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1. INTRODUCTION 

Let V be an open convex cone in R” (the n-dimensional real Euclidean 
space) and let T, = R” + iV be the “tube” domain in @” (the n-dimensional 
complex Euclidean space), consisting of all points z = x + iy such that 
x E R” and ~1 E V. These domains are also called halfplanes, since they 
reduce to the upper halfplane for n = 1. The cone V will be supposed to 
satisfy some rather restrictive conditions: it will be homogeneous (see 
Section 2) and self-adjoint, which means that its closure P equals the dual 
cone V*= (xER”:x.~BO, REV}. 

In this paper we consider spaces of functions in T, which generalize the 
classical Hardy spaces HP on the halfplane. Let w be a given function 
analytic in T,,. Then HP,,( TY) (0 < p < KJ) is the space of all functions F 
analytic in T, and such that 

sup s IF(x + iy) w(x + iy)l p dx < co. (1) 
I.EV r-2” 

Similarly, for a given function u on the cone V, the weighted spaces 
L;(V) are defined to consist of all measurable functions f on V such that 

(2) 

We shall write Lp( V) when u = 1 and likewise for HP( TV). 
There is a well-known relationship between HP spaces and the Laplace 

transform 

oY’j-(z)=/,ei= ‘f(t)dt, (3) 
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where f is a function supported in V and z E T,. When the integral (3) is 
absolutely convergent, the function Yf(z) is analytic in T,. This is, for 
example, the case when f~ L2( V), and it turns out that in this case 
~J”E H2( T,), as it is easily seen by an application of Plancherel’s theorem 
to (3) (since for YE V, the function \e”” 1 = e-y” is integrable on V). The 
converse also holds: every function in H2( T,,) is characterized as a Laplace 
transform of some function f~ I,‘( V). For n = 1, this is the classical 
theorem of Paley and Wiener, which was generalized to HP, 1 < p < 2, by 
Doetsch (see [ 11). The analogous theorem for n > 1 was proved by Stein 
and Weiss [7]. (Only the case p = 2 is treated in this book, but it is 
obvious that 1 < p < 2 can be obtained in the same way. As usual, 
p’ = p/(p - 1) is the conjugate index.) 

THEOREM A. Let 1~ p < 2. Let f E Lp( V). Then F= LYf belongs to 
HP’( T,) and 

THEOREM B. Let 1 -C p < 2. Let FE HP( T,). Then there is an f E Lp’( V) 
such that F= Yf and 

” If(t)1 p’e-p’y.rdt)‘“‘~~(j~~ \F(x+iy)lPdx)“p. 

In the one-dimensional case Rooney [S] proved a weighted analogue of 
Theorems A and B. He considered weights of power type; that is, he had 
w(x + iy) = (x + iy)” and u(t) = tS for some c(, /3 E [w. Benedetto and Heinig 
[ 1 ] considered some more general weights. 

In the present paper we prove a weighted analogue of Theorems A and 
B. We shall deal with weights which are n-dimensional “power functions,” 
so that we shall get an n-dimensional version of Rooney’s result. To see 
what the appropriate weights are we must investigate the structure of the 
cone, in particular its group of automorphisms. This is done in Sections 2 
and 5, and the weights are defined and the theorems are stated in 
Sections 3 and 4. The rest of the paper is concerned with the proofs of these 
theorems. Let us note that the proofs of the nonweighted results are 
derived from (a generalization to 1~ p d 2 of) Plancherel’s theorem. Also, 
Rooney and Benedetto and Heinig proved the weighted results by first 
deriving a corresponding weighted Plancherel theorem. We are going to 
proceed in a different way and reduce the weighted case to the non- 
weighted. This is done by making use of the convolution property of the 
Laplace transform and of some properties of a Riemann-Liouville integral 
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operator (of fractional order) which is defined in Section 7. The weighted 
norm inequality for this operator (Proposition 1) will provide a link 
between the nonweighted and the weighted case. Since the Riemann- 
Liouville operator is positive, this inequality is much simpler than a corre- 
sponding weighted inequality for the Fourier transform (Plancherel’s 
theorem) would be. 

