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The quantum physicists Durhuus and Jonsson (1995) [9] introduced
the class of “locally constructible” (LC) triangulated manifolds and
showed that all the LC 2- and 3-manifolds are spheres. We show
here that for each d > 3 some LC d-manifolds are not spheres. We
prove this result by studying how to collapse products of manifolds
with one facet removed.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Collapses are a classical notion in Combinatorial Topology, originally introduced in the Thirties
by Whitehead [14], extensively studied in the Sixties by Bing, Cohen, Lickorish and Zeeman among
others, yet also at the center of recent works such as [1] and [8].

Given a polytopal (or a regular CW) complex, a collapse is a move that cancels two faces and
yields a smaller complex which is topologically a strong deformation retract of the starting one. Any
complex that is collapsible (i.e. transformable into a point via a sequence of collapses) is thus also
contractible. Conversely, every shellable contractible complex is collapsible.

However, not all contractible complexes are collapsible: A famous two-dimensional counterexam-
ple is given by Zeeman’s dunce hat [15]. According to the work of Whitehead [14] and Cohen [7],
a complex C is contractible if and only if some collapsible complex D collapses also onto C . In fact,
one can construct a collapsible triangulated 3-ball with only 8 vertices that collapses onto a copy of
the dunce hat [3]. Cohen’s result is obtained by taking products: Zeeman [15] first noticed that the
product of the dunce hat with a segment I is polyhedrally collapsible and asked whether the same
holds for any contractible 2-complex. (The question, known as Zeeman’s conjecture, is still open [10].
For polyhedral collapsibility, see e.g. [11, pp. 42–48].)
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Cohen [7, Corollaries 3 and 4] showed that the product of any contractible d-complex C with the
q-dimensional cube I

q polyhedrally collapses onto a point, provided q � max(2d,5). At the same time,
C × I

q collapses onto C (cf. Corollary 2.2).
It was first discovered by Bing [5] that some triangulations of 3-balls are not collapsible. For each

d � 3, Lickorish [12] proved that some triangulated d-balls of the form S − � (with S a d-sphere
and � a facet of S) are not collapsible. Bing’s and Lickorish’s claim were recently strengthened by
the author and Ziegler [4, Theorem 2.19], who showed that for each d � 3 certain triangulated d-
balls of the form S − � do not even collapse onto any (d − 2)-dimensional subcomplex of S . These
three results were all obtained via knot theory. In fact, a 3-ball may contain arbitrarily complicated
three-edge-knots in its 1-skeleton. Depending on how complicated the knot is, one can draw sharp
conclusions on the collapsibility of the 3-ball and of its successive suspensions.

In the nineties, two quantum physicists, Durhuus and Jonsson [9], introduced the term “LC d-
manifold” to describe a manifold that can be obtained from a tree of d-polytopes by repeatedly
identifying two combinatorially equivalent adjacent (d − 1)-faces in the boundary (d � 2). Plenty of
spheres satisfy this bizarre requirement: In fact, all shellable and all constructible d-spheres are LC
(cf. [4]). At the same time, simplicial LC d-manifolds are only exponentially many when counted with
respect to the number of facets, while arbitrary (simplicial) d-manifolds are much more numerous [2,
Chapter 2].

Durhuus and Jonsson noticed that the class of LC d-manifolds coincides with the class of all d-
spheres for d = 2. But what about higher dimensions?

For d = 3, they were able to prove one of the two inclusions, namely, that all LC 3-manifolds
are spheres [9, Theorem 2]. The other inclusion does not hold: For each d � 3, some d-spheres are
not LC, as established in [4]. The examples of non-LC spheres are given by 3-spheres with a three-
edge-knot in their 1-skeleton (provided the knot is sufficiently complicated!) and by their successive
suspensions.

The analogy with the aforementioned obstructions to collapsibility is not a coincidence: In fact,
the LC d-spheres can be characterized [4, Theorem 2.1] as the d-spheres that collapse onto a (d − 2)-
complex after the removal of a facet. (It does not matter which facet you choose.) This characterization
can be easily extended to (closed) manifolds:

A d-manifold M is LC if and only if M minus a facet collapses onto a (d − 2)-complex.

Exploiting this characterization, in the present paper we prove the following statement:

Main Theorem 1. The product of LC manifolds is an LC manifold.

The proof, which is elementary, can be outlined as follows: Suppose a manifold M (resp. M ′) minus
a facet collapses onto a (dim M − 2)-complex C (resp. a (dim M ′ − 2)-complex C ′). We show that the
complex obtained by removing a facet from M × M ′ collapses onto the complex (C × M ′) ∪ (M × C ′),
which is (dim M + dim M ′ − 2)-dimensional.

As a corollary, we immediately obtain that some LC 4-manifolds are not spheres, but rather prod-
ucts of two LC 2-spheres. This enables us to solve Durhuus–Jonsson’s problem for all dimensions:

Main Theorem 2. The class of LC 2-manifolds coincides with the class of all 2-spheres.
The class of LC 3-manifolds is strictly contained in the class of all 3-spheres.
For each d � 4, the class of LC d-manifolds and the class of all d-spheres are overlapping, but none of them

is contained in the other.

