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Abstract

Let A be an elliptic operator with unbounded and sufficiently smooth coefficients and let μ be a (sub)-
invariant measure of the operator A. In this paper we give sufficient conditions guaranteeing that the closure
of the operator (A,C∞

c (RN)) generates a sub-Markovian strongly continuous semigroup of contractions
in Lp(RN,μ). Applications are given in the case when A is a generalized Schrödinger operator.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Elliptic operators with unbounded coefficients; (Sub-)invariant measures; Cores

1. Introduction

The qualitative properties of elliptic operators A with unbounded coefficients in R
N have

been investigated intensively in recent years, after the seminal papers [3,4,12,18], motivated by
the important impact of these operators on stochastic processes, and their application to branches
of applied sciences such as mathematical finance.
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The natural settings where to study these operators are the space of bounded and continuous
functions (say Cb(R

N)) and Lp-spaces. In Cb(R
N) one can associate a semigroup of bounded

operators with such operators under rather weak assumptions on their coefficients. Indeed, if

Aφ =
N∑

i,j=1

qijDijφ +
N∑

j=1

bjDjφ + cφ,

on smooth functions φ, requiring that the matrix Q(x) = (qij (x)) is definite positive at any
x ∈ R

N , that the coefficients qij , bj (i, j = 1, . . . ,N ) and c are locally α-Hölder continuous
for some α ∈ (0,1) and c is bounded from above, is all what one needs to show that, for any
f ∈ Cb(R

N), the Cauchy problem

{
Dtu(t, x) = (Au)(t, x), t > 0, x ∈ R

N,

u(0, x) = f, x ∈ R
N,

(1.1)

admits (at least) a classical solution, bounded with respect to the sup-norm in [0, T ] × R
N , for

any T > 0. Here, by classical solution we mean any function u which (i) is continuous up to
t = 0, (ii) is continuously differentiable in (0,+∞) × R

N , once with respect to time and twice
with respect to the spatial variables, (iii) solves (1.1).

In general, the Cauchy problem (1.1) admits more than a unique bounded classical solution
(but it turns out to be uniquely solvable if an additional algebraic condition on its coefficients
is prescribed). Nevertheless, it is possible to associate a semigroup of bounded operators with
the operator A, setting T (t)f = u(t, ·) for any t � 0, where for any positive f , u(t, ·) is the
value at t of the minimal positive solution to (1.1). This semigroup is, in general, neither strongly
continuous nor analytic in Cb(R

N). In fact, T (t)f tends to f in the weak topology of R
N , i.e.,

the sequence {T (t)f } is bounded and converges to f locally uniformly in R
N as t → 0+.

A rather complete analysis of the semigroup {T (t)} and its main smoothing properties is
available nowadays and we refer the reader to [5].

The analysis of the operator A in the usual Lp-spaces related to the Lebesgue measure is
much more difficult than in Cb(R

N). As a one-dimensional example in [30, Section 2] shows,
whatever ε > 0 is fixed, the operator A defined by

Aφ(x) = φ′′(x) − sign(x)|x|1+εφ′(x), x ∈ R, (1.2)

does not generate a strongly continuous semigroup in Lp(R) for any p ∈ [1,+∞). Hence,
assumptions on the growth at infinity of the coefficients of the operator A more restric-
tive than in the Cb-case are to be prescribed. Typically, the diffusion coefficients are sup-
posed to be bounded or to grow at most slightly more than quadratically at infinity, and
some suitable compensation conditions on the coefficients are prescribed (see, e.g., the papers
[9–11,16,17,23,25,26,28,30,31]).

The suitable Lp-spaces where to analyze elliptic operators with unbounded coefficients are
Lp-spaces related to particular measures, the so-called invariant measures and infinitesimally
invariant measures. Whenever existing, an invariant measure is any (probability) measures μ

such that
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∫

RN

T (t)f μ(dx) =
∫

RN

f μ(dx), t > 0, (1.3)

for any f ∈ Cb(R
N). Here, {T (t)} is the semigroup introduced above. Condition (1.3) may be

rephrased requiring that

∫

RN

Aφ μ(dx) = 0, (1.4)

for any φ ∈ Cb(R
N) such that supt∈(0,1) t

−1‖T (t)φ−φ‖∞ < +∞ and t−1(T (t)φ−φ) converges
locally uniformly in R

N to a bounded and continuous function. In particular, (1.4) should be
satisfied by any smooth and compactly supported function φ.

Any measure μ satisfying (1.4) for any φ ∈ C∞
c (RN) is usually called infinitesimally in-

variant. Note that whenever an infinitesimally invariant measure of A exists, the operator
(A,C∞

c (RN)) is dissipative in Lp(RN,μ) for any p ∈ [1,+∞).
In the case when μ is an invariant measure of A, the semigroup {T (t)} extends in a rather

straightforward way by a strongly continuous semigroup in Lp(RN,μ) for any p ∈ [1,+∞).
Its infinitesimal generator Ap turns out to be an extension of the operator (A,C∞

c (RN)). For

instance, in the case of the operator in (1.2) with ε = 2 the measure μ(dx) = Ke−|x|4/4 dx

(where K is a suitable normalizing constant) satisfies (1.3), so that the realization of A in
Lp(RN,μ) generates a strongly continuous semigroup of contractions for any p ∈ [1,+∞).

In general it is not known whether there exists only one strongly continuous semigroup on
Lp(RN,μ) whose generator extends (A,C∞

c (RN)). If the answer is positive, then (A,C∞
c (RN))

is said to be Lp(RN,μ)-unique. Standard results in semigroup theory show that the Lp(RN,μ)-
uniqueness is equivalent to the condition that the closure of (A,C∞

c (RN)) generates a strongly
continuous semigroup in Lp(RN,μ). If this is the case, then C∞

c (RN) is a core for Ap and
this is of great importance since, in general, characterizing the domain of Ap is a hard task.
Indeed, it is rather easy to show that it contains the set of all compactly functions f ∈ Lp(RN,μ)

such that their first- and second-order derivatives are in Lp(RN,μ) as well. Moreover, whenever
pointwise gradient estimates for the function T (t)f are available for any f ∈ C∞

c (RN), one can
partially characterize D(Ap), showing that it is continuously embedded in the Sobolev space
W 1,p(RN,μ) (the set of functions f ∈ Lp(RN,μ) such that the distributional gradient of f is in
Lp(RN,μ)N ) for any p ∈ (1,+∞). Anyway, a complete characterization of D(Ap) is known,
to the best of our knowledge only in very few cases (see, e.g., [13,22,24,25]).

