Collapses, products and LC manifolds

Bruno Benedetti ${ }^{1}$
Inst. Mathematics, MA 6-2, TU Berlin, D-10623 Berlin, Germany

A R T I C LE I N F O

Article history:

Received 5 November 2009
Available online 11 May 2010

Keywords:

Collapse
LC manifold
Product complex
Simple homotopy type

Abstract

The quantum physicists Durhuus and Jonsson (1995) [9] introduced the class of "locally constructible" (LC) triangulated manifolds and showed that all the LC 2- and 3-manifolds are spheres. We show here that for each $d>3$ some LC d-manifolds are not spheres. We prove this result by studying how to collapse products of manifolds with one facet removed.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Collapses are a classical notion in Combinatorial Topology, originally introduced in the Thirties by Whitehead [14], extensively studied in the Sixties by Bing, Cohen, Lickorish and Zeeman among others, yet also at the center of recent works such as [1] and [8].

Given a polytopal (or a regular CW) complex, a collapse is a move that cancels two faces and yields a smaller complex which is topologically a strong deformation retract of the starting one. Any complex that is collapsible (i.e. transformable into a point via a sequence of collapses) is thus also contractible. Conversely, every shellable contractible complex is collapsible.

However, not all contractible complexes are collapsible: A famous two-dimensional counterexample is given by Zeeman's dunce hat [15]. According to the work of Whitehead [14] and Cohen [7], a complex C is contractible if and only if some collapsible complex D collapses also onto C. In fact, one can construct a collapsible triangulated 3-ball with only 8 vertices that collapses onto a copy of the dunce hat [3]. Cohen's result is obtained by taking products: Zeeman [15] first noticed that the product of the dunce hat with a segment \mathbb{I} is polyhedrally collapsible and asked whether the same holds for any contractible 2-complex. (The question, known as Zeeman's conjecture, is still open [10]. For polyhedral collapsibility, see e.g. [11, pp. 42-48].)

[^0]Cohen [7, Corollaries 3 and 4] showed that the product of any contractible d-complex C with the q-dimensional cube \mathbb{I}^{q} polyhedrally collapses onto a point, provided $q \geqslant \max (2 d, 5)$. At the same time, $C \times \mathbb{I}^{q}$ collapses onto C (cf. Corollary 2.2).

It was first discovered by Bing [5] that some triangulations of 3-balls are not collapsible. For each $d \geqslant 3$, Lickorish [12] proved that some triangulated d-balls of the form $S-\Delta$ (with S a d-sphere and Δ a facet of S) are not collapsible. Bing's and Lickorish's claim were recently strengthened by the author and Ziegler [4, Theorem 2.19], who showed that for each $d \geqslant 3$ certain triangulated d balls of the form $S-\Delta$ do not even collapse onto any ($d-2$)-dimensional subcomplex of S. These three results were all obtained via knot theory. In fact, a 3-ball may contain arbitrarily complicated three-edge-knots in its 1 -skeleton. Depending on how complicated the knot is, one can draw sharp conclusions on the collapsibility of the 3 -ball and of its successive suspensions.

In the nineties, two quantum physicists, Durhuus and Jonsson [9], introduced the term "LC d manifold" to describe a manifold that can be obtained from a tree of d-polytopes by repeatedly identifying two combinatorially equivalent adjacent $(d-1)$-faces in the boundary $(d \geqslant 2)$. Plenty of spheres satisfy this bizarre requirement: In fact, all shellable and all constructible d-spheres are LC (cf. [4]). At the same time, simplicial LC d-manifolds are only exponentially many when counted with respect to the number of facets, while arbitrary (simplicial) d-manifolds are much more numerous [2 , Chapter 2].

Durhuus and Jonsson noticed that the class of LC d-manifolds coincides with the class of all d spheres for $d=2$. But what about higher dimensions?

For $d=3$, they were able to prove one of the two inclusions, namely, that all LC 3-manifolds are spheres [9, Theorem 2]. The other inclusion does not hold: For each $d \geqslant 3$, some d-spheres are not LC, as established in [4]. The examples of non-LC spheres are given by 3 -spheres with a three-edge-knot in their 1 -skeleton (provided the knot is sufficiently complicated!) and by their successive suspensions.

