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a b s t r a c t

A graph G is domination dot-critical, or just dot-critical, if contracting any edge decreases
the domination number. It is totally dot-critical if identifying any twovertices decreases the
domination number. In this paper, we study an open question concerning of the diameter
of a domination dot-critical graph G.
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1. Introduction

A vertex of a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set if each vertex of
V (G) \ S is dominated by some vertices of S. The domination number, γ (G), of G is the minimum cardinality of a dominating
set of G. We denote the open neighborhood of a vertex v by N(v) and its closed neighborhood by N[v]. We indicate that for
two vertices u and v, v is adjacent to u by writing v ⊥ u. A vertex v of a graph G is a critical vertex if γ (G − v) < γ (G). A
graph G is vertex-critical if any vertex of G is a critical vertex; see [3].
For a pair of vertices v, u of a graph G, we denote as G.(vu) the graph obtained by identifying v and u, and (vu) denotes

the identified vertex. So, G.(vu)may be viewed as the graph obtained from G by deleting the vertices v and u and appending
a new vertex, labeled by (vu), that is adjacent to all the vertices of G− v − u that were originally adjacent to either of v or
u. In the case where v is adjacent to u, G.(vu) is the graph obtained by contracting vu.
Burton and Sumner [1] introduced a new critical condition for the domination number. A graph G is called domination

dot-critical, or simply dot-critical, if contracting any edge decreases the domination number, i.e., γ (G.(vu)) < γ (G), for any
two adjacent vertices v and u. It is totally dot-critical if identifying any two vertices decreases the domination number. If G
is dot-critical and γ (G) = k, then G is called k-dot-critical.
Let G′ be the set of critical vertices of G. In [1], it is proved that a connected 3-dot-critical graph G with G′ = ∅ has a

diameter of at most 3, and a connected totally 3-dot-critical graph G with G′ = ∅ has a diameter of at most 2. The upper
bound of the diameter of a k-dot-critical graph Gwith G′ = ∅, for k ≥ 4, is left as an open question.

Question 1 ([1]). What are the best bounds for the diameter of a k-dot-critical graph and a totally k-dot-critical graph G with
G′ = ∅, for k ≥ 4?

Chengye et al. [2] studied total domination dot-critical graphs with no critical vertices, and proved that a connected
4-dot-critical graph Gwith G′ = ∅ has a diameter of at most 5.
We study Question 1 and give an upper bound for the diameter of a k-dot-critical graph G with G′ = ∅, for k ≥ 5. We

make use of the following:
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Theorem A ([1]). If G is a dot-critical graph and N[v] ⊆ N[u], then v ∈ G′.

Theorem B ([1]). Let a, b ∈ V (G) for a graph G. Then γ (G.(ab)) < γ (G) if and only if either there exists a minimum dominating
set S of G such that a, b ∈ S or at least one of a or b is critical in G.

2. Main results

Let k ≥ 5 be an integer. In this section, we determine the maximum diameter of a k-dot-critical graph G with G′ = ∅.
First we have the following lemma.

Lemma 1. Let S be a minimum dominating set in a k-dot-critical graph G with G′ = ∅, k ≥ 5. Let x be a diameterical vertex, and
for i = 0, 1, 2, . . . , d, let Vi denote the set of all vertices of G at distance i from x. If Vd ∩ S = ∅, then |S ∩ (Vd−2 ∪ Vd−1)| ≥ 2.

Proof. Let G be a k-dot-critical graph with G′ = ∅, for k ≥ 5. Let x, y ∈ V (G) and d(x, y) = diam(G) = d. For
i = 0, 1, 2, . . . , d, let Vi denote the set of all vertices of G at distance i from x. So, V0 = {x} and y ∈ Vd. Let S be a minimum
dominating set, and let Vd ∩ S = ∅. Assume to the contrary that |S ∩ (Vd−2 ∪ Vd−1)| ≤ 1. Then |Vd−1 ∩ S| = 1. There is a
vertex vd−1 ∈ Vd−1 ∩ S such that vd−1 dominates y. It follows that N[y] ⊆ N[vd−1]. But then Theorem A implies that y ∈ G′,
a contradiction. �

Theorem 2. A connected k-dot-critical graph G with G′ = ∅ has a diameter of at most the values given by the following:{
7, k = 5
3k− 9, k ≥ 6 .