In this paper, under suitable assumptions on the coefficients of the operator A and assuming
that c ≡ 0, we prove the Lp(RN,μ)-uniqueness of (A,C∞

c (RN)), thus generalizing the results
in [1,2].

For the sake of generality, we assume that μ is just a sub-invariant measure of the operator
A − α for some α ∈ R, in the sense that

∫

RN

Aφ μ(dx) � α

∫

RN

φ μ(dx),

for any positive function φ ∈ C∞
c (RN). Whenever it admits a sub-invariant measure, the oper-

ator (A − α I,C∞(RN)) turns out to be dissipative (see e.g. [14, Appendix B, Lemma 1.8]),

p c
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hence closable, in Lp(RN,μ) for any p ∈ [1,+∞). Under some integrability conditions involv-
ing a Lyapunov function and the coefficients of the operator A, we prove that the closure of
(A,C∞

c (RN)) generates a strongly continuous semigroup in Lp(RN,μ) for any p ∈ [1,+∞).
Our results cover also some situations in which the coefficients of the operator A may grow at
infinity with some exponential rate. In particular, we partly generalize some results in [14].

In the second part of the paper, we give another criterion ensuring that the closure of the
operator (A,C∞

c (RN)) generates a strongly continuous semigroup in Lp(RN,μ). In particular,
this criterion is useful when the measure μ is symmetrizing for the operator A (i.e., in the case
when

∫
RN φAψ μ(dx) = ∫

RN ψ Aφ μ(dx) for any φ,ψ ∈ C∞
c (RN)). For instance, this is the

case when A is a generalized Schrödinger operator. In this setting, our results generalize similar
results obtained by Eberle [14], Liskevic̆ [20], Liskevic̆ and Semenov [21].

2. A first criterion for Lp(RRRN,μ)-uniqueness

Let A be the second order elliptic partial differential operator defined on smooth functions by

(Aψ)(x) =
N∑

i,j=1

qij (x)Dijψ(x) +
N∑

i=1

bi(x)Diψ(x), x ∈ R
N. (2.1)

We make the following assumptions.

Hypothesis 2.1.

(i) The coefficients qij = qji and bj (i, j = 1, . . . ,N) belong to W
1,r
loc (RN,dx) and

Lr
loc(R

N,dx), respectively, for some r > N � 2.
(ii) The matrix Q := (qij )

N
i,j=1 satisfies the ellipticity condition

(
Q(x)ξ

) · ξ � η(x)|ξ |2, ξ ∈ R
N, x ∈ R

N,

for some positive function η such that infK η > 0 for every compact K ⊂ R
N .

(iii) There exists a positive locally finite Borel measure μ on R
N such that:

(a) μ is absolutely continuous with respect to the Lebesgue measure and its density � is
everywhere positive in R

N . Moreover, infK � > 0 for any compact set K ⊂ R
N .

(b) μ is sub-invariant for the operator (A − α,C∞
c (RN)) for some α � 0, i.e.,

∫

RN

Af μ(dx) � α

∫

RN

f μ(dx)

for all 0 � f ∈ C∞
c (RN).

We remark that condition (i) in Hypothesis 2.1 guarantees that the functions qij

(i, j = 1, . . . ,N ) are locally Hölder continuous and, hence, locally bounded in R
N .

In this setting we are able to prove the following result.
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Theorem 2.2. Assume that Hypothesis 2.1 holds. Assume further that there exists a positive
function V ∈ C2(RN) such that lim|x|→+∞ V (x) = +∞ and

AV

V logV
∈ Lp

(
R

N,μ
)

and
(Q∇V ) · ∇V

V 2 logV
∈ Lp

(
R

N,μ
)
, (2.2)

for some 1 � p < +∞ and bi ∈ L
p

loc(R
N,μ) (i = 1, . . . ,N). Then, the closure of the opera-

tor (A,C∞
c (RN)) on Lp(RN,μ) generates a sub-Markovian strongly continuous semigroup. In

particular, (A,C∞
c (RN)) is Lp(RN,μ) unique.

Proof. To begin with we observe that, up to replacing V with V + e, we can assume, without
any loss of generality, that V � e in R

N .
Let us prove that the space (λI − A)(C∞

c (RN)) is dense in Lp(RN,μ) for all λ > 0. For this
purpose, let us denote by p′ the conjugate exponent of p and suppose that

〈
(λI − A)ϕ,ψ

〉
Lp(RN ,μ)

= 0, (2.3)

for some ψ ∈ Lp′
(RN,μ), λ > 0, and all ϕ ∈ C∞

c (RN). Setting ν(dx) = ψ�dx, condition (2.3)
can be rewritten equivalently as

∫

RN

(λ − A)ϕ ν(dx) = 0, ϕ ∈ C∞
c

(
R

N
)
. (2.4)

By [7, Corollary 2.10] the density ψ� of the measure ν belongs to W
1,r
loc (RN,dx). Hence, it is

continuous and locally bounded in R
N .

