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Statistical evaluation of biomedical studies
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The aim of this chapter is to familiarize the reader with the basic information and common statistical
analyses used in medical research. The chapter will aid in deciding what type of analyses best fit the
study data and how each analysis differs. The chapter was written to be user-friendly from a medical
research and statistical consultant perspective.
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Introduction

In order to determine the most appropriate statistical tests for
a given study, the primary hypothesis must first be stated. Is the
purpose of the study to detect a relationship (such as a correlation)
between two (or more) variables, to detect differences in some
central estimator (e.g., mean) between two (or more) groups or to
detect differences in rates or proportions between two (or more)
groups? While there are certainly other types of hypothesis, most
basic animal studies will fall into one of these classifications. This
chapter will first address studies with primary hypothesis involving
correlations or differences in central tendency followed by
a discussion of studies with primary hypothesis involving rates/
proportions.
Power and sample size

Studies are sometimes criticized for being too small or inade-
quately powered. The concept of statistical power centers on Type I
and Type II errors. Type I error was previously defined. Type II error
is the probability of not finding a difference that is, in fact, real.
Mathematically, statistical power is defined as 1 e Type II error
protection rate. Generally, 80e90% power rates are assumed
adequate when designing biological studies. The result of a power
calculation is a sample size necessary to provide adequate power.
For example, say a study is being designed to compare Total
glycosaminoglycan (GAG) between two groups of horses. It is
expected that the average Total GAG will be 100 in Group A and 110
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in Group B (standard deviation of 9 for both groups). In order to
provide 80% power (i.e., 1e Type II error rate) at a¼ 0.05 (i.e., Type I
error protection rate), then 14 horses per group would be required.
It should be noted that most of the statistical methods described
heremake the assumption of independent observations. That is, the
outcome of one observational unit should not depend on the
outcome of another.

In cases where multiple comparisons are to be made (e.g.,
two active treatment groups and placebo) post-hoc adjustments
to the Type I error protection level should be made unless the
study protocol specifies otherwise. Type I error is the proba-
bility of finding a significant difference that is in truth due to
chance alone (i.e., a false significant difference). If a single
comparison is made, then the Type I error rate or alpha level is
true. However, multiple comparisons increase the likelihood of
Type I error. There have been a number of proposed methods for
preserving the intended Type I error protection level. These
start with the least conservative unadjusted least square means
comparisons, which are straight forward group mean compar-
isons and should be limited to a priori comparisons. Other
commonly used multiple comparison procedures (from less to
more conservative) include Bonferroni, Scheffé and Tukey. In
addition, Dunnett’s method of adjustment is encountered when
only comparisons to placebo are of interest1. If there are a large
number of comparisons however, the very conservative tests
such as Bonferroni will increase the chance of Type II error
(finding no significant difference when in fact one does exist). In
these cases, post-hoc adjustments such as the Benjaminie
Hochberg test for false discovery rates are recommended
(Benjamini and Hochberg, 1995, 2000, Keselman et al., 2002). In
order to make clear the impact of multiple comparison adjust-
ments both unadjusted and adjusted P-values can be shown.
ublished by Elsevier Ltd. All rights reserved.
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Studies with hypotheses involving correlations or central
tendency

Parametric or nonparametric

Parametric analysis techniques are those that rely on the normal
distribution as the basis for assigning probability. Many biological
variables measured on continuous scales fit the assumption of
a normal distribution. An examination of the distribution revealing
a symmetric bell-shaped distribution of the data is consistent with
the normal distribution. In some cases, the distribution will be
heavily skewed rather than symmetric. In those cases, the data are
not normally distributed and nonparametric analysis techniques
are more appropriate. While there are not always analogous para-
metric and nonparametric techniques for more complex analyses,
basic statistical tasks such as correlations and testing differences
between groups offer both parametric and nonparametric methods
(Fig. 1).

The ShapiroeWilk test offers a formal evaluation of the
assumption of normality for studies with up to 2000 subjects. A
P-value of less than 0.05 generally indicates a departure from
normality indicating that nonparametric techniques are appro-
priate. When data are normally distributed they are generally
described with two features: central tendency and spread.