Proof. Suppose G is a k-dot-critical graph with G′ = ∅, for k ≥ 5. Let x, y ∈ V (G) and d(x, y) = diam(G) = d. For
i = 0, 1, 2, . . . , d, let Vi denote the set of all vertices of G at distance i from x. So, V0 = {x} and y ∈ Vd. Assume that d ≥ 5. Let
v4 ∈ V4 and v5 ∈ V5 be two adjacent vertices. According to Theorem B, there exists a minimum dominating set S containing
both v4 and v5. It follows from Theorem A, that |S ∩ (V0 ∪ V1 ∪ · · · ∪ V5)| ≥ 4.
For k = 5 we may assume that |S ∩ (V0 ∪ V1 ∪ · · · ∪ V5)| = 4. This implies that |S \ (V0 ∪ V1 ∪ · · · ∪ V5)| = 1, and so

d ≤ 8. Suppose that d = 8. By Lemma 1, we conclude that S ∩ V8 6= ∅. It follows that v5 is adjacent to any vertex in V6. Let
u6 ∈ V6 ∩N(v5). There is a minimum dominating set S0 in G containing both v5 and u6. It is obvious that S0 ∩ (V7 ∪ V8) 6= ∅.
Furthermore, S0 ∩ V4 = ∅. Now (S0 ∩ (V0 ∪ · · · ∪ V5)) ∪ (S ∩ V8) is a dominating set for G of size less than 5. This is a
contradiction. So d ≤ 7.
So, we henceforth let k > 5. Without loss of generality we assume that d > 8. Then, V7 ∪ V8 ∪ · · · ∪ Vd is dominated by

at most k − 4 vertices of S. Since any vertex of S can dominate at most Vi ∪ Vi+1 ∪ Vi+2 for some integer i, we conclude by
Lemma 1 that d ≤ 6+ 3(k− 4)− 1 = 3k− 7.
Suppose that d = 3k− 7. It follows that |S ∩ Vd| = |S ∩ Vd−3| = 1, and S ∩ (Vd−2 ∪ Vd−1) = ∅. Let vd−3 ∈ S ∩ Vd−3 and

vd−2 ∈ Vd−2 be adjacent to vd−3. There is a minimum dominating set S1 containing vd−3 and vd−2. According to Theorem A,
|S1 ∩ (Vd−2 ∪ Vd−1 ∪ Vd)| ≥ 2. Now, (S1 ∩ (V0 ∪ · · · ∪ Vd−3)) ∪ (S ∩ Vd) is a dominating set for G of size less than k, a
contradiction. Hence, d ≤ 3k− 8.
Suppose now that d = 3k− 8.
For k = 6 we have d = 10. If S ∩ V8 6= ∅, then S ∩ (V6 ∪ V7) = ∅. As a result v5 is adjacent to any vertex in V6. Let

v6 ∈ V6∩ N(v5). There is aminimumdominating setD1 containing both v5 and v6. It follows that |D1 ∩ (V6 ∪ · · · ∪ V10)| ≥ 3.
This leads to (D1 ∩ (V0 ∪ · · · ∪ V5)) ∪ (S ∩ (V6 ∪ · · · ∪ V10)) being a dominating set for G of size at most 5. This is a
contradiction. So, S ∩ V8 = ∅. But then by Lemma 1, |S ∩ V10| = |S ∩ V7| = 1. As an immediate result, the vertex in
S ∩ V10 is adjacent to any vertex in V9, and the vertex in S ∩ V7 is adjacent to any vertex in V8. Let v7 ∈ V7 ∩ S, and let
v8 ∈ V8 ∩ N(v7). There is aminimumdominating setD2 containing both v7 and v8. It follows that |D2 ∩ (V8 ∪ V9 ∪ V10)| ≥ 2.
Now, (D2 ∩ (V0 ∪ · · · ∪ V7)) ∪ (S ∩ V10) is a dominating set for G of size at most 5, a contradiction.
For k = 7 we have d = 13. If S ∩ V11 6= ∅, then S ∩ (V12 ∪ V13) 6= ∅. It follows that |S ∩ V8| = 1 and