For all i = 1, . . . ,N , set b̂i = bi −∑N
j=1 Djqij . Since b̂i ∈ Lr

loc(R
N,dx) for any i, integrating

by parts, from (2.4) we obtain that

λ

∫

RN

ϕψ� dx =
∫

RN

Aϕψ�dx =
∫

RN

[−∇ϕ · (Q∇(ψ�)
) + ψ�b̂ · ∇ϕ

]
dx, (2.5)

for every ϕ ∈ C∞
c (RN). By density, (2.5) can be extended to every ϕ ∈ C1

c (RN).
Fix now v ∈ C1(RN) and ζ ∈ C1

c (RN) with ζ � 0. Replacing ϕ with vζ in (2.5), we get

λ

∫

RN

vζψ� dx =
∫

RN

[−v∇ζ · (Q∇(ψ�)
) − ζ∇v · (Q∇(ψ�)

) + ψ�b̂ · ∇(vζ )
]
dx. (2.6)

Since ψ� is locally Hölder continuous and (Q∇(ψ�))i , b̂i ∈ Lr
loc(R

N,dx) for any i = 1, . . . ,N ,

we can extend equality (2.6) by density to every v ∈ W
1,r ′
loc (RN,dx), where r ′ denotes the conju-

gate exponent of r .
Let F : R → [−1,1] be an increasing C1-function such that F(s) = 0 if |s| � 1, F(s) = −1 if

s � −2 and F(s) = 1 if s � 2. For every n ∈ N and x ∈ R
N , set un(x) := F(nψ(x)�(x)). Then,

un ∈ W
1,r
loc (RN,dx) ⊂ W

1,r ′
loc (RN,dx), since r ′ < 2 < r . Moreover, |un| � 1 and un pointwise

tends to sign(ψ�) in R
N , as n → +∞. Replacing v with un in (2.6) and observing that
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∇un · Q∇(ψ�) = nF ′(nψ�)∇(ψ�) · Q∇(ψ�) � 0, n ∈ N,

we obtain

λ

∫

RN

unζψ� dx =
∫

RN

[−un∇ζ · (Q∇(ψ�)
) − nζF ′(nψ�)∇(ψ�) · (Q∇(ψ�)

)]
dx

+
∫

RN

[
unψ�b̂ · ∇ζ + nζF ′(nψ�)ψ�b̂ · ∇(ψ�)

]
dx

�
∫

RN

[−∇ζ · (Q∇(unψ�)
) + ψ�∇ζ · (Q∇un)

]
dx

+
∫

RN

[
unψ�b̂ · ∇ζ + nζF ′(nψ�)ψ�b̂ · ∇(ψ�)

]
dx

�
∫

RN

[
unψ� div(Q∇ζ ) + ψ�nF ′(nψ�)∇ζ · (Q∇(ψ�)

)]
dx

+
∫

RN

[
unψ�b̂ · ∇ζ + nζF ′(nψ�)ψ�b̂ · ∇(ψ�)

]
dx, (2.7)

for each n ∈ N. Since F ′(y) = 0 if |y| � 1 or |y| � 2, it holds that |nF ′(nψ�)||ψ�| � 2‖F ′‖∞
in R

N for every n ∈ N. On the other hand, if ψ(x)�(x) �= 0, then there exists n0 ∈ N such that,
for every n � n0, |ψ(x)�(x)| > 2n−1. Thus, nF ′(nψ(x)�(x)) = 0 for all n � n0. It follows that
nF ′(nψ�)ψ� tends to 0 in a dominated way as n → +∞. Hence, passing to the limit in the first
and last sides of (2.7), and taking into account that the supports of all the involved functions are
contained in the support of ζ , we get

λ

∫

RN

ζ |ψ�|dx �
∫

RN

|ψ�|div(Q∇ζ ) dx +
∫

RN

|ψ�|b̂ · ∇ζ dx =
∫

RN

|ψ�|Aζ dx. (2.8)

Next, let ζ : R → [0,1] be a decreasing C1-function such that ζ(s) = 1 if s � 1 and ζ(s) = 0
if s � 2, and define ζn := H(

logV
n

) for every n ∈ N. Since V blows up as |x| → +∞, each
function ζn belongs to C1

c (RN). Moreover, ζn � 1, limn→+∞ ζn = 1 pointwise in R
N .

A straightforward computation shows that

Aζn = logV

n
ζ ′

(
logV

n

) AV

V logV
+ (logV )2

n2
ζ ′′

(
logV

n

)
(Q∇V ) · ∇V

V 2(logV )2

− logV

n
ζ ′

(
logV

n

)
(Q∇V ) · ∇V

V 2 logV
,

for every n ∈ N. Hence, Aζn pointwise tends to 0 in R
N as n → +∞. Moreover, observing that

ζ ′(V ), ζ ′′(V ) vanish if logV
/∈ [1,2], and V � e, we get
n n n
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|Aζn| � 2‖ζ ′‖∞
∣∣∣∣ AV

V logV

∣∣∣∣ + (
4‖ζ ′′‖∞ + 2‖ζ ′‖∞

) (Q∇V ) · ∇V

V 2 logV
,

for every n ∈ N. Then, by replacing ζ with ζn in (2.8), recalling that the functions (V logV )−1 AV

and (V 2 logV )−1(Q∇V ) · ∇V belong to Lp(RN,μ) and applying the dominated convergence
theorem, we obtain that

λ

∫

RN

|ψ |� dx � 0,

which, of course, implies that ψ = 0 μ-a.e.
Since Hypothesis 2.1(iii)-(b) implies that the operator (A − α

p
,C∞

c (RN)) is dissipative in

Lp(RN,μ) (also in the case p = 1) (see, e.g., [14, Lemma 1.8 in Appendix B]), and the space
( α
p

+ 1 − A)(C∞
c (RN)) is dense in Lp(RN,μ), the closure of the operator (A − α

p
,C∞

c (RN))

generates a strongly continuous semigroup of contractions in Lp(RN,μ) by the well-known
Lumer–Phillips’ generation theorem (see, e.g., [15, Chapter 2, Theorem 3.15]). Therefore, the
closure of the operator (A,C∞

c (RN)) generates a strongly continuous semigroup on Lp(RN,μ).
Finally, by [14, Lemma 1.9 in Appendix B] such a semigroup is also sub-Markov. This completes
the proof. �
Remark 2.3. Theorem 2.2 to be applied requires to prove the integrability of two suitable func-
tions with respect to the measure μ. The fact that in most the cases the measure μ is not explicit
makes things difficult. A strategy to prove the integrability of the functions in (2.2) consists in
comparing them with functions which we know a priori that are in some Lp space related to the
measure μ. For instance this is the case when the operator A admits a Lyapunov function, i.e.,
when there exists a positive smooth function ϕ diverging to +∞ as |x| → +∞, such that Aϕ

tends to −∞ as |x| → +∞. Indeed, in this situation, the functions ϕ and Aϕ are integrable with
respect to the measure μ.