The analogy with the aforementioned obstructions to collapsibility is not a coincidence: In fact, the LC d-spheres can be characterized [4, Theorem 2.1] as the d-spheres that collapse onto a ($d-2$)complex after the removal of a facet. (It does not matter which facet you choose.) This characterization can be easily extended to (closed) manifolds:

A d-manifold M is LC if and only if M minus a facet collapses onto a (d-2)-complex.
Exploiting this characterization, in the present paper we prove the following statement:
Main Theorem 1. The product of LC manifolds is an LC manifold.
The proof, which is elementary, can be outlined as follows: Suppose a manifold M (resp. M^{\prime}) minus a facet collapses onto a ($\operatorname{dim} M-2$)-complex C (resp. a ($\operatorname{dim} M^{\prime}-2$)-complex $\left.C^{\prime}\right)$. We show that the complex obtained by removing a facet from $M \times M^{\prime}$ collapses onto the complex ($C \times M^{\prime}$) $\cup\left(M \times C^{\prime}\right)$, which is $\left(\operatorname{dim} M+\operatorname{dim} M^{\prime}-2\right)$-dimensional.

As a corollary, we immediately obtain that some LC 4-manifolds are not spheres, but rather products of two LC 2 -spheres. This enables us to solve Durhuus-Jonsson's problem for all dimensions:

Main Theorem 2. The class of LC 2-manifolds coincides with the class of all 2-spheres.
The class of LC 3-manifolds is strictly contained in the class of all 3-spheres.
For each $d \geqslant 4$, the class of LC d-manifolds and the class of all d-spheres are overlapping, but none of them is contained in the other.

By the work of Zeeman (see e.g. [6]), for every positive integer d, every shellable or constructible d-manifold is a d-sphere. Thus, the properties of shellability and constructibility are obviously not inherited by products. All 2 -spheres are LC, constructible and shellable; however, for each $d \geqslant 3$, all shellable d-spheres are constructible, all constructible d-spheres are LC, but some LC d-spheres are not constructible [4]. It is still unknown whether all constructible spheres are shellable.

1.1. Definitions

A polytopal complex is a finite, nonempty collection C of polytopes (called the faces of C) in some Euclidean space \mathbb{R}^{k}, such that (1) if σ is a polytope in C then all the faces of σ are elements of C and (2) the intersection of any two polytopes of C is a face of both. If d is the largest dimension of a polytope of C, the polytopal complex C is called d-complex. An inclusion-maximal face of C is called facet. A d-complex is simplicial (resp. cubical) if all of its facets are simplices (resp. cubes). Given an a-complex A and a b-complex B, the product $C=A \times B$ is an $(a+b)$-complex whose nonempty faces are the products $P_{\alpha} \times P_{\beta}$, where P_{α} (resp. P_{β}) ranges over the nonempty polytopes of A (resp. B). In general, the product of two simplicial complexes is not a simplicial complex, while the product of two cubical complexes is a cubical complex.

Let C be a d-complex. An elementary collapse is the simultaneous removal from C of a pair of faces (σ, Σ), such that σ is a proper face of Σ and of no other face of C. (This is usually abbreviated as " σ is a free face of Σ "; some complexes have no free faces.) We say the complex C collapses onto the complex D, and write $C \searrow D$, if C can be deformed onto D by a finite (nonempty) sequence of elementary collapses. Without loss of generality, we may assume that in this sequence the pairs ($(d-1)$-face, d-face) are removed first; we may also assume that after that, the pairs ($(d-2)$-face, $(d-1)$-face) are removed; and so on. A collapsible d-complex is a d-complex that can be collapsed onto a single vertex. If C collapses onto D, then D is a strong deformation retract of C, so C and D have the same homotopy type. In particular, all collapsible complexes are contractible.