The preceding discussion dealswith variables that are continuous
in nature. There are actually levels of continuous data. When a true
zero value is possible then the data are said to be ratio level
(e.g., elapsed time from treatment). Continuous data are said to be
interval level if there is no true zero (e.g., blood chemistry values).
Statistical techniques do not typically vary for these two data types.
A third type of continuous data involves ordinal variables. These
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For this reason, it is common to approach ordinal variables with tech-
niques developed for central tendency examination.

Central tendency
The central tendency of data is described using a point estimate

to place the center of the distribution. The mean (or average) is the
most familiar measure of central tendency. Most parametric
methods use hypothesis testing of means. Other measures of
central tendency are median and mode. The median is the point at
which half the data points are above and half below. The mode is
the most frequently occurring data point. If a variable were
perfectly normally distributed (theoretical) then the mean, median
and mode would be the same. For data that are not normally
distributed, the median is generally a better estimate of central
tendency than the mean.

Spread
Measures of spread attempt to describe how far data deviate

from the central tendency. The simplest of these is the range often
described as the maximum and minimum data values. These can
either be presented as standalone values or the minimum can be
subtracted from themaximum to derive a single number describing
spread.

For data fitting the assumption of a normal distribution, the
standard deviation is often used in conjunction with the mean to
describe the data (mean� standard deviation). The standard error
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(or standard error of the mean) is another common measure of
spread. It is simply a function of the standard deviation (standard
deviation divided by the square root of the sample size). If the
distribution does not fit the assumption of normality other
measures of spread are more appropriate. The most commonly
used alternative is the interquartile range (IQR). The IQR is simply
the combination of the data point that defines the lowest quartile
(i.e., 25th percentile) and the data point that defines the upper
quartile (i.e., 75th percentile). As with the range, the IQR can be
described with the individual numbers or the difference can be
calculated to present a single number.

Example: Total GAG and prostaglandin E2 (PGE2) exhibit
distributions that can and cannot be assumed normal per the
ShapiroeWilk test. Figure. 2(A) and (B) presents histograms for the
two variables. Total GAG shows an approximately bell-shaped
distribution and returns a P-value of 0.15 from the ShapiroeWilk
test and can, therefore, be considered approximately normal. PGE2,
on the other hand shows a markedly skewed distribution and the
ShapiroeWilk P-value of <0.001 confirms that it is not normally
distributed.
Correlation studies

If the primary hypothesis addresses simply how two variables
relate to one another then correlation analyses are in order.
Correlation coefficients and P-values result from such analyses. The
correlation coefficients can range from �1 (a perfect inverse rela-
tionship) to þ1 (a perfect direct relationship). A correlation
Fig. 2. (A) Histogram showing the distribution of Total GAG (units; ShapiroeWilk P-value¼
(ShapiroeWilk P-value< 0.001) which does not fit the assumption of normality.
coefficient of 0 indicates no relationship. As a rule of thumb
correlations from biological settings are said to be strong if greater
than 0.8 (or less than �0.8), moderate if greater than 0.6, mild if
greater than 0.4 and weak if less than 0.4. Weak correlations can
return a statistically significant P-value, however. Another
perspective is to consider the slope of a line plotted with two
variables, one on the horizontal axis and one on the vertical axis. A
zero slope is the equivalent of a zero correlation and two variables
that perfectly explain one another would have a slope of 1.0. If data
are normally distributed the Pearson correlation coefficients are
calculated and if they are not normally distributed the Spearman
rank correlation coefficients are used. Graphical displays of corre-
lation studies are often quite helpful in elucidating the relationship
(or lack thereof) between variables (Fig. 3).

R2 values (coefficients of determination) are often reported from
simple correlation analyses. These are simply the square of the
correlation coefficient. These values are useful because they give
the proportion of variability in the dependent variable explained by
the covariate of interest.
Difference between groups

If the primary hypothesis involves testing the difference in
means between two groups (i.e., a categorical variable) then a t-test
is appropriate when the dependent variable is normally distrib-
uted. The principles here can be extended to more than two groups,
but we will stay within the realm of two groups for the sake of
simplicity. Between group differences are evaluated with unpaired
0.15) which is approximately normal. (B) Histogram showing the distribution of PGE2



