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Abstract 

Joseph, E. and S.S. Skiena, Model-based probing strategies for convex polygons, Computa- 

tional Geometry: Theory and Applications 2 (1992) 209-221. 

We prove that n + 4 finger probes are sufficient to determine the shape of a convex n-gon from 

a finite collection of models, improving the previous result of 2n + 1. Further, we show that 

n - 1 are necessary, proving this is optimal to within an additive constant. For line probes, we 

show that 2n + 4 probes are sufficient and 2n - 3 necessary. The difference between these 

results is particularly interesting in light of the duality relationship between finger and line 

probes. 

1. Introduction 

Tactile sensing is an important paradigm in robotics, and for reasons of 

economy and robustness is often used instead of more sophisticated vision 

systems to explore unknown environments. Cole and Yap [l] introduced the 

notion of a finger probe to model a tactile sensor, where a finger probe measures 

the first point of contact between a directed line 1 and an object P. Since Cole and 

Yap’s work, a significant literature in geometric probing has developed, which 

studies the power of different sensor models for reconstructing geometric objects. 

The most up-to-date collection of results in probing appear in [2]. 

We seek probing strategies which completely determine a convex polygon in as 

few probes as possible. Cole and Yap [l] proved that 3n finger probes are 

necessary and sufficient to determine an unknown convex n-gon, given only the 
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position of some point in the interior of the polygon. Probing strategies for 

nonconvex polygons have been developed by Alevizos, Boissonnat and Yvinec 

[31. 
Since the environment of industrial robots is usually very restricted, we often 

have apriori knowledge of the class of objects the robot will manipulate. Thus in 

most tactile sensing applications, we are concerned with identifying an object and 

its orientation from a finite, pre-defined set of possible objects. Grimson and 

Lozano-Perez [4-61 have studied model-based tactile sensing, and shown that 

heuristics can be effective to distinguish between models. More efficient probing 

strategies can result for model-based determination problems. Bernstein [7] 

proved that 2n + 2 finger probes are sufficient to determine a convex n-gon from 

a finite collection of models r, which is improved to 2n + 1 in [8]. Lyons and 

Rappaport [9] showed that m - 1 probes are sufficient to identify a convex 

polygon from a set of m models, if each model has a particular edge aligned with 

a known reference plane. This is a severe restriction, which if relaxed leads to a 

mn - 1 probe determination strategy. In this paper, we prove n - 1 probes are 

necessary for model-based determination of convex polygons and that 12 + 4 

probes are sufficient. Therefore, our result is optimal to within an additive 

constant. 

Other sensor models are also of interest. A line probe measures the first time 

of intersection between a line moving parallel to itself and an object. Thus the 

first line tangent to the object with a given slope is returned. Li [lo] showed that 

3n + 1 line probes are necessary and sufficient to determine an unknown convex 

n-gon. The problem of model-based determination with line probes was posed in 

[ll], and previously no non-trivial bounds were known. In this paper, we also 

prove that 2n - 3 line probes are necessary and 2n + 4 probes sufficient, which 

are again tight to within an additive constant. 

These results are particularly interesting in light of the duality relationship, 

discovered independently by Dobkin, Edelsbrunner, and Yap [12] and Greschak 

[13], that exists between line probes and finger probes which all pass through a 

single point, the origin. For all previous determination problems, the finger and 

line probing models have been identical in power to within one probe. However, 

our results show that line probes are significantly weaker than unrestricted finger 

probes for model-based determination. 

2. Model-based results for finger probes 

In the model-based probing problem, we are given a set of convex polygons r, 

and a point 0 which lies in the relative interior of an unknown convex polygon P 

from l-‘. We seek to determine P and its orientation using as few probes as 

possible. 
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Fig. 1. Determining e,,, e, and W, using Bernstein’s strategy. 

Our finger probing strategy is a refinement of Bernstein’s strategy [7]. There 
are two aspects to this strategy. First, all the models are preprocessed to find an 
angle emin small enough so that at most five probes through 0, each inclined with 
respect to the previous probe by 0min as in Fig. 1, will determine the first edge e, 
of P. Since P is convex, three collinear contact points determine an edge, and as 
we will show an appropriately small 0min can be computed from r which will 
guarantee three such points in five probes. If five probes are actually used, then 
two neighboring edges will be determined. 

