

Contents lists available at ScienceDirect

Discrete Applied Mathematics

© 2008 Elsevier B.V. All rights reserved.

journal homepage: www.elsevier.com/locate/dam

Note On the diameter of a domination dot-critical graph*

Nader Jafari Rad

Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

ARTICLE INFO

ABSTRACT

Article history: Received 29 August 2007 Received in revised form 22 October 2008 Accepted 24 October 2008 Available online 3 December 2008

Keywords: Domination Dot-critical Diameter

1. Introduction

A vertex of a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set if each vertex of $V(G) \setminus S$ is dominated by some vertices of S. The *domination number*, $\gamma(G)$, of G is the minimum cardinality of a dominating set of G. We denote the open neighborhood of a vertex v by N(v) and its closed neighborhood by N[v]. We indicate that for

of a domination dot-critical graph G.

A graph G is domination dot-critical, or just dot-critical, if contracting any edge decreases

the domination number. It is totally dot-critical if identifying any two vertices decreases the

domination number. In this paper, we study an open question concerning of the diameter

two vertices u and v, v is adjacent to u by writing $v \perp u$. A vertex v of a graph G is a critical vertex if $\gamma(G - v) < \gamma(G)$. A graph *G* is *vertex-critical* if any vertex of *G* is a critical vertex; see [3]. For a pair of vertices v, u of a graph G, we denote as G(vu) the graph obtained by identifying v and u, and (vu) denotes the identified vertex. So, $G_{\cdot}(vu)$ may be viewed as the graph obtained from G by deleting the vertices v and u and appending

a new vertex, labeled by (vu), that is adjacent to all the vertices of G - v - u that were originally adjacent to either of v or u. In the case where v is adjacent to u, G.(vu) is the graph obtained by contracting vu. Burton and Sumner [1] introduced a new critical condition for the domination number. A graph G is called *domination*

dot-critical, or simply dot-critical, if contracting any edge decreases the domination number, i.e., $\gamma(G.(vu)) < \gamma(G)$, for any two adjacent vertices v and u. It is totally dot-critical if identifying any two vertices decreases the domination number. If G is dot-critical and $\gamma(G) = k$, then G is called k-dot-critical.

Let G' be the set of critical vertices of G. In [1], it is proved that a connected 3-dot-critical graph G with $G' = \emptyset$ has a diameter of at most 3, and a connected totally 3-dot-critical graph G with $G' = \emptyset$ has a diameter of at most 2. The upper bound of the diameter of a k-dot-critical graph G with $G' = \emptyset$, for k > 4, is left as an open question.

Question 1 ([1]). What are the best bounds for the diameter of a k-dot-critical graph and a totally k-dot-critical graph G with $G' = \emptyset$, for $k \ge 4$?

Chengye et al. [2] studied total domination dot-critical graphs with no critical vertices, and proved that a connected 4-dot-critical graph *G* with $G' = \emptyset$ has a diameter of at most 5.

We study Question 1 and give an upper bound for the diameter of a k-dot-critical graph G with $G' = \emptyset$, for k > 5. We make use of the following:

The paper is supported by Shahrood University of Technology. E-mail address: n.jafarirad@shahroodut.ac.ir.

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2008.10.015

Theorem A ([1]). If G is a dot-critical graph and $N[v] \subseteq N[u]$, then $v \in G'$.

Theorem B ([1]). Let $a, b \in V(G)$ for a graph G. Then $\gamma(G.(ab)) < \gamma(G)$ if and only if either there exists a minimum dominating set S of G such that $a, b \in S$ or at least one of a or b is critical in G.

2. Main results

Let $k \ge 5$ be an integer. In this section, we determine the maximum diameter of a *k*-dot-critical graph *G* with $G' = \emptyset$. First we have the following lemma.

Lemma 1. Let *S* be a minimum dominating set in a *k*-dot-critical graph *G* with $G' = \emptyset$, $k \ge 5$. Let *x* be a diameterical vertex, and for i = 0, 1, 2, ..., d, let V_i denote the set of all vertices of *G* at distance i from *x*. If $V_d \cap S = \emptyset$, then $|S \cap (V_{d-2} \cup V_{d-1})| \ge 2$.

Proof. Let *G* be a *k*-dot-critical graph with $G' = \emptyset$, for $k \ge 5$. Let $x, y \in V(G)$ and d(x, y) = diam(G) = d. For i = 0, 1, 2, ..., d, let V_i denote the set of all vertices of *G* at distance *i* from *x*. So, $V_0 = \{x\}$ and $y \in V_d$. Let *S* be a minimum dominating set, and let $V_d \cap S = \emptyset$. Assume to the contrary that $|S \cap (V_{d-2} \cup V_{d-1})| \le 1$. Then $|V_{d-1} \cap S| = 1$. There is a vertex $v_{d-1} \in V_{d-1} \cap S$ such that v_{d-1} dominates *y*. It follows that $N[y] \subseteq N[v_{d-1}]$. But then Theorem A implies that $y \in G'$, a contradiction.