2. HOMOGENEOUS CONES 

In this section we study some properties of the cone V by considering the 
group G(V) of its linear automorphisms, i.e., the group of all nonsingular 
linear transformations A in [w” such that A V= V. 

The cone is said to be homogeneous if G(V) acts transitively on V; that 
is if for every x, y E V there is an A E G( I’) such that Ax = y. 

A function f: V-+ R, is said to be homogeneous of degree CIE Iw if 
fW)=IAl*f(xh f or all A E G(V) (IAl is the determinant of the matrix of 
the transformation). 

For an example of a homogeneous function, consider first the partial 
order in [w” defined by the cone I’, x < y iffy - x E V, and let (a, 6) be the 
“interval” with respect to this order. Then 

s(x)= j dt 
<O.r) 

(4) 

is homogeneous of degree 1. The function 

h(x)=jvepX’rdt (5) 

is homogeneous of degree - 1. 
The following simple lemma will be very useful in all our considerations. 

LEMMA 1. If f: V + R + is homogeneous of degree a, then there is a 
constant C > 0 such that 

f(x) = Cs”(x). 

This means that there are not many homogeneous functions on the cone. 
For example, h(x) = C-‘(x). (We are not interested in the exact values of 
the constants, so we let C stand for values which are not necessarily the 
same at every appearance.) 

A function homogeneous of degree 1 is called a norm for the cone [3]. 
So (4) is an example of a norm. We shall also write sy(x) if necessary. The 
function So will play the role of the function x1 in one variable. 
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There is another important function defined on the cone (the analogue 
of l/x in one variable). It was defined by Koecher [3] in the following 
way, 

x* = grad log s(x). (6) 

This function is one to one and onto V; moreover it is an involution on 
V x** =x, and it has a unique fixed point, which we shall denote by a 
[6]. Additional properties of this function are cited in Section 5. Now we 
are going to define the rank of the cone (see [2]). 

Let G, be the stability group of a, that is the subgroup of G(V) which 
leaves a invariant. It was proved by Rothaus [6] that the elements of G, 
are rotations (orthogonal transformations), which means that G, can be 
identified with O(m), for some m <n - 1. Then the number k = n - m is 
called the rank of the cone. For example, the rank of the positive octant 
KY+ = {x E Iv: x, > 0, . ..) x, > 0) is equal to n, and the rank of the light 
cone Y+ = {x E I&!“: x, > 0, XT - xz - . . . - xz > 0) is equal to 2. These are 
the two extremal cases, since obviously 2 d k Q n. Let us put 

k 
5=-. 

n 

Now we are going to define the weights and formulate the theorems, and 
we return to the properties of G(V) in Section 5. 

3. THE WEIGHT FUNCTIONS 

We shall choose the function u in (2) to be of the form s’, o! E OX, and 
write Li( V) for L$( V). 

To define the weights in the HP spaces consider the Cauchy-Szego 
kernel of the cone 

S(z) = !‘, eiZ” dt 

(see, for example, [7]). This is the Laplace transform of the characteristic 
function of the cone, and it is an analytic function for z E TV. This is 
obvious since 

Is(z)1 <jvep.v.‘dt=S(iy) (8) 
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and the last integral is absolutely convergent [S]. Note that it follows from 
(8) by Lemma 1 that 

S(iy) = cs-‘(y). (9) 

(See Section 6 for further connections between the functions s and S.) 

4. THE MAIN THEOREMS 

In the following theorems V is a homogeneous self-adjoint cone in [w” 
and r = r(V) is the number defined in (7), the ratio of the rank(V) and the 
dimension of the space. 