Bernstein also observed that if two probes (F,, F2) are aimed parallel to a 
previously determined edge e, but at a height less than some h,i,, both probes 
will contact the next edge ei+r of P, determining e,+, and implicitly the vertex 
between ci and ci+l. Bernstein’s strategy proceeds to walk around the polygon 
determining each edge in two probes, for a total of 2n + 2 probes. 

We improve Bernstein’s strategy by showing that vertex vi+r between e, and 
e,+i can be determined from the initial angle vi, ci and r in exactly one probe. 
Determine e, and e, in five probes using Bernstein’s strategy; these labels are 
defined after probing. Overlay all models which possess the same initial angle q, 
between e, and e,, as in Fig. 2. Relative to edge ei (e, in Fig. 2), we have a 
number of choices for the next edge ei+l. 

Aim a probe Z$ (F, in Fig. 2) that is parallel to and above e, and is at a height 
below both the lowest model vertex (S, in Fig. 2), and below any intersection of 
candidate edges (S, in Fig. 2). Such a probe will intersect P at a point unique to 
only one candidate edge, which can be determined by substituting the coordinates 
of the collision point into the equations for the candidate edges, although the 
length of this new edge is still unknown. Thus vertex vi+, and the orientation of 
edge ci+l have been found at a cost of one probe, and we can walk around P 
determining each new vertex at the cost of a single probe. 

It remains to be specified how to determine emi,, [8]. For any point s in polygon 
P E r, define ps’ as the smallest angle spanned by any edge of P by a point s. 
Further, let @Ein = Min{PP, s E P}. In a convex polygon, the point which gives 
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Fig. 2. Bernstein’s strategy modified; three possible choices for e2. 

rise to the minimum angle must be on a vertex or edge of P. Finally define 

/kin = MinVk, ) P E r> and 61rnin = Pmin/5. The factor of 4 ensures that five 

probes, each inclined at 0min with respect to the previous one, will all remain 

within an angular sector of Pmin. Such an angular sector can cross only one vertex 

boundary. By testing each pair of edges for each model, emin can be computed in 

O(n2m) time. 

Theorem 1. n + 4 finger probes are sufficient to determine a convex polygon P 
from a set of models r. 

Proof. The previous discussion demonstrated that it is possible to determine P in 

one probe per vertex, once the initial vertex Y, has been determined. Fig. 3 

illustrates the possible results for our initial probes, each aimed at 0 at an angle 

of t!Imin off from the previous probe. Three collinear points determine e, after 

either three, four, or five probes. When five probes are required, the orientation 

of e, and the angle between e, and e, also results. When four probes suffice to 

determine e,, a fifth probe can be sent at an angle - 61min relative to F,, also 

determining e,. When three probes suffice to determine e,, Bernstein’s strategy 

can be employed to determine e, with two more probes. Thus we can determine 

two edges i.e. the first vertex Y, in exactly five probes. As discussed above, the 

FS 

Fig. 3. Starting configurations for Bernstein’s strategy. 
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other n - 1 vertices can be identified with one probe each, for a total of n + 4 
finger probes. •i 

To determine the time complexity of this strategy, consider that there are m 
models in the set, each of at most n sides. The initial stage finds the angle ~JJ, 
between edges e, and e, with O(n%r) invested in computing emin. All internal 
angles of the polygons that match ~JJ, are then superimposed to give the overlay 
diagram of Fig. 2. Each polygon can have up to n angles matching ql, so the 
overlay diagram consist of at most nm superimposed polygons. For the second 
phase, each probe is aimed below the lowest intersection point, which can be 
computed taking the minimum over all (“2”) possible intersection points. This 
process of finding the lowest intersection point must be repeated for each edge as 
we walk along the polygon, for a total time complexity of O(n3m2). We remark 
that a global value for the minimum intersection point can be precomputed in 
O(m*n’) time, so that each probe takes O(1). 

Theorem 2. n - 1 finger probes are necessary to determine a conuex polygon P 

from a set of models r. 