Theorem 2. A connected k-dot-critical graph G with $G' = \emptyset$ has a diameter of at most the values given by the following: $\begin{cases}
7, & k=5 \\
3k-9, & k \ge 6
\end{cases}$

Proof. Suppose *G* is a *k*-dot-critical graph with $G' = \emptyset$, for $k \ge 5$. Let $x, y \in V(G)$ and d(x, y) = diam(G) = d. For i = 0, 1, 2, ..., d, let V_i denote the set of all vertices of *G* at distance *i* from *x*. So, $V_0 = \{x\}$ and $y \in V_d$. Assume that $d \ge 5$. Let $v_4 \in V_4$ and $v_5 \in V_5$ be two adjacent vertices. According to Theorem B, there exists a minimum dominating set *S* containing both v_4 and v_5 . It follows from Theorem A, that $|S \cap (V_0 \cup V_1 \cup \cdots \cup V_5)| \ge 4$.

For k = 5 we may assume that $|S \cap (V_0 \cup V_1 \cup \cdots \cup V_5)| = 4$. This implies that $|S \setminus (V_0 \cup V_1 \cup \cdots \cup V_5)| = 1$, and so $d \le 8$. Suppose that d = 8. By Lemma 1, we conclude that $S \cap V_8 \ne \emptyset$. It follows that v_5 is adjacent to any vertex in V_6 . Let $u_6 \in V_6 \cap N(v_5)$. There is a minimum dominating set S_0 in G containing both v_5 and u_6 . It is obvious that $S_0 \cap (V_7 \cup V_8) \ne \emptyset$. Furthermore, $S_0 \cap V_4 = \emptyset$. Now $(S_0 \cap (V_0 \cup \cdots \cup V_5)) \cup (S \cap V_8)$ is a dominating set for G of size less than 5. This is a contradiction. So $d \le 7$.

So, we henceforth let k > 5. Without loss of generality we assume that d > 8. Then, $V_7 \cup V_8 \cup \cdots \cup V_d$ is dominated by at most k - 4 vertices of *S*. Since any vertex of *S* can dominate at most $V_i \cup V_{i+1} \cup V_{i+2}$ for some integer *i*, we conclude by Lemma 1 that $d \le 6 + 3(k - 4) - 1 = 3k - 7$.

Suppose that d = 3k - 7. It follows that $|S \cap V_d| = |S \cap V_{d-3}| = 1$, and $S \cap (V_{d-2} \cup V_{d-1}) = \emptyset$. Let $v_{d-3} \in S \cap V_{d-3}$ and $v_{d-2} \in V_{d-2}$ be adjacent to v_{d-3} . There is a minimum dominating set S_1 containing v_{d-3} and v_{d-2} . According to Theorem A, $|S_1 \cap (V_{d-2} \cup V_{d-1} \cup V_d)| \ge 2$. Now, $(S_1 \cap (V_0 \cup \cdots \cup V_{d-3})) \cup (S \cap V_d)$ is a dominating set for *G* of size less than *k*, a contradiction. Hence, $d \le 3k - 8$.

Suppose now that d = 3k - 8.

For k = 6 we have d = 10. If $S \cap V_8 \neq \emptyset$, then $S \cap (V_6 \cup V_7) = \emptyset$. As a result v_5 is adjacent to any vertex in V_6 . Let $v_6 \in V_6 \cap N(v_5)$. There is a minimum dominating set D_1 containing both v_5 and v_6 . It follows that $|D_1 \cap (V_6 \cup \cdots \cup V_{10})| \ge 3$. This leads to $(D_1 \cap (V_0 \cup \cdots \cup V_5)) \cup (S \cap (V_6 \cup \cdots \cup V_{10}))$ being a dominating set for G of size at most 5. This is a contradiction. So, $S \cap V_8 = \emptyset$. But then by Lemma 1, $|S \cap V_{10}| = |S \cap V_7| = 1$. As an immediate result, the vertex in $S \cap V_{10}$ is adjacent to any vertex in V_9 , and the vertex in $S \cap V_7$ is adjacent to any vertex in V_8 . Let $v_7 \in V_7 \cap S$, and let $v_8 \in V_8 \cap N(v_7)$. There is a minimum dominating set D_2 containing both v_7 and v_8 . It follows that $|D_2 \cap (V_8 \cup V_9 \cup V_{10})| \ge 2$. Now, $(D_2 \cap (V_0 \cup \cdots \cup V_7)) \cup (S \cap V_{10})$ is a dominating set for G of size at most 5, a contradiction.

