t

ðaÞ
0 is applied, and on the SðaÞc the unilateral contact

is expected. In this part of the bodies the boundary shape may be modified. The normal stress is rðaÞn ¼
nðaÞ � rðaÞ � nðaÞ, where r(a) is the stress tensor, n(a) is the normal vector of the ath body along the surface
SðaÞc ¼ X. The elastic displacements in the normal and tangential directions are denoted by uðaÞe;n and uðaÞe;s , their
rates by _uðaÞe;n and _uðaÞe;s . The rigid body displacements are respectively uðaÞR;n and u

ðaÞ
R;s. After deformation the gap is

d ¼ uð2Þn � uð1Þn þ g, where uðaÞn ¼ uðaÞ � nc, nc is the unit normal vector of contact surface and g is the initial gap
(see Fig. 1) and the contact pressure p ¼ �rð1Þn ¼ �rð2Þn . In the normal direction the Signorini contact condi-
tions are valid: there is contact if d = 0, p P 0, x 2 C and there is gap, if d > 0, p = 0, x 2 G, i.e. p · d = 0,
x 2 X = C [ G. The Coulomb dry friction condition and the non-associated sliding rule are the same as in
the previous paper by Páczelt and Mróz (2005). They have been examined in detail in books by Laursen
(2002) and Wriggers (2002).

Assume that the first body undergoes the rigid body motion, so that its translation and rotation with
respect to a selected point C0 is specified by vectors kF and kM.

In this case the rigid body displacements in the normal and tangential directions are
Fig. 1.
shear s
uð1ÞR;n ¼ ðkF þ kM � DrÞ � nc; u
ð1Þ
R;s ¼ ðkF þ kM � DrÞ � uð1ÞR;nnc ð1Þ
where Dr is the position with respect to C0.
The relative tangential velocity is calculated by the following formula
_us ¼ _uð2Þe;s � ð _uð1Þe;s þ _u
ð1Þ
R;sÞ: ð2Þ
In the analysis of sliding wear process, usually the elastic portion of relative tangent velocity is much smaller
than the rigid body motion induced velocity, thus
k _uð1Þe;sk þ k _uð2Þe;sk � k _u
ð1Þ
R;sk ð3Þ
Two bodies in contact: (a) definition of normal displacements uðaÞn and the initial gap g, (b) tangential velocities _uðaÞs and contact
tress sðaÞn .
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and the effect of elastic component of tangential relative velocity can be neglected in the wear analysis (see
Páczelt and Mróz, 2005). We shall use this fact in our numerical study of wear process. The symbol kÆk denotes
the absolute value of the vector.

The boundary value problem is solved by variational principles using modified total potential energy with
augmented Lagrangian technique (Wriggers, 2002; Páczelt, 2000). In our optimization problems it is supposed
that the bodies are in contact on the whole sub-domain Xc of the contact zone Sc = X. The temperature effects
and heat generated at the frictional interface (see for instance Wriggers and Miehe, 1994; Strömberg et al.,
1996; Strömberg, 1998; Páczelt and Pere, 1999; Ireman et al., 2002) in our investigation is neglected. In our
consideration the wear is assumed as isotropic. Anisotropic friction and wear process has been investigated
in papers Mróz and Stupkiewicz (1994), Johansson (1994) and Stupkiewicz and Mróz (1999).

The stationarity condition after discretization then provides the system of algebraic equations, which will be
solved by the iterational Kalker procedure (see Kalker, 1985) with the control of the sign of the contact pres-
sure. The contact conditions are checked at the Lobatto integration points of the contact elements during the
solution process. The oscillations of contact pressure and displacements are minimized by using the node posi-
tioning and re-meshing technique described in Páczelt and Baksa (2002).

3. Formulation of the wear rule

In the wear process two main classes of problems can be distinguished. In the first class the contact domain
Sc including the sticking and slip zones evolves in time. In the second class the domain Sc is fixed and the rel-
ative sliding occurs on Sc. We can next distinguish three sub-classes of problems. First, the wear rate is uni-
form over Sc and is steady in time. Second, the wear rate is not uniform over Sc but is steady in time. Third, the
wear rate is not uniform over Sc and is varying in time. The steady state can be attained only in the first two
sub-classes of problems. In this paper we will focus our discussion on the optimal contact shapes generated in
the steady state of wear process and their numerical determination from the optimality conditions of objective
functionals.

The shear stress in the contact surface is denoted by sn and calculated in terms of the contact pressure by the
Coulomb friction law sn = lpn.

When the wear process occurs in two contacting bodies, the wear rule for the ith body is assumed in the
form
_wi ¼ biðsnÞbik _uskai ¼ biðlpnÞ
bik _uskai ¼ biðlpnÞ

bi vai
r ¼ ~bipbi

n vai
r ; i ¼ 1; 2 ð4Þ
where bi, ai, bi are the wear parameters, l is the coefficient of friction, ~bi ¼ bil
bi , vr ¼ k _usk is the relative veloc-

ity between two bodies. The wear parameters are assumed as constant, however, the state of contact interface
evolves during the wear process, so these parameters may tend to their steady state values dependent on the
surface and subsurface deformation.

A special case is of importance, namely the uniform wear rate (Goryacheva and Dobuchin, 1988; Páczelt
and Mróz, 2005)
_w ¼
X2

i¼1

_wi ¼
X2

i¼1

biðlpnÞ
bik _uskai ¼ _wc ¼ const ð5Þ
Assuming b1 = b2 = b, the contact pressure distribution can now be calculated from (5), namely
pn ¼
_wcP2

i¼1bilbk _uskai

" #1
b

ð6Þ
However, the slip velocity is in a general case unknown and should be determined from the solution of a spe-
cific case.