Fig. 3. Scatter plot of Total GAG by PGE2. The correlation coefficient (r¼ 0.06) and corresponding P-value (P¼ 0.77) confirm that there is little or no association between the two
variables.
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or paired t-tests. Unpaired tests are used when comparing two
groups that are independent of one another (e.g., two groups
randomly assigned to different treatment regimens). Paired tests
are used when comparing dependent data. A common application
of the paired test would be evaluating a change within animals
from pre- to post-treatment or comparing left to right joints of the
same animals. Either unpaired or paired t-tests can be one-tailed or
two-tailed. Tests are one-tailed if the hypothesis anticipates
a specific direction in the result (i.e., greater than or less than). Tests
are two-tailed when the investigator is simply looking for a differ-
ence in either direction. If the data do not meet the assumption of
normality then the analog for the t-test is the Wilcoxon rank sum
test for paired data and the ManneWhitney U version of the Wil-
coxon for unpaired data. These nonparametric tests use ranked data
to test the hypothesis of a difference between groups.

Example: Using the Total GAG data presented in Fig. 2(A), the
difference between horses with and without osteoarthritis is
examined using an unpaired t-test. The null hypothesis is that of no
difference. In other words, the means are the same for the two
groups of horses. Table I shows that there is a statistically signifi-
cant difference between groups and that those horses with osteo-
arthritis have greater serum total GAG.

An extension of the correlation or t-test is the analysis of vari-
ance (ANOVA) model. While correlations and t-tests are limited in
scope to the relationship between two variables, the ANOVAmodel
also allows an investigator to take into account the effects of
multiple variables (covariates). Using the example from Table I, one
could evaluate the effect of osteoarthritis on total serum GAG cor-
recting for differences in the weight of horses. This procedure is
referred to as adjustment. Standard ANOVA techniques are used for
normally distributed data and ANOVA on ranked data (such as the
KruskaleWallis test) can be used when data are not normally
distributed (i.e., nonparametric).

Confidence intervals for a mean are commonly used to present
parametric data involving means. 95% confidence intervals are most
commonbut 99% confidence intervals are sometimes encountered. A
Table I
Mean (� standard deviation) Total GAG scores for horses with and without
osteoarthritis

Total GAG P-value for difference

With osteoarthritis 120.4� 16.0
Without osteoarthritis 98.5� 8.5 P< 0.001
confidence interval provides a range within which the true mean of
a population is expected to fall using the sample mean and the
standard error of the mean. A 95% confidence interval tells
the investigator that he/she can be 95% certain that on repeating the
experiment/trial the true population mean will fall between the
lower and upper confidence bounds in 95% of the trials. When
comparing two independent unpaired groups, the two groups differ
significantly from one another if there is no overlap between the
confidence intervals. Paired data may be significantly different even
when overlapping. Confidence intervals can provide insight beyond
that provided by a simple P-value decision of significant/not signifi-
cant. The confidence interval provides information about the uncer-
tainty or spread surrounding the point estimate (i.e., mean) and
provides an idea about similarities (or lack thereof) between groups.

Example: Using the data from Table I, confidence intervals can be
calculated for the two groups of horses. 95% confidence intervals for
Total GAG for horses without osteoarthritis are 94.9e102.1. That is,
with 95% confidence it can be stated that the true mean Total GAG for
horses without osteoarthritis is between 94.9 and 102.1. The 95%
confidence interval for horses with osteoarthritis is 113.7e127.2 units.
Because there is no overlap in the confidence intervals it can be
concluded that the two groups are significantly different at minimum
at the 5% level, which is the same conclusion drawn via the t-test.

Transformations are sometimes encountered for hypotheses
involving central tendency when the assumption of a normal
distribution does not hold. Nonparametric techniques have already
been discussed. An alternative to nonparametric techniques is to
transform the variable of interest, say X, so that it fits the normal
distribution. Some commonly used transformations are logarithmic
[ln(X)], inverse (1/X) and square root (OX). The advantage is that
more familiar parametric techniques (such as the t-test) can be
used to evaluate hypotheses. The disadvantage is that it is more
complicated to interpret the results of a test, for example, that
points to group differences in ln(X). For example, because PGE2 is
not normally distributed [Fig. 2(B) above], one could take the
natural logarithm of each PGE2 value [i.e., ln(PGE2)]. This proce-
dure oftenwill produce a distribution that is approximately normal,
which allows for the use of parametric analysis techniques.
Conclusions will usually be consistent whether using nonpara-
metric techniques or parametric techniques with transformed data.
Differences are generally confined to borderline cases where the
P-values are close to the significance level. For example, one might
see a P-value of 0.049 for a Wilcoxon rank sum test (i.e., statistically
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significant at a¼ 0.05) and a P-value of 0.051 using a t-test on
transformed data (i.e., not statistically significant).