|S ∩ (V7 ∪ V9 ∪ V10)| = 0. Assume that v8 ∈ S ∩ V8. Then v8 is adjacent to any vertex in V7 ∪ V9. Let v9 ∈ V9 ∩ N(v8).
There is a minimum dominating set F1 containing both v8 and v9. It follows that |F1 ∩ (V9 ∪ · · · ∪ V13)| ≥ 3. But then
(F1 ∩ (V0 ∪ · · · ∪ V8)) ∪ (S ∩ (V9 ∪ · · · ∪ V13)) is a dominating set for G of size at most 6. This is a contradiction. So,
S ∩ V11 = ∅. By Lemma 1, we may assume that |S ∩ V10| = 1, and |S ∩ V9| = |S ∩ V12| = 0. Let v10 ∈ V10 ∩ S, and let
v11 ∈ V11∩N(v10). There is aminimum dominating set F2 containing both v10 and v11. It is obvious that F2∩(V12∪V13) 6= ∅.
Now, (F2 ∩ (V0 ∪ · · · ∪ V10)) ∪ (S ∩ V13) is a dominating set for G of size at most 6, a contradiction.
In the rest of the proof we suppose that k ≥ 8. We proceed with Claim 1.

Claim 1. |S ∩ (Vd−5 ∪ · · · ∪ Vd)| ≤ 3.

To see this, assume to the contrary that |S ∩ (Vd−5 ∪ · · · ∪ Vd)| ≥ 4. Then, V7 ∪ V8 ∪ · · · ∪ Vd−7 is dominated by at most
k− 8 vertices of S. But any k− 8 vertices of S dominate the vertices of at most 3k− 24 sets among V7, V8, . . . , Vd−7, while
(d− 7)− 7+ 1 = 3k− 21, a contradiction.
Now, S ∩ (Vd−5 ∪ Vd−4 ∪ Vd−3) 6= ∅. We need to consider the following cases:
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Case 1: S ∩ Vd−5 6= ∅. Let vd−5 ∈ S ∩ Vd−5, and let vd−4 ∈ Vd−4 be adjacent to vd−5. According to Theorem B, there is
a minimum dominating set S ′ containing vd−5, vd−4. It follows that

∣∣S ′ ∩ (Vd−5 ∪ · · · ∪ Vd)∣∣ ≥ 4. Now, (S ′ ∩ (V0 ∪ · · · ∪
Vd−5)) ∪ (S ∩ (Vd−4 ∪ · · · ∪ Vd)) is a dominating set for G of size less than k, a contradiction.
Case 2: S ∩ Vd−5 = ∅. By Claim 1, |S ∩ (Vd−4 ∪ · · · ∪ Vd)| ≤ 3.

If |S ∩ (Vd−4 ∪ · · · ∪ Vd)| = 3, then V7∪V8∪· · ·∪Vd−6 is dominated by at most k−7 vertices of S. But any k−7 vertices of S
dominate the vertices of at most 3k−21 sets among V7, V8, . . . , Vd−6, while d−6−7+1 = 3k−20, a contradiction. So we
suppose that |S ∩ (Vd−4 ∪ · · · ∪ Vd)| = 2. But then by Lemma 1, |S ∩ Vd−3| = |S ∩ Vd| = 1. Let ud−3 ∈ S ∩ Vd−3. As a result,
ud−3 is adjacent to any vertex in Vd−4 ∪ Vd−2. Let ud−2 ∈ Vd−2 ∩ N(ud−3). There is a minimum dominating set S ′1 containing
both ud−3 and ud−2. It is obvious that

∣∣S ′1 ∩ (Vd−3 ∪ · · · ∪ Vd)∣∣ ≥ 3. Now, (S ′1 ∩ (V0 ∪ · · · ∪ Vd−5)) ∪ (S ∩ (Vd−3 ∪ · · · ∪ Vd))
is a dominating set for G of size less than γ (G), a contradiction.
Hence, d ≤ 3k− 9. �

It follows from Theorem 2, and the results in [1,2], that a connected k-dot-critical graph Gwith G′ = ∅ has a diameter of
at most 2k − 3 for k ∈ {3, 4, 5, 6}. In the next theorem we show that the diameter of a 2-connected k-dot-critical graph G
with G′ = ∅ is at most 2k− 3, for k ≥ 7.