Note that in a steady state when the contact pressure distribution on Sc depends only on the position, the
contact congruence requires that
_w1= _w2 ¼ const or ðpnÞ
ðb1�b2ÞðvrÞða1�a2Þ ¼ const ð7Þ
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4. Minimization of wear volume rate, friction dissipation power and wear dissipation power

Consider the wear process occurring in two contacting bodies. The first body in a form of punch B1, moves
relatively to the second body B2 and remains in contact on the plane Sc. The punch B1 is allowed to translate
or rotate with respect to the body B2 which is constrained and does not undergo rigid body motion (see Fig. 2).
In the case of translation motion the relative sliding velocity vr at the contact surface Sc is constant, in the case
of rotation motion with respect to axis normal to the contact plane it equals vr = rx, where r denotes the dis-
tance of a point on Sc from the axis of rotation. The wear volume rate at the contact surface Sc equals
Fig. 2
F0 ¼ F
_W ¼
Z

Sc

_wdS ¼
Z

Sc

ð _w1 þ _w2ÞdS ¼
X2

i¼1

Z
Sc

~bipbi
n vai

r dS ð8Þ
and the friction dissipation power is
DF ¼
Z

Sc

snvr dS ¼
Z

Sc

lpnvr dS ð9Þ
The wear dissipation power is specified from the following formula:
Dw ¼
Z

Sc

pn _wdS ¼
Z

Sc

pnð _w1 þ _w2ÞdS ¼
Z

Sc

ð~b1pb1þ1
n va1

r þ ~b2pb2þ1
n va2

r ÞdS ð10Þ
Consider now the new generalized forms of these functionals, already discussed by Páczelt and Mróz (2005)
for the case of wear of one body. The generalized wear volume rate can be presented as follows:
_W ðqÞ ¼
X2

i¼1

Z
Sc

_wq
i dS

� �1=q

¼
X2

i¼1

Z
Sc

ð~bipbi
n vai

r Þ
q dS

� �1=q

¼
X2

i¼1

A1=q
i ð11Þ
the generalized friction dissipation power equals
DðqÞF ¼
Z

Sc

ðlpnvrÞq dS
� �1=q

¼ B1=q ð12Þ
and the generalized wear dissipation power at the surface Sc is
DðqÞw ¼
X2

i¼1

Z
Sc

ðpn _wiÞq dS
� �1=q

¼
X2

i¼1

Z
Sc

ð~bipbiþ1
n vai

r Þ
q dS

� �1=q

¼
X2

i¼1

C1=q
i ð13Þ
. The wear process occurring at contact interface of a punch moving with the relative velocity vr and loaded by force
x
0ex þ F y

0ey � F 0ez (with resulting moments Mx
0;M

y
0). The Lagrangian multipliers are _kF, _kx

M , _ky
M and represent velocity components.
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where q is called the control parameter. Let us note that for q = 1 these functionals represent global contact
response measures such as friction or wear dissipation power and wear volume rate. For large values of q

the functionals tend to local maximal values of integrands and provide control of local extremal responses
at each contact point. The role of the parameter q is to regularize the optimization problem in order to avoid
singular solutions.

In the following sections we shall analyze the minimum variational principles associated with these three
functionals.

4.1. Variational principles in a stationary translation motion, vr = const

In this case the relative velocity between two bodies vr = const, as the second body B2 is fixed, and the body
B1 moves with constant velocity. The translatory motion is in general combined with rotation relative to coor-
dinate axes within the contact plane.

Assume the contact pressure pn(x) and friction stress lpn(x) to satisfy the global equilibrium conditions for
the body B1, so we have
f ¼ �
Z

Sc

ncpn dS þ f0 ¼ 0; m ¼ �
Z

Sc

Dr� ncpn dS þm0 ¼ 0

fs ¼
Z

Sc

eslpn dS þ f0s ¼ 0; ms ¼
Z

Sc

Dr� eslpn dS þm0s ¼ 0

ð14Þ
where f0, f0s and m0, m0s are resultant force and moment of normal and tangential tractions acting on body B1,
Dr is the position vector with respect to a reference point lying within the contact plane Sc, es is the tangential
vector in the contact plane Sc. It is supposed that equations fs = 0, ms = 0 are satisfied automatically.

In the paper by Páczelt and Mróz (2005) the following minimization problems with equilibrium constraints
were considered

Problem PW1: Min _W ðqÞ ¼ _W ðqÞðpnÞ
Problem PW2: MinDðqÞF ¼ DðqÞF ðpnÞ
Problem PW3: MinDðqÞw ¼ DðqÞw ðpnÞ
subject to f ¼ �
Z

Sc

ncpn dS þ f0 ¼ 0; m ¼ �
Z

Sc

Dr� ncpn dS þm0 ¼ 0

� �
ð15Þ
that is the objective function equal: _W ðqÞðpnÞ or DðqÞF ðpnÞ or DðqÞw ðpnÞ, the constraints are the equilibrium equa-
tions: f = 0, m = 0, and the local inequality for contact pressure is pn P 0. The problems (15) are highly
nonlinear.

Introducing the Lagrange multipliers _kF and _kM , the Lagrangian functionals are
LðqÞ_W ¼ LðqÞ_W ðpn;
_kF; _kMÞ ¼ _W ðqÞðpnÞ þ _kF � f þ _kM �m

LðqÞDF
¼ LðqÞDF

ðpn;
_kF; _kMÞ ¼ DðqÞF ðpnÞ þ _kF � f þ _kM �m

LðqÞDw
¼ LðqÞDw

ðpn;
_kF; _kMÞ ¼ DðqÞw ðpnÞ þ _kF � f þ _kM �m

ð16Þ
Requiring the variations of functionals to vanish, we obtain the formulae specifying the contact pressure dis-
tribution, namely
dLðqÞ_W ¼ 0) pn ¼
_kF � nc þ ð _kM � DrÞ � nc

b1ð~b1va1
r ÞqA

1�q
q

1 þ b2ð~b2va2
r ÞqA

1�q
q

2 pqðb2�b1Þ
n

0
@

1
A

1
b1q�1

ð17Þ
In Eq. (17) the term f ¼ _kF � nc þ ð _kM � DrÞ � nc is a linear function of position coordinates Dr, the integrated
values Ai i = 1,2 depend on pressure pn and relative velocity vr. Let us denote the terms of denominator by

Qi ¼ bið~bivaii
r Þ

qA
1�q

q
i , next by s = b1q � 1 and m = q(b2 � b1). The contact pressure now is
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pn ¼
f

Q1 þ Q2pm
n

� �1
s

if s ¼ b1q� 1 6¼ 0 ð18Þ
that is
ps
n ¼

f
Q1 þ Q2pm

n

¼ f =Q1

1þ pm
n Q2=Q1

¼ f
Q1

1þ pm
n

Q2

Q1

� ��1

ffi f
Q1

1� pm
n

Q2

Q1

� �
and
ps
n þ f

Q2

Q2
1

pm
n ffi

f
Q1

ð19Þ
When m 5 0, the contact pressure cannot be expressed as a homogeneous function of f. In fact, the right hand
side is a linear function of position, on the left hand side the second term may be linear only when m = 0.
Thus, a physically correct solution is reached when
b1 ¼ b2 ¼ b: ð20Þ

Let us note that (20) is also the contact congruence condition _w1= _w2 ¼ const.