Studies with hypotheses involving rates and proportions

When the outcome of interest is expressed as a rate or
proportion (e.g., the percentage of study subjects with a particular
condition), the chi-square distribution is used to estimate proba-
bilities associated with hypotheses. The response or outcome
variable is usually binomial (although it can be multinomial). The
independent variable can be either continuous or categorical.
When dealing with categorical response and independent vari-
ables, contingency tables are generated showing the percentage of
patients with the outcome based on the independent variable.
When a percentage higher (or lower) thanwhat would be expected
due to chance alone is encountered, a P-value <0.05 (or whatever
significance level is set a priori) results from a chi-square test
indicating statistical significance.

Example: Assume horses are randomly divided into treatment
vs placebo groups for a treatment targeted to improve lameness
scores. Horses are scored at the end of the study on a binomial scale
as either showing improvement (1) or not (0). Table II presents the
results showing that the horses on active treatment showed
significantly greater improvement than those on placebo. In this
case the null hypothesis (no difference) is rejected in favor of the
alternative hypothesis (treatment group will show greater
improvement) because the P-value is statistically significant at
a¼ 0.05.

If the independentorexplanatoryvariable is continuous innature,
logistic regression analyses are applicable. The probability that the
response variable is positive (e.g., a disease is present) is modeled
based on the distribution of the independent variable. If, for example,
subjects with disease present have a higher value for a givenmarker
than subjects without disease present, then a P-value of <0.05 will
result. If a singlebinomialvariable isusedas the independentvariable
then results will be identical to the chi-square test in most cases. As
with ANOVA models, multiple independent variables can be used in
logistic regression in order to produce adjusted results.

Typically, odds ratios are presented as the product from logistic
regression models. Odds ratios are estimates of relative risk. For
example, if study subjects with a given characteristic are twice as
likely to exhibit disease, then the relative risk for those subjects
would be 2. As with estimates of central tendency (e.g., mean), the
odds ratio is an estimate of relative risk and not an exact measure.
Therefore, odds ratios are typically presented with 95% confidence
intervals and P-values. For example using the results from Table II
above odds ratios can be calculated. The odds ratio of 3.42 infers
that treated horses were 3.42 times more likely to improve than
placebo horses. The 95% confidence interval (1.11e10.53) infers that
the actual relative risk falls between 1.11 and 10.53, and the P-value
of 0.01 infers statistical significance.

Clinical/practical vs statistical significance

Care must be taken when interpreting results in order to ensure
that conclusions are sound mathematically and biologically and/or
clinically. It is possible to find a statistically significant difference
Table II
Number and percentage of horses showing improvement over the course of study

Number improved/Total Percent improved

Active treatment 7/16 44%
Placebo 1/16 6%
P-value P¼ 0.01
that has no practical or clinical significance. For example, consider
a variable measured on an ordinal scale 1e10 with 1 being worst
and 10 being best. Given a large enough study one might be able to
discern a statistically significant difference between two groups
(e.g., treatment vs placebo) with means of 2.1 and 2.6 respectively.
However, it is unlikely that such a difference would confer any
practical implications or result in any clinical benefit.

Statistical software

There are a number of statistical software packages commer-
cially available. SAS (SAS Institute, Cary NC) and Stata (StataCorp,
College Station, TX) are perhaps the most widely accepted by
industry, academia and regulatory agencies. For very basic statistics
there are some statistical functions available in popular software
such as Microsoft Excel or SPSS (SPSS Inc, Chicago, IL).

Definitions

Binomial e A variable taking on one of two possible values
(e.g., yes/no, male/female, disease present/disease absent).

Categorical e Data collected at a level that assigns only char-
acteristics (e.g., right or left leg) that cannot be discerned
numerically.