For k = 7 we have d = 13. If $S \cap V_{11} \neq \emptyset$, then $S \cap (V_{12} \cup V_{13}) \neq \emptyset$. It follows that $|S \cap V_8| = 1$ and $|S \cap (V_7 \cup V_9 \cup V_{10})| = 0$. Assume that $v_8 \in S \cap V_8$. Then v_8 is adjacent to any vertex in $V_7 \cup V_9$. Let $v_9 \in V_9 \cap N(v_8)$. There is a minimum dominating set F_1 containing both v_8 and v_9 . It follows that $|F_1 \cap (V_9 \cup \cdots \cup V_{13})| \geq 3$. But then $(F_1 \cap (V_0 \cup \cdots \cup V_8)) \cup (S \cap (V_9 \cup \cdots \cup V_{13}))$ is a dominating set for G of size at most 6. This is a contradiction. So, $S \cap V_{11} = \emptyset$. By Lemma 1, we may assume that $|S \cap V_{10}| = 1$, and $|S \cap V_9| = |S \cap V_{12}| = 0$. Let $v_{10} \in V_{10} \cap S$, and let $v_{11} \in V_{11} \cap N(v_{10})$. There is a minimum dominating set F_2 containing both v_{10} and v_{11} . It is obvious that $F_2 \cap (V_{12} \cup V_{13}) \neq \emptyset$. Now, $(F_2 \cap (V_0 \cup \cdots \cup V_{10})) \cup (S \cap V_{13})$ is a dominating set for G of size at most 6, a contradiction.

In the rest of the proof we suppose that $k \ge 8$. We proceed with Claim 1.

Claim 1. $|S \cap (V_{d-5} \cup \cdots \cup V_d)| \le 3$.

To see this, assume to the contrary that $|S \cap (V_{d-5} \cup \cdots \cup V_d)| \ge 4$. Then, $V_7 \cup V_8 \cup \cdots \cup V_{d-7}$ is dominated by at most k - 8 vertices of *S*. But any k - 8 vertices of *S* dominate the vertices of at most 3k - 24 sets among $V_7, V_8, \ldots, V_{d-7}$, while (d-7) - 7 + 1 = 3k - 21, a contradiction.

Now, $S \cap (V_{d-5} \cup V_{d-4} \cup V_{d-3}) \neq \emptyset$. We need to consider the following cases:

Case 1: $S \cap V_{d-5} \neq \emptyset$. Let $v_{d-5} \in S \cap V_{d-5}$, and let $v_{d-4} \in V_{d-4}$ be adjacent to v_{d-5} . According to Theorem B, there is a minimum dominating set S' containing v_{d-5} , v_{d-4} . It follows that $|S' \cap (V_{d-5} \cup \cdots \cup V_d)| \ge 4$. Now, $(S' \cap (V_0 \cup \cdots \cup V_{d-5})) \cup (S \cap (V_{d-4} \cup \cdots \cup V_d))$ is a dominating set for G of size less than k, a contradiction.

Case 2: $S \cap V_{d-5} = \emptyset$. By Claim 1, $|S \cap (V_{d-4} \cup \cdots \cup V_d)| \leq 3$.

If $|S \cap (V_{d-4} \cup \cdots \cup V_d)| = 3$, then $V_7 \cup V_8 \cup \cdots \cup V_{d-6}$ is dominated by at most k-7 vertices of *S*. But any k-7 vertices of *S* dominate the vertices of at most 3k-21 sets among $V_7, V_8, \ldots, V_{d-6}$, while d-6-7+1 = 3k-20, a contradiction. So we suppose that $|S \cap (V_{d-4} \cup \cdots \cup V_d)| = 2$. But then by Lemma 1, $|S \cap V_{d-3}| = |S \cap V_d| = 1$. Let $u_{d-3} \in S \cap V_{d-3}$. As a result, u_{d-3} is adjacent to any vertex in $V_{d-4} \cup V_{d-2}$. Let $u_{d-2} \in V_{d-2} \cap N(u_{d-3})$. There is a minimum dominating set S'_1 containing both u_{d-3} and u_{d-2} . It is obvious that $|S'_1 \cap (V_{d-3} \cup \cdots \cup V_d)| \ge 3$. Now, $(S'_1 \cap (V_0 \cup \cdots \cup V_{d-5})) \cup (S \cap (V_{d-3} \cup \cdots \cup V_d))$ is a dominating set for *G* of size less than $\gamma(G)$, a contradiction.

Hence, $d \leq 3k - 9$.

