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1. Introduction

Avertex of a graph G dominates itself and its neighbors. A set of vertices S in a graph G is a dominating set if each vertex of
V(G) \ S is dominated by some vertices of S. The domination number, y (G), of G is the minimum cardinality of a dominating
set of G. We denote the open neighborhood of a vertex v by N(v) and its closed neighborhood by N[v]. We indicate that for
two vertices u and v, v is adjacent to u by writing v L u. A vertex v of a graph G is a critical vertex if y (G — v) < y(G). A
graph G is vertex-critical if any vertex of G is a critical vertex; see [3].

For a pair of vertices v, u of a graph G, we denote as G.(vu) the graph obtained by identifying v and u, and (vu) denotes
the identified vertex. So, G.(vu) may be viewed as the graph obtained from G by deleting the vertices v and u and appending
a new vertex, labeled by (vu), that is adjacent to all the vertices of G — v — u that were originally adjacent to either of v or
u. In the case where v is adjacent to u, G.(vu) is the graph obtained by contracting vu.

Burton and Sumner [1] introduced a new critical condition for the domination number. A graph G is called domination
dot-critical, or simply dot-critical, if contracting any edge decreases the domination number, i.e., y (G.(vu)) < y(G), for any
two adjacent vertices v and u. It is totally dot-critical if identifying any two vertices decreases the domination number. If G
is dot-critical and y (G) = k, then G is called k-dot-critical.

Let G’ be the set of critical vertices of G. In [1], it is proved that a connected 3-dot-critical graph G with G’ = @ has a
diameter of at most 3, and a connected totally 3-dot-critical graph G with G' = @ has a diameter of at most 2. The upper
bound of the diameter of a k-dot-critical graph G with G’ = @, for k > 4, is left as an open question.

Question 1 ([1]). What are the best bounds for the diameter of a k-dot-critical graph and a totally k-dot-critical graph G with
G =0, for k > 4?

Chengye et al. [2] studied total domination dot-critical graphs with no critical vertices, and proved that a connected
4-dot-critical graph G with G’ = ¢ has a diameter of at most 5.

We study Question 1 and give an upper bound for the diameter of a k-dot-critical graph G with G’ = ¢, for k > 5. We
make use of the following:

* The paper is supported by Shahrood University of Technology.
E-mail address: n.jafarirad@shahroodut.ac.ir.

0166-218X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.10.015



https://core.ac.uk/display/82075248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:n.jafarirad@shahroodut.ac.ir
http://dx.doi.org/10.1016/j.dam.2008.10.015

1648 N. Jafari Rad / Discrete Applied Mathematics 157 (2009) 1647-1649

Theorem A ([1]). If G is a dot-critical graph and N[v] C N[u], thenv € G'.

Theorem B ([1]). Let a, b € V(G) for a graph G. Then y (G.(ab)) < y (G) if and only if either there exists a minimum dominating
set S of Gsuch that a, b € S or at least one of a or b is critical in G.

2. Main results

Let k > 5 be an integer. In this section, we determine the maximum diameter of a k-dot-critical graph G with G’ = @.
First we have the following lemma.

Lemma 1. Let S be a minimum dominating set in a k-dot-critical graph G with G' = @, k > 5. Let x be a diameterical vertex, and
fori=0,1,2,...,d, let V; denote the set of all vertices of G at distanceifromx.If V4N'S = @, then |S N (Vg_ U V4_1)| > 2.

Proof. Let G be a k-dot-critical graph with G = @, for k > 5. Let x,y € V(G) and d(x,y) = diam(G) = d. For
i=0,1,2,...,d letV; denote the set of all vertices of G at distance i from x. So, Vo = {x} and y € V,. Let S be a minimum
dominating set, and let V; NS = (. Assume to the contrary that |[S N (V3_, UVy_1)| < 1.Then |[V4_1 N'S| = 1. There is a
vertex vy_1 € V4—1 NS such that vg_; dominates y. It follows that N[y] € N[vg_1]. But then Theorem A implies thaty € G,
a contradiction. W

Theorem 2. A connected k-dot-critical graph G with G = @ has a diameter of at most the values given by the following:
{7, k=5
3k-9, k=>6"

Proof. Suppose G is a k-dot-critical graph with ¢ = @, for k > 5. Letx,y € V(G) and d(x,y) = diam(G) = d. For
i=0,1,2,...,dIletV;denote the set of all vertices of G at distance i from x. So, Vo = {x} and y € V,. Assume thatd > 5. Let
v4 € V4 and vs € Vs be two adjacent vertices. According to Theorem B, there exists a minimum dominating set S containing
both v4 and vs. It follows from Theorem A, that SN (Vo UV, U --- U Vs)| > 4.