Central tendency e An estimator that attempts to describe the
most typical value in a distribution. Mean, median andmode are all
measures of central tendency.

Confidence interval e A range within which one is certain that
the true population mean will fall. 95% confidence intervals are the
most common but any level can be used. The interpretation of a 95%
confidence interval is that one can be 95% certain that the true
population mean will be between the lower confidence limit and
the upper confidence limit.

Continuous e Data collected with values possible along
a continuum. If a true zero value is possible then the data are said to
be continuous at the ratio level (e.g., elapsed time from treatment).
If there is no true zero data are said continuous at the interval level
(e.g., blood chemistry values).

Covariate e In statistical modeling, covariates are variables
used to account for variability in the dependent or response
variable beyond that associated with the primary variable of
interest.

Dependent variable e Also known as the response or outcome
variable. This is the variable that is hypothesized to be affected by
the independent variable(s).

IQR e A measure of spread (i.e., variability) used when data are
not normally distributed. The IQR is calculated as the distance
between the 25th percentile and 75th percentile (i.e., the middle
50% of the distribution).

Independent variable e Also known as the predictor or
explanatory variable. This is the variable that is manipulated (or
observed) by the researcher in order to affect the dependent
variable.

Mean e Also commonly referred to as the average. This esti-
mator of central tendency is the sum of all values divided by the
number of observation.

Median e Another measure of central tendency that is value at
which half of the values are below and half of the values are above
(i.e., midpoint of the distribution).

Mode e Another measure of central tendency. This is the most
frequently occurring value in a distribution.

Multiple comparisons e When independent or predictor vari-
ables in a model are categorical with more than one level
(e.g., placebo, low, intermediate and high dose), the Type I error
level should be adjusted to reflect that there is more than a simple
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pair wise comparison. For example, say the Type I error protection
rate is 0.05 for a family of tests that include all doses compared to
Placebo. That does not infer that the Type I error protection is 0.05
for each of these comparisons and adjustment procedures should
(see text) should be employed to preserve the intended Type I error
protection rate.

Nonparametric e A family of tests used when dealing with data
that do not meet the assumption of normality.

Normal distribution e Also known as the Gaussian distribution
or bell-shaped distribution. This is a commonly occurring distri-
bution in biological systems and the basis for most common
statistical procedures. It is bell-shaped and symmetric. In
a perfectly normal distribution the mean, median and mode are all
the same.

Odds ratio e An estimate of relative risk produced by logistic
regression. An odds ratio of say 3.0 indicates that a subject positive
for a given marker is three times as likely to show symptoms of the
disease (or whatever the response variable measures) than those
negative for the marker.

One-tailed test e When testing for differences in central
tendency between groups, the investigator may only be interested
in differences on one side of the distribution (e.g., Group A is
greater than Group B or Group A is less than Group B). This is
referred to as a one-tailed hypothesis test.

P-value e Short for probability value. This is defined as the
probability that the value a statistic from a statistical procedurewas
due to chance alone. Therefore, a P-value of 0.03 would indicate
that there was a probability of 3% that the data difference observed
was due to chance alone.

Parametric e A family of test procedures used when data meet
the assumption of a normal distribution.

Power e Statistical power is 1 e Type II error. While there is no
“right” power, 80% power is often recommended as a default to
determine howmany subjects/replicates will be needed for a given
study.

Range e The distance between the lowest and highest values in
a data set.

Standard deviation e The average distance between the mean
and all values in a distribution.

Standard error e Also known as the standard error of the mean
and is the standard deviation divided by the square root of the
sample number. This value is often shown in summary presenta-
tions and is a pivotal to the Central Limit Theorem (which is beyond
the scope of this chapter).

Transformations e Transformations can be used when data fail
to meet the assumption of normality. By taking a transformation
(e.g., natural logarithm, inverse, square root) the resulting trans-
formed datawill often satisfy the assumption of normality allowing
use of parametric analytical techniques.

Two-tailed test e When testing for differences in central
tendency between groups, the investigator may only be interested
in differences on both sides of the distribution (e.g., Group A is
different than Group B). This is referred to as a two-tailed
hypothesis test.

Type I error e The probability of reporting a significant differ-
ence when none exists.

Type II error e The probability of failing to report a significant
difference that does exist.
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