In this case we have
pn ¼
_kF � nc þ ð _kM � DrÞ � nc

bð~b1va1
r ÞqA

1�q
q

1 þ bð~b2va2
r ÞqA

1�q
q

2

0
@

1
A

1
bq�1

if bq 6¼ 1 ð21Þ
For Problem PW2 we have
dLðqÞDF
¼ 0) pn ¼

_kF � nc þ ð _kM � DrÞ � nc

ðlvrÞqB
1�q

q

 ! 1
q�1

if q 6¼ 1 ð22Þ
and for Problem PW3, similar to Problem PW1 assuming b1 = b2 = b, there is
dLðqÞDw
¼ 0) pn ¼

_kF � nc þ ð _kM � DrÞ � nc

ðbþ 1Þ ð~b1va1
r ÞqC

1�q
q

1 þ ð~b2va2
r ÞC

1�q
q

2

� �
0
BB@

1
CCA

1
ðbþ1Þq�1

if ðbþ 1Þq 6¼ 1 ð23Þ
and the equilibrium equations f = 0, m = 0. The Lagrangian multipliers, next the rigid body motion velocities
_kF, _kM can be calculated from the equilibrium equations, then from (4) and (8) we specify the wear rate, and
the wear volume rate. It is important, that the contact pressure (21)–(23) must be positive over Sc. Otherwise,
the actual contact region will vary in the wear process so we would have a non-steady state of wear process. In
our investigation it is assumed, that the Signorini normal contact conditions are satisfied, then pn P 0, d P 0,
pnd = 0 when the initial gap is calculated. The optimal gap between bodies can be easily calculated by means of
the iteration process, described in Appendix C of the previous paper of Páczelt and Mróz (2005).

The following important conclusion is stated. A steady state wear process for two bodies in translation

motion is reached only when the wear parameters bi are equal, b1 = b2 = b in the modified Archard model
_wi ¼ ~bipbi

n vai
r i = 1,2.

4.1.1. Discussion of special cases

4.1.1.1. Uniform translation. In paper by Páczelt and Mróz (2005) this case was considered when the contact
normal at each point of Sc is parallel to coordinate axis z, that is nc = �ez. In the first case, the resultant load
vector is f0 = �F0ez, the velocity in the direction of z is _kF � nc ¼ _kF and the rotational angular velocity _kM ¼ 0.
We conclude that three minimization problems provide the same result, that is if the contact region Sc does not
vary in the wear process, then the contact pressure is constant (pn = F0/Sc) and the local wear rate equals
_w ¼

P2
i¼1ðF 0=ScÞb~bivai

r ¼ const1 with the wear volume rate equal to _W ¼
P2

i¼1
~bivai

r F b
0S1�b

c ¼ const2, that is
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the wear volume rate depends only on a value of the resultant force F0. If the wear parameters b1 5 b2 the
wear process cannot evolve to constant pressure over the contact domain, that is the wear process cannot
reach the steady state.

4.1.1.2. Translation and rotation of punch B1. The body B1 is assumed to undergo a rigid body translation and
rotation with respect to the axes lying in the contact x, y plane. In this case the translation and angular veloc-
ities are _kF ¼ � _kFez, _kM ¼ _kx

M ex þ _ky
M ey , the resultant force and moment are f0 = �F0ez, m0 ¼ Mx

0ex þMy
0ey and

the position vector is Dr = xex + yey. The Lagrangian multipliers _kF, _kx
M , _ky

M are determined from the equilib-
rium equations which can be written in the following collective form
f _W ;DF ;Dw
¼ f _W ;DF ;Dw

ðpn;
_kF; _kx

M ;
_ky

MÞ ð24Þ
This nonlinear equation may be solved by the Newton–Raphson technique. After solution of (24) it is possible
to calculate the final distribution of contact pressure, wear rate and from integral (8) the volume wear rate. It
was proved by Páczelt and Mróz (2005) that for b = 1, q = 1 and nc = �ez the optimal contact pressure is lin-
early distributed on the contact surface. When only translatory motion occurs, then the pressure is uniformly
distributed.

5. Application of optimality conditions: drum braking system

5.1. Regular optimal regimes

Consider now a specific case, namely, the elastic breaking shoe interacting with the rotating cylinder, Fig. 3.
The present configuration is also used in experimental investigation of wear as the so called block-on- ring test,
cf. Kim et al. (2005). The sliding velocity is now constant on the contact surface Sc. The shoe is loaded uni-
formly by the pressure ~p resulting in the force F0 acting on the cylinder. The thickness of brake system is equal
to t.

In this case contact normal, load vector, and rigid body velocity are
nc ¼ � sin aex � cos aez; f0 ¼ �F 0ez; _kF � nc ¼ _kF � cos a ð25Þ
R =200 mm

p~

z

h

x

0α

ω

0α

Fig. 3. Brake system, load and geometrical parameters.
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It is supposed that there is no wear in the second body. Using the following notations a = a1, ~b ¼ ~b1, A = A1,
C = C1, from the stationarity conditions (21)–(23) we obtain the formulae specifying the contact pressure dis-
tributions, namely
dLðqÞ_W ¼ 0) pn ¼
_kF � cos a

bð~bva
r Þ

qA
1�q

q

 ! 1
bq�1

if bq 6¼ 1 ð26Þ

dLðqÞDF
¼ 0) pn ¼

_kF � cos a

ðlvrÞqB
1�q

q

 ! 1
q�1

if q 6¼ 1 ð27Þ

dLðqÞDw
¼ 0) pn ¼

_kF � cos a

ðbþ 1Þð~bva
r Þ

qC
1�q

q

 ! 1
ðbþ1Þq�1

if ðbþ 1Þq 6¼ 1 ð28Þ
From the equilibrium equations we obtain the expressions for the Lagrange multiplier _kF, thus
min _W ) _kF ¼ F bq�1
0 bð~bva

r Þ
qA

1�q
q

Z a0

�a0

ðcos aÞ
1

bq�1Rt da

� �1�bq

ð29Þ

min DF ) _kF ¼ F q�1
0 ðlvrÞqB

1�q
q

Z a0

�a0

ðcos aÞ
1

q�1Rt da

� �1�q

ð30Þ

min Dw ) _kF ¼ F ðbþ1Þq�1
0 ðbþ 1Þð~bva

r Þ
qC

1�q
q

Z a0

�a0

ðcos aÞ
1

ðbþ1Þq�1Rt da

� �1�ðbþ1Þq

ð31Þ
In view of (26)–(31) the contact pressure is expressed as follows:
min _W ) pn ¼
F 0R a0