By the work of Zeeman (see e.g. [6]), for every positive integer d, every shellable or constructible
d-manifold is a d-sphere. Thus, the properties of shellability and constructibility are obviously not
inherited by products. All 2-spheres are LC, constructible and shellable; however, for each d � 3, all
shellable d-spheres are constructible, all constructible d-spheres are LC, but some LC d-spheres are
not constructible [4]. It is still unknown whether all constructible spheres are shellable.
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1.1. Definitions

A polytopal complex is a finite, nonempty collection C of polytopes (called the faces of C ) in some
Euclidean space R

k , such that (1) if σ is a polytope in C then all the faces of σ are elements of C
and (2) the intersection of any two polytopes of C is a face of both. If d is the largest dimension of a
polytope of C , the polytopal complex C is called d-complex. An inclusion-maximal face of C is called
facet. A d-complex is simplicial (resp. cubical) if all of its facets are simplices (resp. cubes). Given an
a-complex A and a b-complex B , the product C = A × B is an (a + b)-complex whose nonempty faces
are the products Pα × Pβ , where Pα (resp. Pβ ) ranges over the nonempty polytopes of A (resp. B).
In general, the product of two simplicial complexes is not a simplicial complex, while the product of
two cubical complexes is a cubical complex.

Let C be a d-complex. An elementary collapse is the simultaneous removal from C of a pair of faces
(σ ,Σ), such that σ is a proper face of Σ and of no other face of C . (This is usually abbreviated
as “σ is a free face of Σ”; some complexes have no free faces.) We say the complex C collapses
onto the complex D , and write C ↘ D , if C can be deformed onto D by a finite (nonempty) se-
quence of elementary collapses. Without loss of generality, we may assume that in this sequence
the pairs ((d − 1)-face,d-face) are removed first; we may also assume that after that, the pairs
((d − 2)-face, (d − 1)-face) are removed; and so on. A collapsible d-complex is a d-complex that can
be collapsed onto a single vertex. If C collapses onto D , then D is a strong deformation retract of C ,
so C and D have the same homotopy type. In particular, all collapsible complexes are contractible.

The underlying space |C | of a d-complex C is the union of all of its faces. A d-sphere is a d-complex
whose underlying space is homeomorphic to {x ∈ R

d+1: |x| = 1}. A d-ball is a d-complex with under-
lying space homeomorphic to {x ∈ R

d: |x| � 1}; a tree of d-polytopes is a d-ball whose dual graph is a
tree. With abuse of language, by d-manifold we will mean any d-complex whose underlying space is
homeomorphic to a compact connected topological manifold (without boundary).

A locally constructible (LC) d-manifold is a d-manifold obtained from a tree of polytopes by repeat-
edly identifying a pair of adjacent (d − 1)-faces of the boundary. (“Adjacent” means here “sharing at
least a (d − 2)-face” and represents a dynamic requirement: after each identification, new pairs of
boundary facets might become adjacent and may be glued together.) Equivalently [4, Theorem 2.1],
[2, Theorem 5.2.6], an LC d-manifold is a d-manifold that after the removal of a facet collapses onto a
(d − 2)-dimensional subcomplex. For the definition of shellability or constructibility, see e.g. Björner
[6, p. 1854].

2. Proof of the main results

In this section, we exploit the characterization of LC manifolds mentioned in the Introduction to
prove Main Theorems 1 and 2. In fact:

– Main Theorem 1 will be a straightforward consequence of Corollary 2.4;
– Main Theorem 2 follows directly from Remark 2.7, because we already know that all LC 2- and

3-manifolds are spheres [9, Theorem 2], that all 2-spheres are LC [9] and that some d-spheres are
not LC for each d � 3 [4].

Let us start with a classical result on collapses and products:

Proposition 2.1. (See Cohen [7, p. 254], see also Welker [13, Theorem 2.6].) Let A and B be two polytopal
complexes. If A collapses onto a complex C A then A × B collapses onto C A × B.

Proof. Let B1, . . . , BM be an ordered list of all the faces of B , ordered by weakly decreasing dimen-
sion. Let (σ A

1 ,Σ A
1 ) be the first pair of faces appearing in the collapse of A onto C A . We perform the

M collapses (σ A
1 × B1,Σ

A
1 × B1), . . . , (σ A

1 × BM ,Σ A
1 × BM), in this order. It is easy to check that each

of the steps above is a legitimate collapse: When we remove σ A
1 × Bi all the faces of the type σ A

1 ×β

containing σ A
1 × Bi have already been removed, because in the list B1, . . . , BM the face β appears
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before Bi . On the other hand, σ A
1 is a free face of Σ A

1 , thus no face of the type α × Bi may contain
σ A

1 × Bi other than Σ A
1 × Bi .