2.1. An example

In this subsection we provide the reader with a class of elliptic operators with unbounded
coefficients to which Theorem 2.2 applies. We assume that the coefficients of the operator A
satisfy conditions (i) and (ii) in Hypothesis 2.1.

Let V ∈ C1(RN) be any function such that V (x) � 2 for any x ∈ R
N and V (x) :=

2 exp (δ|x|β) for any x ∈ R
N with |x| � 1, where β and δ are positive constants. Further, as-

sume that

lim sup
|x|→+∞

(
CΛ(x) + b(x) · x

|x|β
)

< 0, (2.9)

for some C > 0, where Λ(x) denotes the maximum eigenvalue of the matrix Q(x). By [27,
Proposition 2.4], V is a Lyapunov function for the operator A defined in (2.1) if δ < β−1C, i.e.,
0 < V ∈ C2(RN), V (x) → +∞ and AV (x) → −∞ as |x| → +∞. Therefore, by Khas’minskii
theorem (see [19, Chapter 3, Theorem 5.1], see also [29, Theorem 6.3] or [5, Section 8.1.2])
A admits a unique invariant measure μ whose density � is a positive and continuous function by
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[8, Lemma 1.1], and the functions V and AV are integrable with respect to μ for δ < β−1C by
[27, Proposition 2.4].

Lemma 2.4. Let 1 � p < +∞ and suppose that βδ < C. If

lim sup
|x|→+∞

|x|β−2Λ(x)e
− δ

p
|x|β

< +∞, (2.10)

then, the function (V 2 logV )−1((Q∇V ) · ∇V ) belongs to Lp(RN,μ).

Proof. Since V (x) = 2eδ|x|β for |x| � 1, then ∇V (x) = δβ|x|β−2xV (x) for such x’s. Hence,

(
Q(x)∇V (x)

) · ∇V (x) = δ2β2|x|2β−4((Q(x)x
) · x)(

V (x)
)2

� δ2β2|x|2β−2Λ(x)
(
V (x)

)2
,

for any |x| � 1. Consequently,

(Q(x)∇V (x)) · ∇V (x)

(V (x))2 logV (x)
� δβ2|x|β−2Λ(x), |x| � 1. (2.11)

Using condition (2.10) it follows easily that the right-hand side of (2.11) can be estimated from
above by K(V (x))1/p for some positive constant K . Since V ∈ L1(RN,μ), the assertion fol-
lows. �
Lemma 2.5. Suppose that βδ < C. Then, the function (V logV )−1 AV belongs to L1(RN,μ).
Moreover, let 1 < p < +∞ and assume that condition (2.10) is satisfied and

lim sup
|x|→+∞

|b(x) · x|
|x|2+β(p′−1) exp (δ(p′ − 1)|x|β)

< +∞, (2.12)

where p′ is the conjugate exponent of p. Then the function (V logV )−1 AV belongs to
Lp(RN,μ).

Proof. Since, by assumptions, V � 2, we can estimate

∣∣(V logV )−1 AV
∣∣ �

(
log(4)

)−1|AV |.

Since AV ∈ L1(RN,μ), it follows immediately that the function (V logV )−1 AV is in
L1(RN,μ) as well.

Now, let us consider the case when p > 1. To prove that (V logV )−1 AV belongs to
Lp(RN,μ), we will show that such a function can be estimated from above by M|AV |1/p for
some positive constant M or, equivalently, that the function (V logV )−p′ |AV | is bounded. For
this purpose, we observe that
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(AV )(x) = βδ|x|β−1V (x)

(
Tr(Q(x))

|x| + δβ(β − 2)(Q(x)x) · x
|x|3

+ b(x) · x
|x| + δβ|x|β−3(Q(x)x

) · x
)

,

for any |x| � 1. Since AV < 0 for large |x|, it follows

|(AV )(x)|
(V (x) logV (x))p

′ � β

δp′−1|x|1+β(p′−1) exp(δ(p′ − 1)|x|β)

(
−Tr(Q(x))

|x| − b(x) · x
|x|

− (β − 2)(Q(x)x) · x
|x|3 − δβ|x|β−3(Q(x)x

) · x
)

. (2.13)

We now consider the cases 0 < β < 2 and β � 2 separately.

Case β ��� 2. Since all the terms in (2.13) are negative but the second one, we can estimate

|(AV )(x)|
(V (x) logV (x))p

′ � β

δp′−1

|b(x) · x|
|x|2+β(p′−1) exp(δ(p′ − 1)|x|β)

, (2.14)

for |x| sufficiently large. From condition (2.12), it now follows immediately that the function
(V logV )−p′ |AV | is bounded.

Case 0 < β < 2. By (2.9), (2.10) and (2.13) we obtain, for a suitable κ > 0 and large |x|,

|(AV )(x)|
(V (x) logV (x))p

′

� β

δp′−1

1

|x|1+β(p′−1) exp(δ(p′ − 1)|x|β)

( |b(x) · x|
|x| + (2 − β)

(Q(x)x) · x
|x|3

)

� β

δp′−1

1

|x|2+β(p′−1) exp(δ(p′ − 1)|x|β)

(∣∣b(x) · x∣∣ + (2 − β)Λ(x)
)

� β

δp′−1

1

|x|2+β(p′−1) exp(δ(p′ − 1)|x|β)

(∣∣b(x) · x∣∣ + (2 − β)κ
exp( δ

p
|x|β)

|x|β−2

)
.

As p′ − 1 > 1
p

, it follows that the function (V logV )−p′ |AV | is bounded by using again condi-
tion (2.12). �

In view of Theorem 2.2, we have proved the following result.

Proposition 2.6. Let p � 1 and let us assume that the diffusion and the drift coefficients of the op-
erator A satisfy conditions (i) and (ii) in Hypothesis 2.1 and bi ∈ L

p

loc(R
N,dx) (i = 1, . . . ,N).