Proof. r will consist of two models, each regular (n - 1)-gons with an additional 
vertex raised above a single edge e of each polygon. The raised vertex will be 
close to the center of e and infinitesimally above e, such that any line passing 
through two raised vertices intersects the interior of P. The raised vertices added 
to the two models are not identical, as in Fig. 4. 

In our lower bound proof, we assume that the position of the n - 1 regular 
vertices are freely given to the prober, so that to complete determination only the 
position of the raised vertex must be found. Because the raised vertex lies only 
slightly above an (n - 1)-gon edge, only one of the n - 1 possible positions of the 
raised vertex can be tested with a single probe. Thus an adversary can adjust the 

Raised vertices 

Fig. 4. Models for finger probe lower bound. 
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orientation of the model so the n - 2 non-raised edges will be probed before the 
location of the raised edge is known. Then another probe must be spent to 
distinguish between the two models. Thus II - 1 probes are necessary to 
determine P. 0 

3. Model-based results for line probes 

There is a duality relationship between finger probes through 0 and line 
probes, which means the lower bound of Theorem 2 immediately dualizes to line 
probes. Although we might hope that the strategy of Theorem 1 can be adapted 
to line probes, this strategy aims probes close to edges, which in general will not 
pass through 0. In this section, we prove that -2n line probes are necessary and 
sufficient for determination. 

3.1. An upper bound for line probes 

The structure of our strategy is based on developing constraints from 
superimposing all possible orientations of models, as in Theorem 1. We observe 
that the position of a vertex can be identified with a single line probe 1, if it could 
be known that 1 was oriented in such a manner that no two candidate vertices 
define a line with the same slope as 1. An additional probe may be necessary to 
confirm that two vertices define an edge of P. 

We define a diagonal as a line segment joining two vertices of a polygon P. 
After an initialization procedure which determines diagonal AB of P, we may use 
AB as a reference to superimpose all models with diagonals of equal length, as in 
Fig. 5. This divides the problem of determining P into two parts, determining the 
vertices of P above and below the diagonal. Each new vertex vi of P defines two 
new diagonals, viv,@ and vivb, where vOv,yb is the current diagonal being probed. 
The algorithm recurs on each diagonal until determination is completed. The 

\ I 

\ 

\ 
P2 __-J 

__-- 

I I 

Fig. 5. Three polygons I’,, I’*, and P3 overlayed on diagonal AB. 
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diagonals encountered during the execution of this procedure define P and its 
triangulation. 

The initialization phase of our strategy determines the first vertex Y, of P by 
sending line probes inclined at ~min with respect to the previous probe, until three 
probes pass through the same point, Y,. The angle #min = (JG - q&/5, where 

r/J max is largest internal angle of all models, has the property that five successive 
line probes each inclined at ~min to the previous one can only cross a single edge 
boundary. Ideally, only three probes are necessary to identify an initial vertex. 
However similar to Theorem 1, in the worst case L,, L2 and L3 do not pass 
through the same point; see Fig. 6. By sending L, inclined at +Grnin with respect 
to L3 and L5 inclined at -&in with respect to L,, we can identify two adjacent 
vertices, and the edge between them for the cost of five probes. No other edges 
can be crossed since it takes at least 5~,i” to cross an edge boundary. It will be 
shown that each vertex or edge can be confirmed for the cost of a single probe. 
Thus we can take the cost of an initial vertex to be three probes. The extra vertex 
and edge of Fig. 6 will either be identified during initialization by L, and L5, or 
be confirmed by two other probes later in the algorithm. By performing the 
initialization procedure twice, one from the top of the polygon and once from the 
bottom, we can determine two distinct initial vertices defining the initial diagonal 
AB. 

The strategy will recur on each diagonal, aiming probes at shallow-enough 
angles to determine new vertices if they exist. To find this angle, consider the 
situation of Fig. 7, where (v,, v~) is the current diagonal. Let M be the set of all 
possible model vertices which lie above (v,, v~). For any points vi, vi E M U va, 
let ~~j be the angle defined between lines (v,, v~) and (vi, vi). Let cU,i, = 
Min(aij > 0) for all v;, vj E M U 1/,. A probe aimed at an angle ~Y,in/2 above 
(v,, q,) will contact exactly one vertex of M U va. If it contacts v,, vav,lrb must be 
an edge of P. 