The underlying space $|C|$ of a d-complex C is the union of all of its faces. A d-sphere is a d-complex whose underlying space is homeomorphic to $\left\{\mathbf{x} \in \mathbb{R}^{d+1}:|\mathbf{x}|=1\right\}$. A d-ball is a d-complex with underlying space homeomorphic to $\left\{\mathbf{x} \in \mathbb{R}^{d}:|\mathbf{x}| \leqslant 1\right\}$; a tree of d-polytopes is a d-ball whose dual graph is a tree. With abuse of language, by d-manifold we will mean any d-complex whose underlying space is homeomorphic to a compact connected topological manifold (without boundary).

A locally constructible (LC) d-manifold is a d-manifold obtained from a tree of polytopes by repeatedly identifying a pair of adjacent $(d-1)$-faces of the boundary. ("Adjacent" means here "sharing at least a ($d-2$)-face" and represents a dynamic requirement: after each identification, new pairs of boundary facets might become adjacent and may be glued together.) Equivalently [4, Theorem 2.1], [2, Theorem 5.2.6], an LC d-manifold is a d-manifold that after the removal of a facet collapses onto a (d -2)-dimensional subcomplex. For the definition of shellability or constructibility, see e.g. Björner [6, p. 1854].

2. Proof of the main results

In this section, we exploit the characterization of LC manifolds mentioned in the Introduction to prove Main Theorems 1 and 2. In fact:

- Main Theorem 1 will be a straightforward consequence of Corollary 2.4;
- Main Theorem 2 follows directly from Remark 2.7, because we already know that all LC 2- and 3 -manifolds are spheres [9, Theorem 2], that all 2-spheres are LC [9] and that some d-spheres are not LC for each $d \geqslant 3$ [4].

Let us start with a classical result on collapses and products:
Proposition 2.1. (See Cohen [7, p. 254], see also Welker [13, Theorem 2.6].) Let A and B be two polytopal complexes. If A collapses onto a complex C_{A} then $A \times B$ collapses onto $C_{A} \times B$.

Proof. Let B_{1}, \ldots, B_{M} be an ordered list of all the faces of B, ordered by weakly decreasing dimension. Let ($\sigma_{1}^{A}, \Sigma_{1}^{A}$) be the first pair of faces appearing in the collapse of A onto C_{A}. We perform the M collapses $\left(\sigma_{1}^{A} \times B_{1}, \Sigma_{1}^{A} \times B_{1}\right), \ldots,\left(\sigma_{1}^{A} \times B_{M}, \Sigma_{1}^{A} \times B_{M}\right)$, in this order. It is easy to check that each of the steps above is a legitimate collapse: When we remove $\sigma_{1}^{A} \times B_{i}$ all the faces of the type $\sigma_{1}^{A} \times \beta$ containing $\sigma_{1}^{A} \times B_{i}$ have already been removed, because in the list B_{1}, \ldots, B_{M} the face β appears
before B_{i}. On the other hand, σ_{1}^{A} is a free face of Σ_{1}^{A}, thus no face of the type $\alpha \times B_{i}$ may contain $\sigma_{1}^{A} \times B_{i}$ other than $\Sigma_{1}^{A} \times B_{i}$.

Next, we consider the second pair of faces ($\sigma_{2}^{A}, \Sigma_{2}^{A}$) that appears in the collapse of A onto C_{A} and we repeat the procedure above, and so on: In the end, the only faces left are those of $C_{A} \times B$.

Corollary 2.2. If A is collapsible, then $A \times B$ collapses onto a copy of B.
Since the product of the dunce hat with a segment \mathbb{I} is collapsible [15], the collapsibility of both A and B strictly implies the collapsibility of $A \times B$.

Now, consider a 1 -sphere S consisting of four edges. The 2 -complex $S \times S$ is a cubical torus; after the removal of a facet, it collapses onto the union of a meridian and a longitude of the torus. (Topologically, a punctured torus retracts to a bouquet of two circles.) This can be generalized as follows:

Proposition 2.3. Let A and B be two polytopal complexes. Let $\Delta_{A}\left(\right.$ resp. $\left.\Delta_{B}\right)$ be a facet of A (resp. B). If $A-\Delta_{A}$ collapses onto some complex C_{A} and if $B-\Delta_{B}$ collapses onto some complex C_{B} then $(A \times B)-\left(\Delta_{A} \times \Delta_{B}\right)$ collapses onto $\left(A \times C_{B}\right) \cup\left(C_{A} \times B\right)$.