Further, assume that conditions (2.9), (2.10) and (2.12) are satisfied (the latter one only in the
case when p > 1). Then, the closure of the operator (A,C∞

c (RN)) generates a strongly contin-
uous semigroup of contractions in Lp(RN,μ).
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Remark 2.7. It is worth stressing that Proposition 2.6 covers also some situation in which the
diffusion and the drift coefficients of A have some exponential growth at infinity. This is an
improvement of [14, Theorem 2.3, p. 67] where it is required that

lim sup
|x|→+∞

(Q(x)x) · x
|x|4(log |x|)2

< +∞. (2.15)

For instance, Theorem 2.2 applies to the operator A defined on smooth functions φ by

(Aφ)(x) = e
1
2 |x|2�φ − e|x|2x · ∇φ(x), x ∈ R

N,

which, of course, does not satisfy condition (2.15).

3. A second criterion for Lp(RRRN,μ) uniqueness

In this section we give a second criterion which guarantees that the operator (A,C∞
c (RN))

uniquely extends to Lp(RN,μ) by a strongly continuous semigroup. As we will see in Sec-
tion 3.1 this criterion is particularly useful in the case when the measure μ is symmetrizing for
the operator A.

Hypothesis 3.1.

(i) Hypothesis 2.1 is satisfied.
(ii) The density � of μ belongs to W

1,r
loc (RN,dx), where r is the same exponent as in Hypothe-

sis 2.1(i).

Remark 3.2. Observe that if the measure μ is infinitesimally invariant for the operator A, i.e.,

∫

RN

Aφ μ(dx) = 0, φ ∈ C∞
c

(
R

N
)
,

by [7, Corollary 2.10], the density � of the measure μ with respect to the Lebesgue measure
belongs to W

1,r
loc (RN,dx). Hence Hypothesis 3.1(ii) is satisfied.

For our purposes, it is much more convenient to deal with operators whose principal part is in
divergence form. Hence, we write A in the following equivalent way:

Aψ = 1

�

N∑
i,j=1

Di(�qijDjψ) + β · ∇ψ = 1

�
div

(
�(Q∇ψ)

) + β · ∇ψ = A0ψ + β · ∇ψ,

for any smooth function ψ , where βj = bj − 1
�

∑N
i=1 Di(�qij ) ∈ Lr

loc(R
N,dx) (j = 1, . . . , n)

as the functions qij (i, j = 1, . . . ,N ) are locally Hölder continuous and � is locally uniformly
positive.

The following lemma is essential in what follows.
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Lemma 3.3. Let r ′ be the conjugate exponent of r . Then, for any nonnegative function φ ∈
W 1,r ′

(RN,dx) with compact support, we have

∫

RN

(β · ∇φ)μ(dx) � α

∫

RN

φ μ(dx). (3.1)

Proof. We begin the proof observing that an integration by parts shows that

∫

RN

f A0φ μ(dx) =
∫

RN

div(�Q∇φ)f dx = −
∫

RN

�(Q∇φ) · ∇f dx = −
∫

RN

(Q∇φ) · ∇f μ(dx),

for every f ∈ C1(RN) and every φ ∈ C∞
c (RN). In particular, taking f ≡ 1 we get

∫

RN

A0φ μ(dx) = 0. (3.2)

Taking Hypothesis 2.1(iii) into account and integrating both the sides of the equality β · ∇φ =
Aφ − A0φ, we get (3.1) for all nonnegative functions φ ∈ C∞

c (RN).
To prove (3.1) in the general case, it suffices to observe that any nonnegative function φ ∈

W 1,r ′
(RN) with compact support is the limit in W 1,r ′

(RN) of a sequence {φn} ∈ C∞
c (K) of

nonnegative functions, where K is a suitable neighborhood of the support of φ, and use the
dominated convergence theorem. �

We can now prove the following result.

Theorem 3.4. Let 1 < p < +∞. Assume that Hypothesis 3.1 holds and there exists a positive
function V ∈ C1(RN) such that lim|x|→+∞ V (x) = +∞ and

β · ∇V

V logV
� −C and

(Q∇V ) · ∇V

(V logV )2
∈ L∞(

R
N,dx

)
, (3.3)

for some positive constant C. Then, the closure of the operator (A,C∞
c (RN)) on Lp(RN,μ)

generates a sub-Markovian strongly continuous semigroup. In particular, (A,C∞
c (RN)) is

Lp(RN,μ) unique.

Proof. Since V (x) tends to +∞ as |x| → +∞, up to replacing V with V + c for a suitable
positive constant c, we can assume, without loss of generality, that V (x) > 1 for any x ∈ R

N .
Let p′ be the conjugate exponent of p. Fix λ > α + 1

p
and let g ∈ Lp′

(RN,μ) be such that

∫

RN

(λφ − Aφ)g μ(dx) = 0,

for every φ ∈ C∞(RN). We claim that g ≡ 0.
c
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By [7, Corollary 2.10], the function F := g� belongs to W
1,r
loc (RN,dx). In particular, since

r > N , F is continuous and locally bounded in R
N . Hence, g is locally bounded in R

N as
well, � being everywhere positive and continuous in R

N . Moreover ∇ 1
�

= −∇�

�2 ∈ Lr
loc(R

N,dx).

Therefore, g = F · 1
�

∈ W
1,r
loc (RN,dx).

Let us now fix φ ∈ C∞
c (RN) and observe that

λ

∫

RN

φg μ(dx) =
∫

RN

(Aφ)g μ(dx)

= −
∫

RN

(Q∇φ) · ∇g μ(dx) +
∫

RN

(β · ∇φ)g μ(dx). (3.4)

By density, the equality (3.4) extends to every φ ∈ W 1,r ′
(RN,dx) ∩ L∞(RN,dx) with

compact support. Since W
1,2
loc (RN,dx) ⊂ W

1,r ′
loc (RN,dx), formula (3.4) holds true for every

φ ∈ W 1,2(RN,dx) ∩ L∞(RN,dx) with compact support.
Next, let ζ : R → [0,1] be a decreasing C1-function such that ζ(s) = 1 if s � 1 and ζ(s) = 0

if s � 2, and define ζn := ζ(
logV

n
) for every n ∈ N. Since V (x) tends to +∞ as |x| → +∞, each

function ζn belongs to C1
c (RN). Moreover, ζn � 1 and ζn converges to 1 pointwise in R

N as
n → +∞.