THEOREM 1. Let l<p<2. Let 2z>l+l/p and 1-z<a<z-l/p. If 
f~ Lz( V), then F = P’f, H:‘( TY) and 

I/P’ 

IF(x+iy)S”(~+iy)l~‘dx 
R” 

l/P 

6C ” If(t)1 
P s”(I) e-P.%‘.’ dt (10) 

THEOREM 2. Let 1~ p < 2. Let 1 -r < cx and l/p’ < r. If FE H[,(T,), 
then there is an f E LP’,( V) such that F = 9” and 

” IfWl”‘s -“‘(t) ,-p’.P-l dt I” 
> 

<c (F(x+iy)SP”(x+iy)(pdx (11) 

Remark. For the cone rW;, when T = 1, the conditions connecting z and 
p are automatically satisfied, and the bounds for c1 are the same as those 
in the one-dimensional case. In the general case, the values of p for which 
the theorems are valid depend on the rank of the cone. 

The main steps in the proof of both theorems are provided in Section 6 
(which shows that the weights in Lp and HP spaces are related by the 
Laplace transform) and in Section 7 in which it is shown that the 
Riemann-Liouville integral, whose kernel is the function P, is bounded as 
an operator on weighted Lp spaces. 
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5. THE GROUP OF AUTOMORPHISMS 

We shall need additional properties of the group G(V). Its elements are 
connected with the involution (6) by the formula 

(Ax)* = A’ -lx* (12) 

for every A E G(V) and x E I/; since V is self-adjoint then A’ (whose matrix 
is the transpose of A) belongs to G(V) together with A. 

We cite for future reference some further properties of * (see [6]) 

$x)$(x*) = c (13) 

du* = c2(z4) du (14) 

x<l.oy*<x*. (15) 

In Section 2 the stability group G, of the fixed point of the involution 
was defined. Consider the quotient group G( V)/G,. Every element (coset) 
of this quotient group is uniquely determined by a point XE V (such that 
a is mapped into x by this coset). This group is again transitive (that is the 
cone is homogeneous with respect to this group). We shall denote it again 
by G(V) and consider this group only. Now for every x, y E V there is a 
unique A E G( V) such that Ax = y (the group is simply transitive). Let A(x) 
for XE V be the unique automorphism which sends a into x; that is A(x) 
is defined by 

A( =x. (16) 

The following properties of A(x) follow from its uniqueness, 

IA(x)1 = Cs(x) (17) 

A(x*) = A’-‘(x). (18) 

In [6] it is also shown that every automorphism A can be represented 
in a unique way as a product 

A= W.B (19) 

where WE G, and B is a positive definite transformation. This is a conse- 
quencc of the general polar decomposition theorem for nonsingular linear 
transformations, and it is proved in the same way. It is sufficient to take for 
B the unique positive square root of A . A’. 
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6. A FORMULA RELATING THE WEIGHTS 

LEMMA 2. Let a > -7. Then for z E T, 

s e”,‘s*(t)dt=CS”+‘(z). 
v 

Proof When c( > -T then the integral 

(20) 

s v le’z”s’(t)l dt= j ep-‘.‘s”(t) dt 
V 

is convergent. We shall postpone the proof of this fact until Section 9. 
Assuming this the proof of (20) is easy: Equation (20) is an equality 
between two functions analytic in TV, so it is sufficient to prove this 
equality for z = iy (i.e., x = 0), 

I 
e ~ v.‘.P(t) dr = W+‘(iy). (21) 

” 

We claim that the function 

is homogeneous on the cone. This is easily proved (by a change of variables 
in the integral): cp(Ay) = IAl --‘-I q(y), and then by Lemma 1 

s e -‘s”(r) dr = Cc” ‘(y). (22) 
V 

On the other hand, we have already seen in (9) that 

S”f’(iy)= cs-” ‘(y) 

which together with (22) proves (21). Thus the lemma is established. 