For k = 5 we may assume that [SN (Vo UV; U ---UVs)| = 4. This implies that |[S\ (V\, UV, U---UV5)| = 1, and so
d < 8. Suppose that d = 8. By Lemma 1, we conclude that S N Vg # . It follows that vs is adjacent to any vertex in Vg. Let
ug € Vs N N(vs). There is a minimum dominating set Sp in G containing both vs and ug. It is obvious that Sy N (V; U Vg) # 0.
Furthermore, Sy N'V4, = @. Now (Sp N (Vo U --- U V5)) U (S N Vg) is a dominating set for G of size less than 5. This is a
contradiction. Sod < 7.

So, we henceforth let k > 5. Without loss of generality we assume that d > 8. Then, V; U Vg U - - - U V; is dominated by
at most k — 4 vertices of S. Since any vertex of S can dominate at most V; U V1 U Vi, for some integer i, we conclude by
Lemma 1thatd <64 3(k—4) —1=3k—7.

Suppose that d = 3k — 7. It follows that SN V| = |SNVy_3| = 1,and S N (Vy_, U V4_1) = 0. Let vg_3 € S N V4_3 and
vg_2 € V4_, be adjacent to vy_3. There is a minimum dominating set S; containing vy_3 and v4_5. According to Theorem A,
ISt N (Vg UVy_1 UVy)| = 2. Now, (S5 N (Vg U --- U Vy_3)) U(S N Vy) is a dominating set for G of size less than k, a
contradiction. Hence, d < 3k — 8.

Suppose now thatd = 3k — 8.

Fork = 6 we haved = 10.IfSN Vg # @, then S N (V5 U V;) = . As a result vs is adjacent to any vertex in V. Let
vg € VeN N(vs). There is a minimum dominating set D; containing both vs and vg. It follows that [D; N (Vg U - - - U V)| > 3.
This leads to (D1 N (Vo U --- U V5)) U (SN (Vg U --- U Vyp)) being a dominating set for G of size at most 5. This is a
contradiction. So, S N Vg = (. But then by Lemma 1, [SN Vo] = |SNV;| = 1. As an immediate result, the vertex in
S N Vyo is adjacent to any vertex in Vg, and the vertex in S N V5 is adjacent to any vertex in Vg. Let v; € V; N S, and let
vg € Vg N N(v7).Thereis aminimum dominating set D, containing both v; and vg. It follows that |D, N (Vg U Vg U V)| > 2.
Now, (D, N (Vo U --- U V7)) U (SN Vyp) is a dominating set for G of size at most 5, a contradiction.

Fork = 7wehaved = 13.1fSNVy;y # @, then S N (Vi U Vi3) # (. It follows that [SNVg| = 1 and
SN (V7 UVgU Vi) = 0. Assume that vg € S N V. Then vg is adjacent to any vertex in V; U Vg. Let vg € Vg N N(vg).
There is a minimum dominating set F; containing both vg and vg. It follows that |F; N (Vg U ---U Vy3)| > 3. But then
FiNnWVoU---UVg) UGS N (VyU---U Vy3)) is a dominating set for G of size at most 6. This is a contradiction. So,
SNV = ¢. By Lemma 1, we may assume that [SN V| = 1,and |[SNVy| = [SN V3| = 0. Let vyg € V1o N S, and let
v11 € Vi1 NN(v10). There is a minimum dominating set F, containing both vqg and vq1. It is obvious that F, N (Vi, UVy3) #£ 0.
Now, (F, N (Vo U ---U Vo)) U (S N Vy3) is a dominating set for G of size at most 6, a contradiction.

In the rest of the proof we suppose that k > 8. We proceed with Claim 1.

Claim 1. SN (V45 U---UVy)| < 3.

To see this, assume to the contrary that |[S N (Vy_s U ---UVy)| > 4. Then, V; U Vg U - .- U V,_7 is dominated by at most
k — 8 vertices of S. But any k — 8 vertices of S dominate the vertices of at most 3k — 24 sets among V-, Vg, ..., V4_7, while
(d—7)—7+4 1= 3k — 21, a contradiction.

Now, S N (Vg5 U Vy4_4 U V4_3) # . We need to consider the following cases:
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Case 1: SN Vy_5 # 0. Let vg_s € SN V,_5, and let vg_4 € Vy_4 be adjacent to vg_s. According to Theorem B, there is
a minimum dominating set S’ containing vy_s, vy_4. It follows that ]S/ NWVysU---U Vd)| > 4.Now, (SN (VoU---U
Va_s) U (SN (Vg4 U---UVy))is adominating set for G of size less than k, a contradiction.