We now consider the cases p � 2 and p > 2 separately.

Case 1 < p ��� 2. Let us set φn = ζ 2
n sign(g)|g|p′−1 for any n ∈ N. Let us observe that both the

functions φn and φng belong to W 1,2(RN,dx) ∩ L∞(RN,dx) by the local boundedness of g,
and are compactly supported in R

N . From (3.4) we obtain

λ

∫

RN

ζ 2
n sign(g)|g|p′−1g μ(dx) + (p′ − 1)

∫

RN

ζ 2
n |g|p′−2(Q∇g) · ∇g μ(dx)

= −2

n

∫

RN

ζnζ
′(n−1 logV

)
sign(g)|g|p′−1 (Q∇V ) · ∇g

V
μ(dx) +

∫

RN

(β · ∇φn)g μ(dx)

= −2

n

∫

RN

ζnζ
′(n−1 logV

)
sign(g)|g|p′−1 (Q∇V ) · ∇g

V
μ(dx)

+ p′ − 1

p′

∫

RN

β · ∇(φng)μ(dx) + 1

p′

∫

RN

(
β · ∇ζ 2

n

)|g|p′
μ(dx)

� −2

n

∫

RN

ζnζ
′(n−1 logV

)
sign(g)|g|p′−1 (Q∇V ) · ∇g

V
μ(dx)

+ α

p

∫
N

ζ 2
n |g|p′

μ(dx) + 2

p′n

∫
N

ζnζ
′(n−1 logV

)|g|p′ β · ∇V

V
μ(dx).
R R
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In the second equality and in the last inequality, we have used, respectively, the formula

g∇(
ζ 2
n sign(g)|g|p′−1) = p′ − 1

p′ ∇(
ζ 2
n |g|p′) + 1

p′ |g|p′∇ζ 2
n

and Lemma 3.3, being φng � 0. Hence,(
λ − α

p

) ∫

RN

ζ 2
n sign(g)|g|p′−1g μ(dx) + (p′ − 1)

∫

RN

ζ 2
n |g|p′−2(Q∇g) · ∇g μ(dx)

� −2

n

∫

RN

ζnζ
′(n−1 logV

)
sign(g)|g|p′−1 (Q∇V ) · ∇g

V
μ(dx)

+ 2

p′n

∫

RN

ζnζ
′(n−1 logV

)|g|p′ β · ∇V

V
μ(dx). (3.5)

Note that both the two terms in the first side of (3.5) are positive and the last side of (3.5) is
finite. It follows that the function ζ 2

n |g|p′−2(Q∇g) · ∇g belongs to L1(RN,μ). Taking this fact
into account, we can now estimate

2

n

∫

RN

∣∣∣∣ζnζ
′(n−1 logV

)
sign(g)|g|p′−1 (Q∇V ) · ∇g

V

∣∣∣∣μ(dx)

� 2

n

∫

RN

ζn

∣∣ζ ′(n−1 logV
)∣∣|g|p′−1 ((Q∇V ) · ∇V )

1
2

V

(
(Q∇g) · ∇g

) 1
2 μ(dx)

= 2
∫

RN

(
ζn|g| p′−2

2
(
(Q∇g) · ∇g

) 1
2

)(
1

n

∣∣ζ ′(n−1 logV
)∣∣|g| p′

2
((Q∇V ) · ∇V )

1
2

V

)
μ(dx)

�
∫

RN

ζ 2
n |g|p′−2(Q∇g) · ∇g μ(dx)

+ 1

n2

∫

RN

∣∣ζ ′(n−1 logV
)∣∣2|g|p′ (Q∇V ) · ∇V

V 2
μ(dx). (3.6)

Hence, replacing (3.6) into (3.5), we get

(
λ − α

p

) ∫

RN

ζ 2
n sign(g)|g|p′−1g μ(dx) + (p′ − 2)

∫

RN

ζ 2
n |g|p′−2(Q∇g) · ∇g μ(dx)

� 1

n2

∫

RN

∣∣ζ ′(n−1 logV
)∣∣2|g|p′ (Q∇V ) · ∇V

V 2
μ(dx)

+ 2

p′n

∫
N

ζnζ
′(n−1 logV

)|g|p′ β · ∇V

V
μ(dx). (3.7)
R
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Since ζ ′ � 0, ζ 2
n |g|p′−2(Q∇g) · ∇g � 0 and p′ � 2, from (3.7) and the conditions (3.3), we get

(
λ − α

p

) ∫

RN

ζ 2
n |g|p′

μ(dx) � 1

n2

∫

RN

∣∣ζ ′(n−1 logV
)∣∣2|g|p′ (Q∇V ) · ∇V

V 2
μ(dx)

+ 2

p′n

∫

RN

ζnζ
′(n−1 logV

)|g|p′ β · ∇V

V
μ(dx)

� 1

n2

∫

RN

∣∣ζ ′(n−1 logV
)∣∣2|g|p′ (Q∇V ) · ∇V

V 2
μ(dx)

+ 2C

p′n

∫

RN

ζn

∣∣ζ ′(n−1 logV
)∣∣|g|p′

logV μ(dx). (3.8)

Observing that ζ ′(n−1 logV (x)) = 0 if V (x) /∈ [en, e2n] and taking conditions (3.3) into account,
we can estimate

2C

p′n
ζn

∣∣ζ ′(n−1 logV
)∣∣|g|p′

logV � 4C

p′ ‖ζ ′‖∞|g|p′

and

1

n2

∣∣ζ ′(n−1 logV
)∣∣2|g|p′ (Q∇V ) · ∇V

V 2
� 4‖ζ ′‖2∞

∥∥∥∥ (Q∇V ) · ∇V

(V logV )2

∥∥∥∥∞
|g|p′

.

Since |g|p′ ∈ L1(RN,μ), we can apply Fatou’s lemma in (3.8) which yields

(
λ − α

p

) ∫

RN

|g|p′
μ(dx) � 0,

thereby implying that g ≡ 0.