7. THE RIEMANN-LIOUVILLE INTEGRAL 

Let b < --z. The Riemann-Liouville integral operator of order fl is 
defined by 

&J(X) = J s”(x- t).f(f) dt. 
< 0. Y > 

(23) 
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The adjoint operator is 

ss(x - t) f(x) dx, (24) 

where (t, co) = {X E V: t < x}. Note that (23) is an operator with a 
homogeneous kernel, which means that if we put k(x, t) = sB(x - t) then 

k(Ax, At) = IAl~ k(x, t). (25) 

This fact is exploited in the next lemma. On the other hand, (23) is a 
convolution of two functions supported in V, i.e., 

&f(x) = v * f)(x). (26) 

This is used in Section 8. 

LEMMA 3. Let b > -t, CI > --z. Then 

(a) RPs’(x) = CS~+~+ ‘(x) 

(b) R;gs -“-fi-2(t)= cs-l-‘(t). 

Proof. We postpone again until Section 9 the proof that for p > -r, 
a> --z 

R&(x) = j sB(x - t) s’(t) dt (27) 
<o,r> 

is convergent. Assuming this the proof of the lemma is easy (and similar to 
the proof of (22)). By changing the variables in the integral, we see that the 
function R@.?(x) is homogeneous of degree a + b + 1 and the assertion (a) 
follows by Lemma 1. 

Assertion (b) follows in the very same way, if we show that 

R;?‘(t) = [ s@(x - t) s’(x) dx < 00 (28) 

for every t E I/. Now we show, by making use of the properties of the group 
G(V), that the integrals (27) and (28), with y = -a - fl- 2, are equi- 
convergent. Then (28) follows when we prove (27) in Section 9. 

Because of the homogeneity of all functions involved, it is sufficient to 
consider t = a in (28). If in 

R;.?(a) = s sB(x - a) s’(x) dx 
<em) 

409 141 I-X 
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we change the variable x = u*, then since the Jacobian is S--~(U), by (14) 
and (a, co ) is mapped on (0, a* ) = (0, a), by (15), we have 

R;1S7( a) = i 
sB(u* -a) Y’(u*) S-~(U) du. (29) 

<O.rr) 

Now, using the definition of the automorphism A(x), (16) and (18), we 
write ss(n* -a) = sp(A(u*) a - A(u*)A(u)a) = [A( #(a - U) which, by 
(18) and (17) equals s-p(u) #(U-U). Put this into (29) and use (13) to 
obtain 

Rp(U) = j ss(a-u)s--B-7~Z(U)du=Rgsa(a). 
<au> 

This proves the assertion. 

PROPOSITION 1. Let 1 <p < co. Let /I > -r and p < T - l/p. Then 

6 C 
s 
v If(x s”(x) cPY~“dx (30) 

for yE V. 

Proof. If we write 

w-(x)l 6 j<o,.x, sa(x - t) If(t)1 dt 
= s sfl’p(x - t) If(r)] 8(t) Pp’(x - t) s-“(t) dt 

<O.-r> 

and apply Holder’s inequality, then 

I&d-WI d j,,,, s%- t)lf(t)lP sip(t) dt)“’ 

(1 > 

UP’ 

X sa(x- t) sciP’(t) dt 
<0.x> 

We can apply Lemma 3(a) to the last integral if we choose 1 so that 

-lp’> --t. (31) 
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Then we shall have 

X 
J s% - t)lf(f)l p sip(t) dt. <o,v) 

If we substitute this into the left-hand side of (30), which we denote by I 
for short (since the exponents on s add to - p(/? + 1) + /.q~ + fip/p’ - 1-p + 
p/p’ = pp - ip - j? - 1 ), we get 

X 
s 

.?(x - t) If(t)\ p sLP(t) dt dx 
<0,-T> 

and by Fubini’s theorem 

Note that e-py’x is monotone decreasing on V (that is if t<x, then 
e-pv--X<e-pY”). Using this (and the definition of Rb (25)) we obtain 