Case2:SNVzs =@.ByClaim1,|SN (Vg4 U---UVy)| < 3.
IfISN(Vy_aU---UVy)| =3,thenV; UVgU---UV,_gis dominated by at most k — 7 vertices of S. But any k — 7 vertices of S
dominate the vertices of at most 3k — 21 sets among V7, Vs, ..., Vy_g, whiled — 6 — 7+ 1 = 3k — 20, a contradiction. So we
suppose that [SN (Vg_4 U ---UVy)| = 2.But thenby Lemma 1, |[SN Vy_3| = |[SN V4| = 1. Let ug_3 € S N V4_3. As aresult,
ug—3 is adjacent to any vertex in Vq_4 U Vg_,. Let ug_, € V4_, N N(ug4—3). There is a minimum dominating set S containing
both ug_3 and ug_». It is obvious that S} N (Vg_3 U - - - U Vg)| = 3. Now, (S; N (Vo U -+ - U Vg_5)) U (SN (Vg3 U -+ - U V)
is a dominating set for G of size less than y (G), a contradiction.

Hence,d <3k—9. m

It follows from Theorem 2, and the results in [1,2], that a connected k-dot-critical graph G with G’ = @ has a diameter of
at most 2k — 3 for k € {3, 4, 5, 6}. In the next theorem we show that the diameter of a 2-connected k-dot-critical graph G
with G = @ is at most 2k — 3, for k > 7.

Theorem 3. A 2-connected k-dot-critical graph G with G' = @ has a diameter of at most 2k — 3,k > 7.

Proof. Let G be a 2-connected k-dot-critical graph with G’ = @ fork > 7. Letx,y € V(G) and d(x, y) = diam(G) = d. For
i=0,1,2,...,d1letV;denote the set of all vertices of G at distance i from x. So, V; = {x} and y € Vj,. Since G is 2-connected,
Vil = 2,fori=1,2,...,d— 1. The following fact follows from Theorem A.

Fact 2. If SN V;| = 1 for some integer 7 <i <d — 1,then SN (Vi.; UV; U V1) > 2.

Let v4 € V4 and vs € Vs be two adjacent vertices. According to Theorem B, there exists a dominating set S containing
both v4 and vs. For Vo U V; U - - - U V5 to be dominated by S, it follows that [SN (Vo UV, U --- U Vs)| > 4. So, by Fact 2, for
anyinteger6 <i<d—3,|SN(V;UVi 1 UV, UViy3)| >2.1fd=6+4j+rwhere0 <r < 3,thenk >4+ 2j + (%1.
Now, it follows that for r € {1, 3},d < 2k — 3, and for r € {0, 2}, d < 2k — 2. This completes the proof for r € {1, 3}.

Suppose that d = 2k — 2 for r € {0, 2}. We distinguish the following cases, according to the value of r.

Case 1: r = 0. It follows that [SNVy_5] = Tand SN (Vs UVy_4U---UVy)| = 3. Letvgs € SN Vy5 and
Vg_4 € Vy_4 be adjacent to vy_s. By Theorem B, there is a minimum dominating set S; such that vg_4, v4_5 € S. It follows
that |S;N (Vg_s UVy_4U---UVy)| =4.Now, SN (VoUViU---UVi_5) UGS N (Vyg_qU---UVy)) isadominating set
for G of size less than k, a contradiction. Hence, d < 2k — 3.

Case 2: r = 2. It follows from Lemma 1 that [SNVy| = SN V4] = [SNVy_3] = 1,and S N (V4_1 U Vy_5) = @. Let
vg—3 € SN Vy_3,and let vg_, € V4_, be adjacent to vg_3. There is a minimum dominating set S, such that vg_3, v4_3 € S,.
Then, |S; N (Vy_3 U Vg, UVy_1 UVy| = 3. Now, (S; N (Vo UV U---UVy_3)) U(S NV, isadominating set for G of size
less than k, a contradiction. Hence,d <2k —3. W

Since every totally k-dot-critical graph is k-dot-critical, the bounds in Theorems 2 and 3 hold for connected totally k-
dot-critical graphs. We believe that any connected k-dot-critical graph G with G' = ¢ is 2-connected. We close with the
following question.

Question. Is it true that a connected k-dot-critical graph G with G' = ) is 2-connected?

Acknowledgements

The author wishes to thank the referees for their many helpful comments.

References

[1] T.Burton, D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006) 11-18.
[2] Z.Chengye, Y. Yuansheng, S. Linlin, Domination dot-critical graphs with no critical vertices, Discrete Math. 308 (2008) 3241-3248.
[3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamental of Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, NY, 1998.



	On the diameter of a domination dot-critical graph
	Introduction
	Main results
	Acknowledgements
	References