�a0
ðcos aÞ

1
bq�1Rt da

0
@

1
Aðcos aÞ

1
bq�1 ð32Þ

min DF ) pn ¼
F 0R a0

�a0
ðcos aÞ

1
q�1Rt da

0
@

1
Aðcos aÞ

1
q�1 ð33Þ

min Dw ) pn ¼
F 0R a0

�a0
ðcos aÞ

1
ðbþ1Þq�1Rt da

0
@

1
Aðcos aÞ

1
ðbþ1Þq�1 ð34Þ
Let us note that the contact pressure is non-uniform on Sc. It becomes uniform when q!1.
The volume wear rate associated with three functionals _W , DF and Dw is
min _W )
_W

~bva
r F b

0

¼
R a0

�a0
ðcos aÞ

b
bq�1Rt daR a0

�a0
ðcos aÞ

1
bq�1Rt da

� 	b

0
B@

1
CA ð35Þ

min DF )
_W DF

~bva
r F b

0

¼
R a0

�a0
ðcos aÞ

b
q�1Rt daR a0

�a0
ðcos aÞ

1
q�1Rt da

� 	b

0
B@

1
CA ð36Þ

min Dw )
_W Dw

~bva
r F b

0

¼
R a0

�a0
ðcos aÞ

b
ðbþ1Þq�1Rt daR a0

�a0
ðcos aÞ

1
ðbþ1Þq�1Rt da

� 	b

0
B@

1
CA ð37Þ
The frictional dissipation power now is expressed in the form
DF ¼
Z a0

�a0

lpnvrRt da ¼ vrl
Z a0

�a0

pnRt da ¼ vrlF 0 ð38Þ
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5.2. Analysis of singular solutions

To discus in more detail the types of singular solutions, consider first the problem of min _W . When bq! 1
the pressure and wear distribution is localized either at the center or at the edge of ring shoe. In fact, we have
two different singular solutions, namely

bq > 1 and bq! 1 – contact pressure localization at a = 0,
bq < 1 and bq! 1 – contact pressure localization at a = ±a0

because according to (32) there is
Fig.
pn

pn0

¼ cos a
cos 0

� 	 1
bq�1

and
pn

pnb

¼ cos a0

cos a

� 	 1
1�bq
; ð39Þ
where pn0 = pn(a = 0), pnb = pn(a = ±a0).
Similarly for the problem minDF, we have two different singular solutions for q > 1 and q! 1 next q < 1

and q! 1.
For the problem minDw different singularities occur for (b + 1)q > 1 and (b + 1)q! 1, next for (b + 1)q < 1

and (b + 1)q! 1.
Obviously, for engineering applications, the uniform wear contact profile is most important.

5.3. Drum braking system 1: Numerical study of extremum principles

Referring to Fig. 3, consider the interaction of the break shoe with the rotating drum. The shoe is loaded by
the uniform pressure ~p with the resultant force F0 = 10 kN. The contact angle is a0 = ±30�, the drum radius
equals R = 200 mm, the thickness is t = 10 mm.
4. Distribution of contact pressure by using the principle min _W for wear parameters a = 1, b = 0.5 and different values of q.
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It is supposed that elements of the brake system are in the plane stress state. The brake shoe may translate
along the z-axis and engage the drum. The wear parameter equals b = 0.0002, the frictional coefficient is
l = 0.25, the angular velocity of the disk equals x = 2.5 rad/s.

The analysis provides the distribution of contact pressure and wear rate predicted by the optimality con-
ditions (32)–(37) associated with the functionals _W , DF and Dw. Figs. 4 and 5 provide the pressure and wear
distribution corresponding to the extremum of wear volume rate _W at a = 1.0, b = 0.5 and different values of q

varying between q = 0.0 and q = 10.0.
It is seen that for q close to 2 the contact pressure and wear distribution is highly localized in the border

portion of contact area or in the center region. For increasing q the pressure and wear distribution becomes
more uniform. In fact, the uniform distribution is obtained for q!1, that is for minimization of the highest
value of local wear rate generated by the integral functional (8).

Differing results are obtained by minimizing DF and Dw. Fig. 6 presents the optimal distributions of contact
pressure for increasing values of q and a = 1, b = 0.5 obtained from the condition of min DF. It is seen that the
localized distribution of contact pressure in the central portion of contact occurs for q close to 1.0 tends a
nearly uniform distribution for q = 10.0. Fig. 7 presents the optimal wear rate distributions for the condition
min Dw. The singular solution can be reached at q! 2/3 and 2/3 q. The optimal solution tends to uniform
pressure and wear for increasing values of q.

The present study indicates that minimization of the total wear volume rate or dissipation rate may lead to
localized quasi singular distributions for which no steady wear state will be reached. The uniform distribution
is predicted for q!1, that is for minimization of maximal local values of wear rate or dissipation rates. Not-
ing that optimal distributions for the objective integrals (35)–(37) are specified by the expressions
F

ðcos aÞ
b

bq�1; ðcos aÞ
b

q�1; ðcos aÞ
b

ðbþ1Þq�1
it is seen that the condition min Dw provides the fastest evolution toward uniform distribution for increasing
values of q.
ig. 5. Distribution of wear rate by using the principle min _W for wear parameters a = 1, b = 0.5 and different values of q.



Fig. 6. Distribution of contact pressure by using the principle minDF, wear parameters a = 1, b = 0.5, and varying q.
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Let us now investigate the optimal gap in the brake system of Fig. 3. The material of all parts of the system
is linear, Young modulus E = 2.1 MPa, Poisson ratio m = 0.3. The thickness is 10 mm, the load pressure equals
~p ¼ 5 MPa, that is the load resultant force F0 = 10 kN. The coefficient of friction l = 0.25, angular velocity of
the disk equals x = 2.5 rad/s. The elastic disk rotates in the anti clockwise direction. First, it is assumed that
there is no initial gap and the contact boundary of the shoe has cylindrical form. The height of shoe is
h = 100 mm.