Theorem 3. A 2-connected k-dot-critical graph G with G′ = ∅ has a diameter of at most 2k− 3, k ≥ 7.

Proof. Let G be a 2-connected k-dot-critical graph with G′ = ∅ for k ≥ 7. Let x, y ∈ V (G) and d(x, y) = diam(G) = d. For
i = 0, 1, 2, . . . , d, let Vi denote the set of all vertices of G at distance i from x. So, V0 = {x} and y ∈ Vd. Since G is 2-connected,
|Vi| ≥ 2, for i = 1, 2, . . . , d− 1. The following fact follows from Theorem A.

Fact 2. If |S ∩ Vi| = 1 for some integer 7 ≤ i ≤ d− 1, then |S ∩ (Vi−1 ∪ Vi ∪ Vi+1)| ≥ 2.

Let v4 ∈ V4 and v5 ∈ V5 be two adjacent vertices. According to Theorem B, there exists a dominating set S containing
both v4 and v5. For V0 ∪ V1 ∪ · · · ∪ V5 to be dominated by S, it follows that |S ∩ (V0 ∪ V1 ∪ · · · ∪ V5)| ≥ 4. So, by Fact 2, for
any integer 6 ≤ i ≤ d− 3, |S ∩ (Vi ∪ Vi+1 ∪ Vi+2 ∪ Vi+3)| ≥ 2. If d = 6+ 4j+ r where 0 ≤ r ≤ 3, then k ≥ 4+ 2j+ d r2e.
Now, it follows that for r ∈ {1, 3}, d ≤ 2k− 3, and for r ∈ {0, 2}, d ≤ 2k− 2. This completes the proof for r ∈ {1, 3}.
Suppose that d = 2k− 2 for r ∈ {0, 2}. We distinguish the following cases, according to the value of r .
Case 1: r = 0. It follows that |S ∩ Vd−5| = 1 and |S ∩ (Vd−5 ∪ Vd−4 ∪ · · · ∪ Vd)| = 3. Let vd−5 ∈ S ∩ Vd−5 and

vd−4 ∈ Vd−4 be adjacent to vd−5. By Theorem B, there is a minimum dominating set S1 such that vd−4, vd−5 ∈ S1. It follows
that |S1 ∩ (Vd−5 ∪ Vd−4 ∪ · · · ∪ Vd)| = 4. Now, (S1 ∩ (V0 ∪ V1 ∪ · · · ∪ Vd−5)) ∪ (S ∩ (Vd−4 ∪ · · · ∪ Vd)) is a dominating set
for G of size less than k, a contradiction. Hence, d ≤ 2k− 3.
Case 2: r = 2. It follows from Lemma 1 that |S ∩ Vd| = |S ∩ Vd−4| = |S ∩ Vd−3| = 1, and S ∩ (Vd−1 ∪ Vd−2) = ∅. Let

vd−3 ∈ S ∩ Vd−3, and let vd−2 ∈ Vd−2 be adjacent to vd−3. There is a minimum dominating set S2 such that vd−3, vd−2 ∈ S2.
Then, |S2 ∩ (Vd−3 ∪ Vd−2 ∪ Vd−1 ∪ Vd)| = 3. Now, (S2 ∩ (V0 ∪ V1 ∪ · · · ∪ Vd−3)) ∪ (S ∩ Vd) is a dominating set for G of size
less than k, a contradiction. Hence, d ≤ 2k− 3. �

Since every totally k-dot-critical graph is k-dot-critical, the bounds in Theorems 2 and 3 hold for connected totally k-
dot-critical graphs. We believe that any connected k-dot-critical graph G with G′ = ∅ is 2-connected. We close with the
following question.

Question. Is it true that a connected k-dot-critical graph G with G′ = ∅ is 2-connected?
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