Proof. We start by forming three ordered lists of pairs of faces. Let $\left(\sigma_{1}, \Sigma_{1}\right), \ldots,\left(\sigma_{U}, \Sigma_{U}\right)$ be the list of the removed pairs of faces in the collapse of $A-\Delta_{A}$ onto C_{A}. (We assume that higher-dimensional faces are collapsed first.) Analogously, let (γ_{1}, Γ_{1}) , , , (γ_{V}, Γ_{V}) be the list of all the removed pairs in the collapse of $B-\Delta_{B}$ onto C_{B}. Let then B_{1}, \ldots, B_{W} be the list of all the faces of B that are not in C_{B}, ordered by weakly decreasing dimension.

The desired collapsing sequence for $(A \times B)-\left(\Delta_{A} \times \Delta_{B}\right)$ consists of $U+1$ distinct phases:
Phase 0: We remove from $(A \times B)-\left(\Delta_{A} \times \Delta_{B}\right)$ the V pairs of faces $\left(\Delta_{A} \times \gamma_{1}, \Delta_{A} \times \Gamma_{1}\right)$, $\left(\Delta_{A} \times \gamma_{2}, \Delta_{A} \times \Gamma_{2}\right), \ldots,\left(\Delta_{A} \times \gamma_{V}, \Delta_{A} \times \Gamma_{V}\right)$, in this order. Analogously to the proof of Proposition 2.1, one sees that all these removals are elementary collapses. They wipe away the " Δ_{A}-layer" of $A \times B$, but not entirely: The faces $\alpha \times \beta$ with β in C_{B} are still present. What we have written is in fact a collapse of $(A \times B)-\left(\Delta_{A} \times \Delta_{B}\right)$ onto the complex $\left(\left(A-\Delta_{A}\right) \times B\right) \cup\left(\Delta_{A} \times C_{B}\right)$.
Phase 1: We take the first pair $\left(\sigma_{1}, \Sigma_{1}\right)$ in the first list and we perform the W elementary collapses $\left(\sigma_{1} \times B_{1}, \Sigma_{1} \times B_{1}\right), \ldots,\left(\sigma_{1} \times B_{W}, \Sigma_{1} \times B_{W}\right)$. This way we remove (with the exception of $\Sigma_{1} \times C_{B}$) the Σ_{1}-layer of $A \times B$, where Σ_{1} is the first facet of A to be collapsed away in $A-\Delta_{A} \searrow C_{A}$.
\vdots
Phase j : We consider (σ_{j}, Σ_{j}) and proceed as in Phase 1, performing W collapses to remove (with the exception of $\Sigma_{j} \times C_{B}$) the Σ_{j}-layer of $A \times B$. \vdots
Phase U : We consider (σ_{U}, Σ_{U}) and proceed as in Phase 1, performing W collapses to remove (with the exception of $\Sigma_{U} \times C_{B}$) the Σ_{U}-layer of $A \times B$.

Eventually, the only faces of $A \times B$ left are the polytopes of $A \times C_{B} \cup C_{A} \times B$.
Corollary 2.4. Given s polytopal complexes A_{1}, \ldots, A_{s}, suppose that each A_{i} after the removal of a facet collapses onto some lower-dimensional complex C_{i}. Then the complex $A_{1} \times \cdots \times A_{s}$ after the removal of a facet collapses onto

$$
\left(C_{1} \times A_{2} \times \cdots \times A_{s}\right) \cup\left(A_{1} \times C_{2} \times A_{3} \times \cdots \times A_{s}\right) \cup \cdots \cup\left(A_{1} \times \cdots \times A_{s-1} \times C_{s}\right) .
$$

In particular, if $\operatorname{dim} C_{i}=\operatorname{dim} A_{i}-2$ for each i, then $A_{1} \times \cdots \times A_{s}$ minus a facet collapses onto a complex of dimension $\operatorname{dim} A_{1}+\cdots+\operatorname{dim} A_{s}-2$.