Next, we consider the second pair of faces (σ A
2 ,Σ A

2 ) that appears in the collapse of A onto C A and
we repeat the procedure above, and so on: In the end, the only faces left are those of C A × B . �
Corollary 2.2. If A is collapsible, then A × B collapses onto a copy of B.

Since the product of the dunce hat with a segment I is collapsible [15], the collapsibility of both
A and B strictly implies the collapsibility of A × B .

Now, consider a 1-sphere S consisting of four edges. The 2-complex S × S is a cubical torus;
after the removal of a facet, it collapses onto the union of a meridian and a longitude of the torus.
(Topologically, a punctured torus retracts to a bouquet of two circles.) This can be generalized as
follows:

Proposition 2.3. Let A and B be two polytopal complexes. Let �A (resp. �B ) be a facet of A (resp. B). If A −�A

collapses onto some complex C A and if B − �B collapses onto some complex C B then (A × B) − (�A × �B)

collapses onto (A × C B) ∪ (C A × B).

Proof. We start by forming three ordered lists of pairs of faces. Let (σ1,Σ1), . . . , (σU ,ΣU ) be the list
of the removed pairs of faces in the collapse of A −�A onto C A . (We assume that higher-dimensional
faces are collapsed first.) Analogously, let (γ1,Γ1), . . . , (γV ,ΓV ) be the list of all the removed pairs
in the collapse of B − �B onto C B . Let then B1, . . . , BW be the list of all the faces of B that are not
in C B , ordered by weakly decreasing dimension.

The desired collapsing sequence for (A × B) − (�A × �B) consists of U + 1 distinct phases:

Phase 0: We remove from (A × B) − (�A × �B) the V pairs of faces (�A × γ1,�A × Γ1),
(�A × γ2,�A × Γ2), . . . , (�A × γV ,�A × ΓV ), in this order. Analogously to the proof of
Proposition 2.1, one sees that all these removals are elementary collapses. They wipe away
the “�A -layer” of A × B , but not entirely: The faces α × β with β in C B are still present.
What we have written is in fact a collapse of (A × B) − (�A × �B) onto the complex
((A − �A) × B) ∪ (�A × C B).

Phase 1: We take the first pair (σ1,Σ1) in the first list and we perform the W elementary collapses
(σ1 × B1,Σ1 × B1), . . . , (σ1 × BW ,Σ1 × BW ). This way we remove (with the exception of
Σ1 × C B ) the Σ1-layer of A × B , where Σ1 is the first facet of A to be collapsed away in
A − �A ↘ C A .
.
.
.

Phase j: We consider (σ j,Σ j) and proceed as in Phase 1, performing W collapses to remove (with
the exception of Σ j × C B ) the Σ j -layer of A × B .
.
.
.

Phase U: We consider (σU ,ΣU ) and proceed as in Phase 1, performing W collapses to remove (with
the exception of ΣU × C B ) the ΣU -layer of A × B .

Eventually, the only faces of A × B left are the polytopes of A × C B ∪ C A × B . �
Corollary 2.4. Given s polytopal complexes A1, . . . , As, suppose that each Ai after the removal of a facet
collapses onto some lower-dimensional complex Ci . Then the complex A1 × · · · × As after the removal of a
facet collapses onto

(C1 × A2 × · · · × As) ∪ (A1 × C2 × A3 × · · · × As) ∪ · · · ∪ (A1 × · · · × As−1 × Cs).

In particular, if dim Ci = dim Ai − 2 for each i, then A1 × · · · × As minus a facet collapses onto a complex of
dimension dim A1 + · · · + dim As − 2.
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Proof. It follows from Proposition 2.3, by induction on s. �
Remark 2.5. Proposition 2.1, Proposition 2.3 and Corollary 2.4 can be easily extended to the generality
of finite regular CW complexes (see e.g. Björner [6, p. 1860] for the definition).

Example 2.6. Let C be the boundary of the three-dimensional cube I
3; removing a square from C one

obtains a collapsible 2-complex. The product C × C is a cubical 4-manifold homeomorphic to S2 × S2

(and not homeomorphic to S4). The 4-complex obtained by removing a facet from C × C collapses
onto a 2-complex, by Proposition 2.3. Therefore, C × C is LC. Note that the second homotopy group
of C × C is nonzero. However, as observed by Durhuus and Jonsson [9] [2, Lemma 1.6.3], every LC
d-manifold is simply connected.

Remark 2.7. The previous example can be generalized by taking the product of the boundary of the
3-cube I

3 with the boundary of the (d − 1)-cube I
d−1 (d � 4). As a result, one obtains a cubical d-

manifold that is homeomorphic to S2 × Sd−2 (and not homeomorphic to Sd). This d-manifold is LC,
because the boundary of a (d − 1)-cube is shellable and LC. In contrast, no manifold homeomorphic
to S1 × Sd−1 is LC, because LC manifolds are simply connected.
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