Using the p-version of finite element technique for the solution of optimization contact problem with con-
trol of contact pressure (see Páczelt, 2000; Páczelt and Baksa, 2002; Páczelt and Mróz, 2005) the uniform con-
tact pressure distribution is reached for a small gap introduced with respect to the initial cylindrical form. In
the original configuration is not gap present. At the edge of contact zone we obtain the singular solution, with
the normal stress concentration at a very high level. We note also that there is asymmetry in stress distribution
in the case of friction contact. Fig. 8a and b presents the calculated optimal initial gap (variation of contact
surface of shoe in radial direction, that is the form reached in a steady state of wear process). In the case of
frictionless contact (l = 0), the optimal gap has a form symmetrical with respect to z-axis. In the case of fric-
tional contact, the optimal gap is asymmetrical, with higher values near the leading edge of the shoe. The anal-
ysis illustrates, that the effect of friction on contact shape is very important. In Fig. 8 b it is shown that very
small friction coefficient (l = 0.005) induces significant shape variation with respect to frictionless shape.
5.4. Drum braking system 2

Consider now the drum braking system for which the shoe is of constant thickness ring form and the dis-
tributed load is concentrated at the shoe center with uniformly vertical traction ~p ¼ 59:58336 MPa. The resul-
tant force is F0 = 10 kN. Fig. 9 presents the finite element mesh for a half part of the brake.



Fig. 7. Distribution of wear rate by using the principle minDw, wear parameters a = 1, b = 0.5, and varying q.
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The initial contact pressure distribution is shown in Fig. 10. It is seen that it is highly localized near the
center line and due to friction on the left side boundary. The optimal form of contact is reached in steady state
of wear process, when the contact pressure becomes uniform, pn = 5.028 MPa. The optimal shapes of contact
surface are presented in Fig. 11 for different values of friction coefficient. The contact forms are not symmetric
with respect to the central line due to friction effect at the interface. The shape of upper body can be calculated
by applying the special iteration process (for details, see Appendix of Páczelt and Mróz (2005) modified
according to the present Appendix A).

The solution presented in Fig. 11a was obtained for the case of two side constraint at x = 100 and
x = �100, where the tangential displacement u = 0. The alternative solutions can be presented for the cases
when only the left or right side boundary is constrained, that is u = 0 at x = �100 or x = 100. The central
constraint: u = 0 for x = 0 corresponds to different solution. The optimal wear profiles for two side, one side
and central constraints are shown in Fig. 11b. It is seen that there is a strong effect of disc constraint. In the
case of the left side constraint the load is uniform along the upper boundary surface of the shoe: ~p ¼ 5 MPa.

6. Translation of plane punch transferring normal force and moment

Consider now the case when the translating punch transfers contact pressure characterized by the resultant
normal force and the moment with respect to the center contact line. For simplicity, consider the plane elastic
punch (body B1) in the x, z-plane translating along the elastic plate (body B2) of the same elastic parameters.
In Fig. 12 the punch dimensions and the finite element mesh are shown.

The wear parameters are: b = 2 · 10�4, a = 1, b = 2, q = 1, the relative velocity along the x-axis is
vr = 5 mm/s, the vertical load F0 = 1 kN, its moment with respect to the center point x = 0, z = 100 mm varies
within the range �5 kN mm 6 M0 ¼ My

0 6 5 kN mm assuring positive contact pressure within the whole con-
tact area. Applying the optimality conditions (23), we have



Fig. 8. Optimal gap (in the radial direction) generating constant pressure distribution for pn = �5 MPa between the bodies with the
different values of friction coefficient (steady state of wear process in the friction case): (a) variation of optimal shape for increasing friction
coefficients, (b) the effect of small friction on optimal shape.
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pn ¼
_kF þ _kM x

ðbþ 1Þð~bva
r Þ

qC
1�q

q

 ! 1
ðbþ1Þq�1

ð40Þ
and from the equilibrium equations f = 0, my = 0, the multipliers _kF, _kM can be calculated using the Newton–
Raphson iteration procedure.

Fig. 13 presents the variation of multipliers for the constant normal force and varying moment value. The
multipliers are proportional to translation and rotation velocities of the punch. Thus, at the upper boundary
we have the displacement components: at z = 200 mm: u = 0, w ¼ �ð _kF þ _kM xÞdw, and constraint conditions



Fig. 9. Finite element mesh for half drum brake, ~p ¼59.58333 MPa, resultant force F0 = 10 kN.

Fig. 10. Initial contact pressure at the contact surface.
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at the bottom surface z = 0: u = w = 0. Here dw denotes the displacement (or time) factor specifying the dis-
placement values. The optimal shape of the contact surface can now be determined by assuming the optimal
pressure distribution specified by (40). Assume F0 = 1 kN, M0 = �5 kN mm, l = 0.25. Fig. 14a presents the
optimal contact shapes for several values of the displacement factors, that is the consecutive evolution of con-
tact shape for increasing sliding displacements. Fig. 14b presents at the same displacement for the load



Fig. 11. Optimal wear profiles (normal initial gap) in the steady state: (a) constraint on both ends of the shoe, (b) the effect of tangential
constraint on the form of optimal contact surface.
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F0 = 1 kN, M0 = 5 kN mm, l = 0.25. Fig. 15a presents the optimal shape for the frictionless contact, for
F0 = 1 kN, My = 0 kN mm and Fig. 15b presents the optimal shapes for several values of the friction coeffi-
cient. It is seen that shape profiles are asymmetric with respect to punch center. Let us note that for the case of
rotationally constrained punch, kM = 0, the solutions of Fig. 15 are valid as then M0 = 0.

The present analysis generalizes the previous work by Marshek and Chen (1989) who integrated the wear
rule with respect to the sliding distance to arrive at the steady state for the case M0 = 0. Here, the steady state
profiles are generated directly by applying the optimality conditions (40) for arbitrary values of normal force
and moment at the contact surface. Figs. 16 and 17 present the distribution of normal stress rz within upper
punch at the initial and optimal states. In Fig. 16 the initial stress field rz exhibits a singularity at the edge of



Fig. 12. Finite element of mesh of bodies.

Fig. 13. Lagrangian multipliers (rates of translation and rotation) for varying moment M0 and fixed normal force F0 = 1 kN.
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contact zone z = 100 mm, x = 30 mm and also at the boundary surface z = 200 mm, x = ±30 mm. The stress
distribution at the optimal state is uniform at the contact surface, but stress singularity occurs at the loaded
boundary.