Proof. It follows from Proposition 2.3, by induction on s.
Remark 2.5. Proposition 2.1, Proposition 2.3 and Corollary 2.4 can be easily extended to the generality of finite regular CW complexes (see e.g. Björner [6, p. 1860] for the definition).

Example 2.6. Let C be the boundary of the three-dimensional cube \mathbb{I}^{3}; removing a square from C one obtains a collapsible 2-complex. The product $C \times C$ is a cubical 4-manifold homeomorphic to $S^{2} \times S^{2}$ (and not homeomorphic to S^{4}). The 4-complex obtained by removing a facet from $C \times C$ collapses onto a 2 -complex, by Proposition 2.3. Therefore, $C \times C$ is LC. Note that the second homotopy group of $C \times C$ is nonzero. However, as observed by Durhuus and Jonsson [9] [2, Lemma 1.6.3], every LC d-manifold is simply connected.

Remark 2.7. The previous example can be generalized by taking the product of the boundary of the 3 -cube \mathbb{T}^{3} with the boundary of the $(d-1)$-cube $\mathbb{I}^{d-1}(d \geqslant 4)$. As a result, one obtains a cubical d manifold that is homeomorphic to $S^{2} \times S^{d-2}$ (and not homeomorphic to S^{d}). This d-manifold is LC, because the boundary of a ($d-1$)-cube is shellable and LC. In contrast, no manifold homeomorphic to $S^{1} \times S^{d-1}$ is LC, because LC manifolds are simply connected.

Acknowledgment

The author wishes to thank Günter Ziegler for helpful discussions.

References

[1] J.A. Barmak, E.G. Minian, Simple homotopy types and finite spaces, Adv. Math. 218 (2008) 87-104.
[2] B. Benedetti, On locally constructible manifolds, PhD thesis, TU Berlin, 2009, available online at http://opus.kobv.de/ tuberlin/volltexte/2010/2519/.
[3] B. Benedetti, F.H. Lutz, The dunce hat and a minimal non-extendably collapsible 3-ball, preprint, 2009, available online at http://arxiv.org/abs/0912.3723.
[4] B. Benedetti, G.M. Ziegler, On locally constructible spheres and balls, preprint, 2009, available online at http://arxiv.org/abs/ 0902.0436.
[5] R.H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, in: T. Saaty (Ed.), Lectures on Modern Mathematics, vol. II, Wiley, 1964, pp. 93-128.
[6] A. Björner, Topological methods, in: R. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, vol. II, Elsevier, Amsterdam, 1995, pp. 1819-1872.
[7] M.M. Cohen, Dimension estimates in collapsing $X \times I^{q}$, Topology 14 (1975) 253-256.
[8] K. Crowley, Simplicial collapsibility, discrete Morse theory, and the geometry of nonpositively curved simplicial complexes, Geom. Dedicata 133 (2008) 33-50.
[9] B. Durhuus, T. Jonsson, Remarks on the entropy of 3-manifolds, Nuclear Phys. B 445 (1995) 182-192.
[10] C. Hog-Angeloni, W. Metzler, A. Sieradski, Two-Dimensional Homotopy and Combinatorial Group Theory, Cambridge University Press, Cambridge, 1993.
[11] J.F.P. Hudson, Piecewise Linear Topology, W.A. Benjamin, New York, Amsterdam, 1969.
[12] W.B.R. Lickorish, Unshellable triangulations of spheres, European J. Combin. 12 (1991) 527-530.
[13] V. Welker, Constructions preserving evasiveness and collapsibility, Discrete Math. 207 (1999) 243-255.
[14] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. Lond. Math. Soc. 45 (1939) 243-327.
[15] E.C. Zeeman, On the dunce hat, Topology 2 (1963) 341-358.

[^0]: E-mail address: benedetti@math.tu-berlin.de.
 ${ }^{1}$ Supported by DFG via the Berlin Mathematical School.