Case p > 2. For all m ∈ N, let φm(x) = x(x2 + m−1)
p′−2

2 for any x ∈ R. Clearly, φm ∈ C∞(R).
For all n,m ∈ N, set un,m = ζ 2

nφm(g), where ζn is as above. Then, un,m has compact support and
is bounded by the local boundedness of g. Moreover, as

∇un,m = 2

n
ζnζ

′(n−1 logV
)
φm(g)

∇V

V
+ ζ 2

nφ′
m(g)∇g, n,m ∈ N, (3.9)

and g ∈ W
1,r
loc (RN,dx), the function un,m belongs to W

1,2
loc (RN,dx) for any n,m ∈ N. Hence, we

can apply (3.4), replacing φ with un,m, which yields
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λ

∫

RN

un,mg μ(dx) + (p′ − 1)

∫

RN

ζ 2
n g2

(
g2 + 1

m

) p′−4
2

(Q∇g) · ∇g μ(dx)

+ 1

m

∫

RN

ζ 2
n

(
g2 + 1

m

) p′−4
2

(Q∇g) · ∇g μ(dx)

= −2

n

∫

RN

ζnζ
′(n−1 logV

)
g

(
g2 + 1

m

) p′−2
2 (Q∇V ) · ∇g

V
μ(dx)

+
∫

RN

(β · ∇un,m)g μ(dx).

Since ζ 2
n (g2 + 1

m
)

p′−4
2 (Q∇g) · ∇g � 0 for any m,n ∈ N, we obtain

λ

∫

RN

un,mg μ(dx) + (p′ − 1)

∫

RN

ζ 2
n g2

(
g2 + 1

m

) p′−4
2

(Q∇g) · ∇g μ(dx)

� −2

n

∫

RN

ζnζ
′(n−1 logV

)
g

(
g2 + 1

m

) p′−2
2 (Q∇V ) · ∇g

V
μ(dx)

+
∫

RN

(β · ∇g)ζ 2
n

(
g2 + 1

m

) p′−4
2

(
(p′ − 1)g2 + 1

m

)
g μ(dx)

+
∫

RN

(
β · ∇ζ 2

n

)
g2

(
g2 + 1

m

) p′−2
2

μ(dx). (3.10)

Observe that for every m,n ∈ N, we have

ζn

∣∣ζ ′(n−1 logV
)∣∣|g|(g2 + m−1) p′−2

2
∣∣(Q∇V ) · ∇g

∣∣V −1

� ζn|g|p′−1‖ζ ′‖∞
∥∥|Q∇V |∥∥

L∞(supp(ζn))
|∇g|, (3.11)

and, since p′ < 2,

∣∣(β · ∇g)g
∣∣ζ 2

n

(
g2 + m−1) p′−4

2
(
(p′ − 1)g2 + m−1) �

∣∣(β · ∇g)g
∣∣ζ 2

n

(
g2 + m−1) p′−2

2

�
∣∣(β · ∇g)

∣∣(g2 + m−1) p′−1
2 . (3.12)

Moreover,
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∣∣(β · ∇ζ 2
n

)∣∣g2(g2 + m−1) p′−2
2 �

∣∣(β · ∇ζ 2
n

)∣∣(g2 + 1
) p′

2 . (3.13)

Note that the right-hand sides of (3.11)–(3.13) belong to L1(RN,μ). Therefore, letting m tend
to +∞ in both the sides of (3.10), by the Fatou’s lemma and dominated convergence we get

λ

∫

RN

ζ 2
n |g|p′

μ(dx) + (p′ − 1)

∫

RN

ζ 2
n |g|p′−2(Q∇g) · ∇g μ(dx)

� 2

n

∫

RN

ζn

∣∣ζ ′(n−1 logV
)∣∣|g|p′−1V −1(Q∇V ) · ∇g μ(dx)

+ 2

n

∫

RN

ζnζ
′(n−1 logV

)|g|p′
V −1(β · ∇V )μ(dx)

+ (p′ − 1)

∫

RN

ζ 2
n sign(g)|g|p′−1(β · ∇g)μ(dx)

= 2

n

∫

RN

ζn

∣∣ζ ′(n−1 logV
)∣∣|g|p′−1V −1(Q∇V ) · ∇g μ(dx)

+ (p′ − 1)

∫

RN

(β · ∇g)ζ 2
n |g|p′−2g μ(dx) +

∫

RN

(
β · ∇ζ 2

n

)|g|p′
μ(dx).

On the other hand, using Young inequality, we get

2

n

∣∣ζnζ
′(n−1 logV

)∣∣|g|p′−1V −1(Q∇V ) · ∇g

� 2

n
ζn

∣∣ζ ′(n−1 logV
)∣∣|g|p′−1V −1((Q∇V ) · ∇V

) 1
2
(
(Q∇g) · ∇g

) 1
2

� 2

(
ζn|g| p′−2

2
(
(Q∇g) · ∇g

) 1
2

)(
1

n

∣∣ζ ′(n−1 logV
)∣∣|g| p′

2 V −1((Q∇V ) · ∇V
) 1

2

)

� εζ 2
n |g|p′−2(Q∇g) · ∇g + 1

εn2

(
ζ ′(n−1 logV

))2|g|p′ (Q∇V ) · ∇V

V 2
,

for any ε > 0. Therefore, taking ε = p′ − 1 we get

λ

∫

RN

ζ 2
n |g|p′

μ(dx) � 1

(p′ − 1)n2

∫

RN

(
ζ ′(n−1 logV

))2|g|p′ (Q∇V ) · ∇V

V 2
μ(dx)

+ (p′ − 1)

∫

RN

(β · ∇g)ζ 2
n |g|p′−1 sign(g)μ(dx)

+
∫
N

(
β · ∇ζ 2

n

)|g|p′
μ(dx)
R
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= 1

(p′ − 1)n2

∫

RN

(
ζ ′(n−1 logV

))2|g|p′ (Q∇V ) · ∇V

V 2
μ(dx)

+
(

1 − 1

p′

) ∫

RN

(
β · ∇(|g|p′))

ζ 2
n μ(dx)