16 C 
s 

If(t)l”s”“(t) e-P~.‘R;pS~p---p--S’(r) dt. 
V 

Thus assuming that 

-pp+Ap-1> -T 

we can apply Lemma 3(b) and obtain 

I< C 
J 

If(t)lps”p(t) e-~y~‘spp-ip(f) dt 
V 

= C j, If(t)lP s”(t) dt 

(32) 

which proves (30). 
Thtis all that is left to prove is that we can choose 1. to satisfy both (3 1) 

and (32), i.e., 

A < 5/p’ and A> P + l/P - TiP 
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and this is possible, since by assumption the inequality ~1 + l/p - t/p < z/p’, 
which is equivalent to ,n < r - l/p, is valid. This proves the proposition. 

8. PROOFS OF THE THEOREMS 

The proof of both Theorems 1 and 2 is obtained by a reduction to the 
nonweighted case (to Theorem A and B, respectively). 

As mentioned above (see (26)), the Riemann-Liouville operator is 
defined as a convolution, and it is well known that the Laplace transform 
transforms convolutions into products. In this case 

2yRgf)(Z) = T(f* #)(z) = d;y^f(z) ZYqz) 

and the equality obtained in Section 6 (Lemma 2) gives 

2yRSf)(Z) = A?f(z) s”+ ‘(z). (33) 

Proof of Theorem 1. We shall apply Proposition 1 to f E L:( I’) and to 
the operator R,- ,. Since 1 - 7 cc1 < 7- l/p, we can put D= CY- 1 and 
,U = CI in Proposition 1 and obtain 

,< C s v If(X)/ p P(x) eepy” dx. 

Thus if we put g = R,- ,f, we have obtained that 

(34) 

And this means that Theorem A can be applied to g to see that its Laplace 
transform 9g = G satisfies 

,G(x+~~),p~dl)‘D’~C(~v,g(x),ne-p-~~r~x)”p. (35) 

But by (33) 

G(z) = Pg(z) = nY(R, _ J)(z) = Z”(z) F(Z) = F(z) S’(z) 
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and if we substitute this into the left-hand side of (35), then this inequality 
together with (34) yields (lo), which proves the theorem. 

Proof of Theorem 2. If FE H5 .( T,), then by definition G = FS-- OL 
belongs to HP( T,), so that Theorem B applied to the function G shows 
that G is the Laplace transform of some function g E L”‘( V) such that 

” Ig(t)l p~e~p.i~fdt)‘~p’6C(~~~~G(x+~~)~pdx)’n. (36) 

But now for F= GS” we have by (33) 

F(z) = G(z) S’(z) = dtpg(z) dPs’- ‘(z) = Ip(g * Y’)(z) = p(R,_, g)(z) 

and if we put R,_ , g = f we obtain the representation F(z) = .Yf(z) for F, 
and we must prove only that f E L?,( V). This follows again from Proposi- 
tion 1, in which we put /? = tl - 1 and p = 0, 

R .-I&) /f 

W) 

e-P’k..~dxfC vIg(x)/P’e-P’I.~-,jx; 

s 

in other words 

s If(x)l@s-‘P’(~)e-~‘~“‘dx<C I g(x)1 
p’ e ~ p’.v x dx 

” 
” 

and this together with (36) (in which we put G(z) = F(z) Spa(z)) proves 
the theorem. 

9. EVALUATION OF SOME INTEGRALS 

In this section we indicate a proof of the convergence of integrals (21) 
and (27) and thus finish the proof of Lemmas 2 and 3. Both these integrals 
are of the form 

(with k(x, t) = e-“’ and k(x, t) = sa(x- t)O,,,,(t), respectively). In both 
cases cp is homogeneous, so it is sufficient to consider it for x = a. Thus we 
must prove 
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LEMMA 4. If IX > -t, then 

j 
k(u, t) s’(t) dt < a 

” (37) 

for k(a, t) = eMu-‘, or k(a, t) =~“(a- t)8,,,,,(t) with j?> --t. 

Remark. It will be obvious from the proof that a similar lemma holds 
for some other kernels k. 