It follows from Theorem 2, and the results in [1,2], that a connected *k*-dot-critical graph *G* with $G' = \emptyset$ has a diameter of at most 2k - 3 for $k \in \{3, 4, 5, 6\}$. In the next theorem we show that the diameter of a 2-connected *k*-dot-critical graph *G* with $G' = \emptyset$ is at most 2k - 3, for $k \ge 7$.

Theorem 3. A 2-connected k-dot-critical graph G with $G' = \emptyset$ has a diameter of at most 2k - 3, $k \ge 7$.

Proof. Let *G* be a 2-connected *k*-dot-critical graph with $G' = \emptyset$ for $k \ge 7$. Let $x, y \in V(G)$ and d(x, y) = diam(G) = d. For i = 0, 1, 2, ..., d, let V_i denote the set of all vertices of *G* at distance *i* from *x*. So, $V_0 = \{x\}$ and $y \in V_d$. Since *G* is 2-connected, $|V_i| \ge 2$, for i = 1, 2, ..., d - 1. The following fact follows from Theorem A.

Fact 2. If $|S \cap V_i| = 1$ for some integer $7 \le i \le d - 1$, then $|S \cap (V_{i-1} \cup V_i \cup V_{i+1})| \ge 2$.

Let $v_4 \in V_4$ and $v_5 \in V_5$ be two adjacent vertices. According to Theorem B, there exists a dominating set *S* containing both v_4 and v_5 . For $V_0 \cup V_1 \cup \cdots \cup V_5$ to be dominated by *S*, it follows that $|S \cap (V_0 \cup V_1 \cup \cdots \cup V_5)| \ge 4$. So, by Fact 2, for any integer $6 \le i \le d - 3$, $|S \cap (V_i \cup V_{i+1} \cup V_{i+2} \cup V_{i+3})| \ge 2$. If d = 6 + 4j + r where $0 \le r \le 3$, then $k \ge 4 + 2j + \lceil \frac{r}{2} \rceil$. Now, it follows that for $r \in \{1, 3\}$, $d \le 2k - 3$, and for $r \in \{0, 2\}$, $d \le 2k - 2$. This completes the proof for $r \in \{1, 3\}$.

Suppose that d = 2k - 2 for $r \in \{0, 2\}$. We distinguish the following cases, according to the value of r. Case 1: r = 0. It follows that $|S \cap V_{d-5}| = 1$ and $|S \cap (V_{d-5} \cup V_{d-4} \cup \cdots \cup V_d)| = 3$. Let $v_{d-5} \in S \cap V_{d-5}$ and

 $v_{d-4} \in V_{d-4}$ be adjacent to v_{d-5} . By Theorem B, there is a minimum dominating set S_1 such that v_{d-4} , $v_{d-5} \in S_1$. It follows that $|S_1 \cap (V_{d-5} \cup V_{d-4} \cup \cdots \cup V_d)| = 4$. Now, $(S_1 \cap (V_0 \cup V_1 \cup \cdots \cup V_{d-5})) \cup (S \cap (V_{d-4} \cup \cdots \cup V_d))$ is a dominating set for G of size less than k, a contradiction. Hence, $d \le 2k - 3$.

Case 2: r = 2. It follows from Lemma 1 that $|S \cap V_d| = |S \cap V_{d-4}| = |S \cap V_{d-3}| = 1$, and $S \cap (V_{d-1} \cup V_{d-2}) = \emptyset$. Let $v_{d-3} \in S \cap V_{d-3}$, and let $v_{d-2} \in V_{d-2}$ be adjacent to v_{d-3} . There is a minimum dominating set S_2 such that v_{d-3} , $v_{d-2} \in S_2$. Then, $|S_2 \cap (V_{d-3} \cup V_{d-2} \cup V_{d-1} \cup V_d)| = 3$. Now, $(S_2 \cap (V_0 \cup V_1 \cup \cdots \cup V_{d-3})) \cup (S \cap V_d)$ is a dominating set for *G* of size less than *k*, a contradiction. Hence, $d \le 2k - 3$.

Since every totally *k*-dot-critical graph is *k*-dot-critical, the bounds in Theorems 2 and 3 hold for connected totally *k*-dot-critical graphs. We believe that any connected *k*-dot-critical graph *G* with $G' = \emptyset$ is 2-connected. We close with the following question.

Question. Is it true that a connected k-dot-critical graph G with $G' = \emptyset$ is 2-connected?

Acknowledgements

The author wishes to thank the referees for their many helpful comments.

References

- [1] T. Burton, D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006) 11-18.
- [2] Z. Chengye, Y. Yuansheng, S. Linlin, Domination dot-critical graphs with no critical vertices, Discrete Math. 308 (2008) 3241–3248.
- [3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamental of Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, NY, 1998.