+
∫

RN

(
β · ∇ζ 2

n

)|g|p′
μ(dx). (3.14)

Arguing as in the case p � 2, we can show that

∫

RN

(
β · ∇(|g|p′))

ζ 2
n μ(dx) � α

∫

RN

|g|p′
ζ 2
n μ(dx) −

∫

RN

(
β · ∇ζ 2

n

)|g|p′
μ(dx), (3.15)

for any n ∈ N. Hence, replacing (3.15) into (3.14), observing that ζ ′(n−1 logV ) pointwise van-
ishes as n → +∞ and applying Fatou’s lemma, we obtain that g ≡ 0. Thus (λ − A)(C∞

c (RN))

is dense in Lp(RN,μ). The assertion now follows as in the proof of Theorem 2.2. �
Proposition 3.5. Assume that Hypothesis 3.1 holds and there exists a strictly positive function
V ∈ C1(RN) such that lim|x|→+∞ V (x) = +∞ and

β · ∇V

V logV
∈ L1(

R
N,μ

)
and

(Q∇V ) · ∇V

(V logV )2
∈ L1(

R
N,μ

)
.

Then, the closure of the operator (A,C∞
c (RN)) on L1(RN,μ) generates a sub-Markovian

strongly continuous semigroup. In particular, (A,C∞
c (RN)) is L1(RN,μ) unique.

Proof. Repeating verbatim the proof of Theorem 3.4 with p = 2, we can show that

(
λ − α

2

) ∫

RN

ζ 2
n |g|2 μ(dx) �

∫

RN

(logV )2

n2

∣∣ζ ′(n−1 logV
)∣∣2|g|2 (Q∇V ) · ∇V

(V logV )2
μ(dx)

+
∫

RN

logV

n
ζnζ

′(n−1 logV
)|g|2 β · ∇V

V logV
μ(dx). (3.16)

The integrability assumptions on (V logV )−1(β · V ) and (V logV )−2(Q∇V ) · ∇V allow us to
apply the Fatou’s lemma and still conclude from (3.8) that

∫
RN g2 μ(dx) = 0, so that g ≡ 0. �

3.1. The case of symmetrizing invariant measures

In this subsection, we consider the case when the measure μ is symmetrizing for the opera-
tor A, i.e., the case when β ≡ 0 in R

N . In this case, μ is an infinitesimally invariant measure for
A (see (3.2)) and we can prove the following result.
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Proposition 3.6. Fix p > 1. Assume that Hypothesis 2.1(i)–(iii) holds, bi ∈ L
p

loc(R
N,dx) (i =

1, . . . ,N) and that μ is a symmetrizing invariant measure for the operator A. Let Λ(x) denote
the maximum eigenvalue of the matrix Q(x) for any x ∈ R

N , and set λ(s) = max|x|=s Λ(x) for
any s � 0. Finally, assume that λ−1/2 is not integrable in a neighborhood of +∞. Then, the
closure of the operator (A,C∞

c (RN)) on Lp(RN,μ) generates a Markov strongly continuous
semigroup.

Proof. As it has been observed in Remark 3.2, the density of μ with respect to the Lebesgue
measure belongs to W

1,r
loc (RN,dx). Thus, Hypothesis 3.1 is satisfied. Let V : R

N → R be any

positive C1-function such that V (x) = e
∫ |x|

0 λ−1/2(s) ds for any x ∈ R
N with |x| � 1. Then,

(Q(x)∇V (x)) · ∇V (x)

(V (x) logV (x))2
= (Q(x)x) · x

λ(|x|)|x|2(∫ |x|
0 λ−1/2(s) ds)2

� 1

(
∫ |x|

0 λ−1/2(s) ds)2
, |x| � 1.

Hence, conditions (3.3) are satisfied and the assertion follows from Theorem 3.4. �
In the following corollary we specialize our result to the case when A is a generalized

Schrödinger operator, i.e., in the case when

Aφ = �φ + ∇�

�
· ∇φ, (3.17)

on smooth functions φ.

Corollary 3.7. Let p > 1 and let � ∈ W
1,p

loc (RN,dx) be locally uniformly positive. If there ex-
ists r > N such that ∇�/� ∈ Lr

loc(R
N,dx), then the closure of the operator (A,C∞

c (RN)) on
Lp(RN,μ) generates a Markov strongly continuous semigroup, where μ(dx) = � dx. If μ is
finite, then the result holds also for p = 1.

Proof. It suffices to apply Proposition 3.6 for p > 1, and Proposition 3.5 for p = 1, with
V (x) = |x| for large |x|. �
Remark 3.8. Some remarks are in order.

(i) The one-dimensional case has been completely characterized by Eberle in [14].
(ii) Corollary 3.7 allows us to cover also some situations to which [14, Theorem 2.6] does not

apply. Indeed, in the case when � is not integrable with respect to the Lebesgue measure,
the invariant measure μ(dx) = � dx may not satisfy the condition

lim sup
r→+∞

1

rk

∫
Br

�(x) dx < +∞, (3.18)

whatever k > 0 may be, which was one of the main requirement of [14, Theorem 2.6].
For instance, the condition (3.18) is not satisfied when � is any smooth function such that
�(x) = e|x|2 for large |x|.
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Similarly, in the case when the measure μ is finite, our result generalizes the quoted theo-
rem by Eberle for large p’s. Indeed, another important requirement in that theorem is that
the function β = ∇�

�
belongs to Lr

loc(R
N,� dx) for some r > (1 + N/2)p. Since, by our

assumptions Lr
loc(R

N,� dx) = Lr
loc(R

N,dx), our result extends [14, Theorem 2.6] when
(1 + N/2)p > N .

(iii) In the case when p = 2 we recover the same result as in [6, Theorem 7].
(iv) A result similar to Corollary 3.7 has been proved by Liskevic̆ [20] and Liskevic̆ and Se-

menov [21] for p > 3/2. Our result generalizes the results by Liskevic̆ and Semenov in the
sense that, differently from them, we do not assume any global integrability conditions and
our result holds true for any p > 1.

(v) Finally, we point out that a detailed discussion of L1-uniqueness has been given by Stannat
in [32].
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