Remark. Assume now that the wear process occurs also at the counterface Body 2. The value of wear in the
steady state of the lower body can be calculated in the following way. Let the length of the contact zone be
equal to L. The time period of contact of Body 1 in translating motion over a fixed point of contact surface of
the lower body is T* = L/vr. The wear of Body 2 is calculated from the following time integral:



Fig. 14. Form of optimal contact shapes for two loading cases and varying sliding lengths, (a) F0 = 1 kN, M0 = �5 kN mm, l = 0.25, (b)
F0 = 1 kN, M0 = 5 kN mm, l = 0.25.
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w2 ¼
Z T �

0

~b2va2
r pb

n x ¼ L
2
� vrs

� �
ds: ð41Þ
Using the formula specifying contact pressure distribution for q = 1
pn ¼
_kF þ _kM

L
2
� vrs


 �
ðbþ 1Þð~b1va1

r þ ~b2va2
r Þ

( )1
b

; ð42Þ



Fig. 15. Form of contact shapes for M0 = 0, _kM ¼ 0, F0 = 1 kN and different friction conditions, (a) frictionless case, (b) varying friction
coefficient.
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we have the following result:
w2 ¼
~b2va2

r

ðbþ 1Þð~b1va1
r þ ~b2va2

r Þ
L
vr

_kF: ð43aÞ
If a = a1 = a2, ~b1 ¼ ~b2, then we have
w2 ¼
1

2ðbþ 1Þ
L
vr

_kF: ð43bÞ



Fig. 16. Distribution of rz at the initial state (without friction and wear) at the load: F0 = 1 kN, M0 = 5 kN mm. At the end of contact
zone z = 100, x = 30 we have singularity. At the same situation on the boundary z = 200, at the edge points the stress state has singularity.
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7. Rotation with constant angular velocity: the case of annular punch

Consider the problem typical for disk brakes, namely the contact of two cylindrical bodies 1 and 2 with the
annular punch 1 rotating uniformly with the angular velocity x, Fig. 18. The internal and external radii of
punch 1 are rð1Þi , rð1Þe and its height is h(1). Similarly, the dimensions of body 2 are rð2Þi , rð2Þe , h(2). Assume the
punch 1 to be loaded uniformly by the vertical traction rz ¼ �~p on the upper surface. The resultant compres-
sive force then equals F 0 ¼ pðr2

e � r2
i Þ~p and the slip velocity is k _usk ¼ vr ¼ rx provided the body 2 is con-

strained and remains at rest.
Now the wear rate is
_wi ¼ ~bipbi
n vai

r ¼ ~bipbi
n ðrxÞ

ai ; i ¼ 1; 2 ð44Þ
7.1. Variational principles

Because the punch is allowed to translate vertically along the rotation axis, we consider only normal force
constraint. Following the analysis presented in Páczelt and Mróz (2005) we briefly present main formulae
extending for two wear bodies.

Problem PW4: Minimizing the wear volume rate, let is define the objective integral as follows:
I ðqÞ_W ¼ 2p
Z re

ri

r 1� aq
bq�1ð Þ dr ð45Þ
The optimal solution holds only in the case when a1 = a2 = a, b1 = b2 = b.
From the equilibrium equation it follows that
_kF ¼
X2

i¼1

bð~bix
aÞqA

1�q
q

i

� �( )
F 0

I ðqÞ_W

 !bq�1

ð46Þ
and the optimal contact pressure distribution is
pn ¼
F 0

I ðqÞ_W

 !
r�

aq
bq�1 if bq 6¼ 1 ð47Þ



Fig. 17. Distribution of rz after optimization at the load: F0 = 1 kN, (a) M0 = 5 kN mm, (b) M0 = 0 kN mm, (c) M0 = �5 kN mm (in
steady state of the wear process, l = 0.25).
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The wear rate in this case varies along the radius, thus
_w ¼ ð~b1 þ ~b2Þxa F 0

I ðqÞ_W

 !b

r�
a

bq�1 if bq 6¼ 1 ð48Þ
The wear volume rate can be calculated very easily from the formula
_W ¼
Z

_wdS ¼ ð~b1 þ ~b2Þxa F 0

I ðqÞ_W

 !b

2p
Z re

ri

r 1� a
bq�1ð Þ dr ¼ _W _W ð49Þ



Fig. 18. The geometry of the annular punch problem.
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Problem PW5: Minimizing the friction dissipation power, we have the following results
pn ¼
F 0

I ðqÞDF

 !
r�

q
q�1 if q 6¼ 1; I ðqÞDF

¼ 2p
Z re

ri

r 1� q
q�1ð Þ dr

_kF ¼ ðlxÞqB
1�q

q

� 	 F 0

I ðqÞDF

 !q�1

_wi ¼ ~bix
ai

F 0

I ðqÞDF

 !bi

r ai�
biq
q�1ð Þ; i ¼ 1; 2 ð50Þ
Problem PW6: By minimization of the wear dissipation power
DðqÞw ¼
X2

i¼1

Z
Sc

ðpn _wiÞq dS
� �1=q

¼
X2

i¼1

Z
Sc

ð~bipbiþ1
n vai

r Þ
q dS

� �1=q

¼
X2

i¼1

C1=q
i ð51Þ
we obtain the following results:
Defining the Lagrangian function
LðqÞDw
¼ LðqÞDw

ðpn;
_kFÞ ¼ DðqÞw ðpnÞ þ _kF F 0 �

Z
Sc

pn dS
� �

ð52Þ
from the stationarity condition dLðqÞDw
¼ 0) we obtain the variational equation for the case b1 = b2 = b, thus
Z

Sc

X2

i¼1

C
1�q

q
i ð~bix

aiÞqðbþ 1Þrqai

" #
pqðbþ1Þ�1

n � _kF

( )
dpn dS ¼ 0 ð53Þ
from which it follows that in order to have _kF ¼ const, there should be a1 = a2 = a.
In this case the contact pressure is
pn ¼
F 0

I ðqÞDw

 !b

r�
aq

ðbþ1Þq�1 if ðbþ 1Þq 6¼ 1; ð54Þ
where
I ðqÞDw
¼ 2p

Z re

ri

r
1� aq
ðbþ1Þq�1

� 	
dr ð55Þ
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and the normal uniform translation velocity is
_kF ¼
X2

i¼1

ðbþ 1Þð~bix
aÞqC

1�q
q

i

� �( )
F 0

I ðqÞDw

 !ðbþ1Þq�1

ð56Þ
The wear rate is now calculated by the following formula:
_w ¼ ð~b1 þ ~b2Þxa F 0

I ðqÞDw

 !b

r
a� abq
ðbþ1Þq�1

� 	
ð57Þ
The volume wear rate is
_W ¼
Z

_wdS ¼ ð~b1 þ ~b2Þxa F 0

I ðqÞ_W

 !b

2p
Z re

ri

r
1þ aðq�1Þ
ðbþ1Þq�1

� 	
dr ¼ _W Dw ð58Þ
It is important to note that for q = 1 the wear rate will be uniform along the contact surface. Thus the follow-
ing theorem can be stated.