Fig. 6. Determining the first two vertices of P. 
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‘V3 

Fig. 7. Subproblem with known diagonal v~v,,. 

Theorem 3. 2n + 4 line probes are suficient to determine a convex polygon P from 

a set of models r. 

Proof. The first two vertices of P can be determined in three probes each as 

discussed above. Each second phase probe, aimed at ff~i”/2 with respect to a 

current diagonal vavh, will either be incident upon one vertex of M or else pass 

through one of the vertices of vOvb. In the first case, we have determined a new 

vertex of P and defined two new diagonals, while in the second case we have 

confirmed that the two vertices of the diagonal are adjacent on P. Since there are 

n - 2 vertices and n edges of P which must be confirmed, and each second phase 

probe confirms either an edge or vertex of P, 6 + n + II - 2 = 2n + 4 probes are 

sufficient to determine P. Cl 

Each of the m convex n-gon models defines at most O(n log n) diameters of a 

given length [14]. Thus a given diagonal may define O(mn’log n) points in M. 

For any set of r points, the minimum slope coin can be determined in O(r log r) 
using the algorithm of Cole, Salowe, Steiger and Szemeredi [1.5]. Thus with O(n) 

probes and O(mn’ log(n)log(mn’ log n)) steps to determine LY,in for each probe, 

we have a time complexity of 0(mn3 log(n)log(mn* log n)) for the algorithm. We 

remark that a gobal value for ~,in can be precomputed in 0(mn3 log(mn* log n)) 

time, so that each probe takes O(1) time. 

3.2. A lower bound for line probes 

A lower bound on the complexity of determination of an n-gon can be shown 

by specifying a set of models, and describing an adversary which forces any 

probing strategy to take a given number of probes to determine P from the given 

set of models. We shall prove a -2n lower bound on determination with line 

probes, which requires a more complicated set of models than the proof of 

Theorem 2. 

Consider three regular (n - 1)-gons, of diameters 1, 1 + X, and 1 + 2~ where 

0 <x << 1, nested within each other as in Fig. 8. vb is the ith vertex of the kth 

largest (n - 1)-gon. Observe that we can now construct 3n-’ distinct convex 

(n - 1)-gons ($I, v:2, . . . , Y>z;) where ki E { 1,2,3}. We now convert each of 

these (n - 1)-gons to an n-gon, by adding a single raised vertex to some edge of 

the polygon. Now define a raised edge e as having associated with it a raised 
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Fig. 8. Models for line probe lower bound. 

vertex Y’, a distance 0 < E <<x above the center of e. By raising each of the 

possible edges, each of these (n - l)-gons gives rise to II - 1 distinct n-gons. 

Eliminating duplicates from the resulting set of (n - 1)3”-l polygons defines the 

set of models for our lower bound proof. 

What is the significance of the raised edge? A raised edge forces any probing 

strategy to probe both the edges and the incident vertices. The condition 

0 < E <<x must hold because if E were much larger as in Fig. 9, a single probe Lj 
could determine if vf or I$ existed, and whether the resulting edge ei were raised. 

For the given set of models, each of the n - 1 major vertices of P has three 

possible positions, and any of the n - 1 edges may be raised edge. Thus any 

determination strategy can be considered as solving a series of subproblems, each 

of which is of one of the following types: 

l Two consecutive major vertices of P are known, but it is not determined 

whether this edge e is raised. Determine whether e is raised. 

l One major vertex of P is known, but the adjacent major vertex and the 

adjoining edge of P are not known. Determine the unknown vertex and edge. 

9 Two consecutive major vertices and the connecting edge of P are not known. 

Determine the vertices and the edge. 

The adversary will force any strategy to take one probe to determine each 

vertex and edge, after initialization. This involves showing that these subproblems 

require at least one, two, and three probes respectively. Since there are two 

possible models in the first case, and any probe which will determine whether e is 

raised is restricted to such a narrow range that this probe cannot help in 
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Fig. 9. The size of a raised edge, 0 < 0 < 4. 

determining any other vertices of P, at least one probe is necessary to test if e is 
raised. The second and third cases are resolved below. 