ProofY (a) We first prove (37) in the simplest case when T = 1, i.e., 
rank(V) = n. In this case the cone V is polyhedral, which means that there 
is a rotation WE O(n) such that WV= R:. The function sV(x) is then 
equal to sR;( Wx). Since this last function is given by sR;( y) = ~1, . yn, 
and both kernels also decompose into products, the integral (37) reduces 
to an n product of r functions, or B functions, respectively, and the lemma 
is proved in this case. 

(b) In the case rank(V) = k < n, the stability subgroup G, equals 
O(m) with m = n - k 2 1. By renumerating the coordinates we may assume 
that the space R” is decomposed into RkP’ x KY’+’ so that the space R”+’ 
is invariant under O(m) (then L@’ is fixed under O(m)). By the action of 
this group every point in R m + ’ is brought to the first coordinate line, say, 
which means that every point XE VC R” is brought to X E Vn Rk = Vk. 

By (19) every A E G( V) is represented as A = W. B, where B is positive 
definite and WE G,. Now the group G, acts on positive definite transfor- 
mations B by the formula B -+ U. B u’ = B, (U E G,); so by the action of 
this group every positive definite B is transformed to (a positive definite) 
B, which acts on V,. It is not difficult to see that these transformations 
form a transitive group for V,, and this is sufficient to show that Vk is 
polyhedral. 

Now the integral (37) can be written as 

j k(a, t)s”(t)dt= j j k(a, Ui)f(Ui)dUdi, 
V Vk am) 

(38) 

where dU is the invariant measure of the group O(m) and IE Vk. Since the 
integrand is invariant under the rotations (which belong to the group of 
the cone), 

k(a, Ui) f( Ut) = k( UU, Ui) sa( Ui) 

= 1 UI”+” k(a, 7) s”(T) = k(a, 7) s”(i) 
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(here K = 0 for the first kernel, and K = fi for the second), (38) is equal to 

5 k(a, i) s”(i) di, (39) 
v!. 

where k(a, i) and s( 7) = s,(i) are the restrictions of these functions to the 
cone V,. Now V, has its own norm sV, and it follows from homogeneity 
considerations that these two functions are related as 

s.(i) = (s,(i))“l”, ie V, 

By putting this into (39) we obtain for the RiemannLiouville operator the 
integral 

c (.Tv~(~- i))fi”lk (svk(i))lnlk dj <o.u> 
and since V, is polyhedral, (a) shows that this integral converges for 
@/k > - 1 and an/k > - 1. For k(a, t) = em-‘-’ the proof is finished in a 
similar way. 

Remarks. (i) The assumption that the cone is homogeneous is essen- 
tial in all our considerations. On the other hand, the assumption of self- 
adjointness was made only in order to simplify matters. The group of the 
non-self-adjoint cone is more complicated, but otherwise the same methods 
should apply to the non-self-adjoint case also. In this case the Laplace 
transform transforms functions on V into functions on T,. (see [7]). For 
other properties of the cones see [3,6,2, 81. 

(ii) In [l] and [S] the analogues of inequalities (10) and (11) are 
given between Lp and HY spaces, with p d q; we have treated the simpler 
case q = p’ only. To obtain this generalization to different p and q, an 
(Lp, Ly) inequality for the RiemannLiouville integral should be used, 
instead of Proposition 1. This kind of inequality can be proved in a similar 
way, only instead of Holder’s inequality Young’s inequality must be used. 
In [4] we have considered weighted norm inequalities similar to Proposi- 
tion 1 for a whole class of operators with homogeneous kernels (25). 

(iii) We see that our theorems are more appropriate for cones which 
have larger rank (i.e., closer to n). The reason is that the function S(X) is 
defined in the same manner for all cones. It seems that some function 
dependent on the rank of the cone would give better results, only this func- 
tion would not be homogeneous (since s is the only one) and this would 
complicate matters considerably. 
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