Theorem. The steady state of wear process between two bodies in the relative rotation motion can be reached by

minimizing the generalized wear dissipation power for q = 1. This result was established in Páczelt and Mróz
(2005). Now we generalize it to the case of wear of two bodies.

In this case, the contact pressure is
pn ¼
F 0

I ðq¼1Þ
Dw

r�
a
b ð59Þ
and the local wear rate _w expressed as follows:
_w ¼ F 0

I ðq¼1Þ
Dw

 !b

ð~b1 þ ~b2Þxa ¼ const ð60Þ
The wear volume rate now is
_W ¼
Z

_wdS ¼ 2p
Z re

ri

~bxa F 0

I ðq¼1Þ
Dw

 !b

r dr ¼ ~bxa F 0

I ðq¼1Þ
Dw

 !b

Sc ¼ _W Dw ; ð61Þ
where ~b ¼ ~b1 þ ~b2.
Summarizing the result for Problems PW4, PW6 we can formulate the following conclusion.
The optimization Problems PW4, PW6 have solutions for the modified wear rule (4) only for equal parameters

ai (a1 = a2) and bi (b1 = b2).

7.2. Analysis of singular solutions

Before we present numerical examples illustrating the evolution of regular to singular solutions, let us
briefly discuss the singular stress distribution. For the problem PW4 of minimization of wear volume rate,
from (47) it follows that
pn

pni

¼ ri

r

� 	 aq
bq�1

;
pn

pne

¼ r
re

� � aq
1�bq

ð62Þ
where pni = pn(ri) and pne = pn(re). Two different singular regimes are generated for
bq > 1; and bq! 1

bq < 1; and bq! 1
ð63Þ



Fig. 19. Singular contact pressure regimes for (a) bq > 1, bq! 1 and (b) bq < 1, bq! 1.
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The contact pressure is concentrated at the inner boundary for bq > 1, bq! 1 and at the outer boundary for
bq < 1, bq! 1. Fig. 19 presents the singular pressure distribution. Similarly, for Problem PW5 (minimization
of the friction dissipation power DF), from (50) it follows that two singular regimes are generated for
q > 1; q! 1 and q < 1; q! 1 ð64Þ
Finally, for the problem PW6 (minimization of the wear dissipation power DðqÞw ) the singular regimes are spec-
ified by the inequalities
ðbþ 1Þq > 1; ðbþ 1Þq! 1 and ðbþ 1Þq < 1; ðbþ 1Þq! 1 ð65Þ
and the singular pressure distribution is that presented in Fig. 19.

7.3. Comments on singular regimes

The punch is loaded by the constant pressure ~p on its top surface in vertical direction, and the tangential
displacement is vu = rxt*, where t* denotes time period from the initial instant. The contact shear stresses gen-
erate the torque
MT ¼ 2p
Z re

ri

lpnr2 dr ð66Þ
and the friction dissipation power equals
DF ¼
Z

lpnvr dS ¼
Z

lpnrxdS ¼ 2p
Z re

ri

lpnr2 drx ¼ MT x ð67Þ
It is evident that the maximum of torque value is attained only when the outer punch contact perimeter (r = re)
is in contact, and the minimum value occurs only when the inner contact perimeter (r = ri) is in contact. Since
the contact force is F 0 ¼ pðr2

e � r2
i Þ~p, so the maximum and minimum torque values are
Mmax
T ¼ relF 0; Mmin

T ¼ rilF 0: ð68Þ

In this case the friction dissipation power may vary between the values
Dmin
F ¼ xMmin

T ¼ xrilF 0; Dmax
F ¼ xMmax

T ¼ xrelF 0; Dmin
F 6 DF 6 Dmax

F ð69Þ

It is important to note that the optimality condition of Problem PW5 implies that for q > 1, q! 1 the singular
solution converges to the state Dmin

F and for q < 1, q! 1 the singular solution converges to the state Dmax
F . The

wear rate in these cases associated with singular pressure distribution has very high values, and the wear pro-
cess does not reach a steady state.

7.4. Example 1: Singular optimal solutions for q = 1

To illustrate the transition to singular solutions let us consider the axisymmetric punch rotating with the
angular velocity x = 2.5 rad/s. The radii of punch are ri = 20 mm, re = 120 mm. The normal traction equals



Fig. 20. Pressure distribution for min _W (�: continuous line) and for minDw (+: crossed line).

Fig. 21. Wear rate distribution at min _W (�: continuous line) and at minDw (+: crossed line).
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~p ¼ 100 MPa, the coefficient of friction is l = 0.25. The wear parameters are b = 0.0002, a = 1, b =
1.05,1.2, ... , 2. Fig. 20 presents the distribution of calculated pressure pn generated by variational principles
min _W ð�Þ and minDw(+). We see that when b) 1, the condition min _W has no regular solution, and there
is a singularity in the stress state.

For the condition min Dw the wear rate _w is uniform, but in the case min _W the corresponding wear rate is
varying very rapidly along the radius of the punch (see Fig. 21).

The ratio of wear volume rates wr ¼ _W _W = _W Dw (see (49) and (61) for q = 1) for different b is

b = 1.05, wr = 0.3790; b = 1.2, wr = 0.6209; b = 1.4, wr = 0.8157; b = 1.6, wr = 0.8957;
b = 1.7, wr = 0.9173; b = 1.8, wr = 0.9328; b = 1.9, wr = 0.9442; b = 2.0, wr = 0.9529.

These results indicate that the condition min _W provides smaller wear volume rate than the condition
minDw.

7.5. Example 2: Effect of the control parameter q

Consider Problem PW6, namely minimization of DðqÞw for the rotating punch with different values of the
control parameter q. Let the wear parameters be b = 0.0002, a = 1, b = 1. The geometrical, material param-
eters are the same as in Example 1.

Fig. 22 presents the contact pressure distribution for different values of q. As was expected the contact pres-
sure for q = 0.5 has the singularity at the radius ri = 20 mm.