Lemma 4. At least 2 line probes are required to determine an unknown edge and a 
single incident vertex. 

Proof. We will actually consider the more restricted case where the unknown 
incident vertex has a choice between two, and not three, possible locations, as 
illustrated in Fig. 10. Let vi-1 be the known vertex and vi and e, the unknown 
vertex and edge, with Y: or Y:’ the possibly raised vertex. The general case of 
three possible locations for the unknown vertex cannot be solved in fewer probes, 
and the restricted case here will be required in the proof of Lemma 5. 

Table 1 summarizes the contact points returned by the adversary for probes of 
different orientations. Orientation angles are measured with respect to Y~_~ 0 as 
shown in Fig. 10. Orientations >90 degrees or ~90 - I#J degrees provide no 

v;’ 

Vi2 

Fig. 10. Case of Lemma 4. 
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Table 1 
Adversary strategy for unknown edge and a single incident vertex 

Probe orientation and contact points 
1st Probe 1st Contact 2nd Probe 2nd Contact 

information about the current edge ei and thus need not be considered. Define f3f 
as the angle ~qv~-,O where 0 is the origin of P. 

Note that for the orientations of interest, if a second probe is not sent, we will 
not be able to distinguish whether the edge under consideration is normal or 
raised. Thus two probes are necessary to determine a single unknown vertex and 
its adjoining edge. 0 

Lemma 5. At least 3 line probes are required to determine and unknown edge and 

two incident vertices. 

Proof. Consider Fig. 11 and the adversary strategy of Table 2, which describes 
the response to the first probe when an edge and both incident vertices are 
unknown. Here the adversary returns one outermost vertex and discards the 
other. This reduces the problem to an unknown edge and a single incident vertex. 
From Lemma 4, we know that at least two more probes are needed to determine 
the remaining vertex and connecting edge, for a total of at least three probes. 0 

Note the requirement that the case of Lemma 5 reduce to that of Lemma 4 
after the first probe forces us to use three instead of two nested (n - l)-gons to 
form our models. We are now in a position to prove the lower bound theorem. 

Theorem 6. 2n - 3 line probes are necessary to determine a convex polygon P 
from a set of models I’. 

Vi’ 

Vi2 

Fig. 11. Case of Lemma 5. 
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Table 2 

Adversary strategy for unknown edge and two incident vertices 

Probe orientation and contact point for 1st probe 

1st Probe 1st Contact Status 

2e 

<e 

vf- , 
L 

V, 

discard vf , reduces to case of Lemma 4 

with unknown vertex locations v,‘, v: 

discard vi_,, reduces to case of Lemma 4 

with unknown vertex locations vf--,, V;‘-, 

Proof. Each model in our adversary set contains n - 1 major vertices and one 

raised vertex. The adversary can easily ensure that the raised edge of the 

particular model will be identified only after n - 2 edges have been verified to be 

unraised. Thus IZ - 2 edges need be verified, and the location of the raised edge 

would have then been located by elimination. The raised edge contributes a single 

vertex to the n-gon, the position of which can be inferred from the fact the edge 

is raised. However, each of the n - 1 major vertices need to be verified. Since 

each verification requires at least a single probe, then at least IZ - 2 + n - 1 = 

2n - 3 line probes are required for determination. Cl 

4. Conclusions 

We have proven bounds, tight within an additive constant, on the number of 

finger and line probes required for model-based determination for convex 

polygons. The disparity between these bounds is interesting in light of the duality 

relationship between them. Our lower bound proof for line probes required an 

exponential number of models. It would be interesting to know whether fewer 

models suffice. 

The problem of model-based probing strategies remains open for more 

advanced models. The x-ray probe [16] returns the length of intersection between 

a line and an object. Since an x-ray probe can be simulated by two finger probes, 

Theorem 2 can be used to prove a lower bound of -n/2 for model-based 

determination. The question is whether this is achievable. Since an x-ray probe 

through a known point behaves as a finger probe, -n x-ray probes suffice for 

model-based determination using the ideas in [16]. Since each x-ray probe passes 

through two different edges, perhaps a -n/2 probe strategy is possible. Further, 

the model-based problem is open for half-plane probes [17]. 
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