By selecting the value q < 0.5, we generate the singularity at the other boundary of the punch for
re = 120 mm (see Fig. 23).
Fig. 22. The contact pressure distribution associated with the condition minDw for different values of the control parameter q.



Fig. 23. The contact pressure distribution associated with the condition minDw for varying values of the parameter q. The singular
solution occurs at the external radius re.
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Using the technique of contact pressure control (discussed in Appendices A and C of paper Páczelt and
Mróz (2005)), the optimal shape of contact interface of punch 1 can easily be calculated.

Figs. 24 and 25 present the optimal gaps of the punch for q > 0.5 and q < 0.5 close to singular solutions.
The finite element meshes are shown in Figs. 24a and 25a. It is seen that large shape gradients are generated
near boundaries r = ri and r = re.
Fig. 24. The mesh of two bodies for the solution near the singular stress regime and the optimal shape of upper punch for q = 0.505.



Fig. 25. The mesh of two bodies for the solution near-singular stress regime and the optimal shape of upper punch for q = 0.495.

Fig. 26. Stress distribution in the upper punch at q = 1: rr – radial stress, rz – vertical stress, stz – shear stress, re – equivalent von Mises
stress.
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It is clear that the steady state wear process for optimal shapes of Sc shown in Figs. 24 and 25 cannot be
attained. On the other hand, the uniform wear rate assuming the steady state can be generated for q = 1 by
minimizing Dw. The optimal stress state and the corresponding shape of contact surface are shown in Figs.
26 and 27. The detailed analysis of this case was presented in the previous paper by Páczelt and Mróz
(2005).



Fig. 27. Optimal shape of the contact surface of the upper punch corresponding to constant wear rate (obtained in five iterations).
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8. Concluding remarks

In most papers published in the literature the contact shape evolution was studied by integrating incremen-
tally the wear rule with account for contact pressure variation. The steady wear states were then reached
asymptotically for very large number of time steps. Instead of such tedious procedure the present paper pro-
vides an alternative approach, namely, by deriving the optimality conditions for response functionals associ-
ated with the wear process. The optimal pressure distribution is then used in design of contact shape that could
be reached in several iterations. It is believed that the present method provides a powerful tool in optimal con-
tact shape design.

The minimization of three functionals was considered namely, generalized wear volume rate, generalized
friction dissipation power and generalized wear dissipation power. The modified Archard wear rule was
assumed and the optimality conditions were derived. It is assumed that wear parameters are different for each
body. The respective optimality conditions provide different pressure distributions and local wear rate. In gen-
eral, both regular and singular regimes of wear rate and pressure distribution may occur. The optimization
problems are reduced to nonlinear programming problems and for their solution a special iteration procedure
is used.

It is proved that a steady state wear process for two bodies in translatory motion is reached only when the
wear parameters b1, b2 are equal in the modified Archard model _wi ¼ ~bipbi

n vai
r , i = 1,2. In the case for rotary

motion, the steady state is attained when b1 = b2, a1 = a2.
The wear process is analyzed in two specific cases. First, when the relative sliding velocity between bodies is

constant and the second case, when one of bodies rotates with respect to the other body.
In the first case, the drum brake system and the translation of plane punch transferring normal force and

moment was analyzed. It was proved, that the steady state of wear process in the drum brake system may be
reached when the control parameter q!1, however for translation on plane surface, the steady state is
reached is for q = 1.

The convergence of solution is most pronounced to the uniform wear and pressure distribution in the case
of minimization of the wear dissipation power. Due to effect of friction forces at the contact the optimal gap
shape is not symmetrical with respect to z-axis.

In the plane punch problem the steady state profiles are directly generated by applying the optimality
conditions for contact pressure distribution for arbitrary values of normal force and moment at the contact
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surface. Using the special iteration technique (discussed in Appendices A and C of paper Páczelt and Mróz
(2005)), the optimal shape of contact interface of Body 1 can easily be calculated. In this case the bodies
(i = 1,2) in the contact surface Sc are loaded by optimal contact pressure pn and shear stress
sðiÞxz ¼ ð�1Þilpn, i = 1,2 consistently with the orientation of relative velocity vr.

In the second case of punch rotation the steady state condition of wear process is reached for a minimum of
wear dissipation power, q = 1, and the corresponding optimal pressure distribution. The optimal or steady
state shape can be obtained through the optimization procedure based on required pressure distribution using
the pressure control technique. The minimization of volume wear rate provides the solution corresponding to
smaller wear volume than for the case of minimization of the wear dissipation power, but this optimal solution
does not generate steady state.

The singular solutions in both cases correspond to large contact pressure values at the perimeter or center
line of contact surface. These solutions do not generate steady state wear regimes. However, they may be
applied when the short period response is of interest. In practical applications the imposed stress constraints
can modify these singular solutions and provide regular contact pressure distributions.
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Appendix A. Iterative solution of optimal contact shape problem

The iterative scheme for contact shape optimization was discussed in detail by Páczelt (2000). Here we only
outline the consecutive steps.

The iterative process proceeds according to the following scheme:

1. Solution of the original contact problem: specification of contact pressure pð0Þn ¼ pð0Þn ðsÞ, pð0Þmax, s = Ra, k = 0
2. k = k + 1
3. Assume the controlled pressure distribution according to v(s) = 1
pðkÞn ðsÞ ¼ vðsÞp�:

Consider first the displacement induced loading. The value of the parameter p* is obtained from the contact
problem solution at the previous iterative step k � 1,

p� ¼ max pðk�1Þ
n ðsÞ:

For the case of traction the solution of contact problem is not required. The value of p* at each step is spec-
ified from the load equilibrium condition, thus

F 0 ¼ p�
Z ao

�ao

ðcos aþ l sin aÞR da;

where l – coefficient of friction.
4. The separated bodies are now loaded by the pressures pðkÞn ðsÞ and �pðkÞn ðsÞ and in the case frictional contact

also by shear stresses lpðkÞn ðsÞ and �lpðkÞn ðsÞ in the tangential direction at the contact surface Sc and displace-
ments uð1Þn and uð2Þn are determined

5. Calculate the discontinuity of normal displacements
mðsÞ ¼ uð1Þn � uð2Þn ¼ ½un	

6. Specify the minimal value minm(s) = m(s*) and ‘‘rigid displacement’’D = m(s*)/cosa*, where a* – the central

angle of contact point with coordinate s*

7. Generate the new initial gap:
gðsÞ ¼ mðsÞ � D � cos uðsÞ ) gðxÞ
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