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Abstract

A plane spanning tree is a tree drawn in the plane so that its edges are closed straight-line
segments and no two edges intersect internally, and no three of its vertices are collinear. In this
paper, we present several results on a plane spanning tree T such that the graph obtained from
T by adding a line segment between any two end-vertices of T is self-intersecting.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A geometric graph is a graph drawn in the plane whose edges are straight-line
segments. Let U be a set of n points in the plane. If no three points are collinear, then
we say that U is in general position. In this paper, we suppose that all sets of points
in the plane are in general position. For a set U of points in the plane we denote by
K(U ) the complete geometric graph whose vertex set is U . For two points a and b
in the plane, we denote by ab the closed straight-line segment joining a to b. If an
edge e joins a to b, these vertices are called end-points of e. In this paper, an edge
e with end-points a and b is the same as the straight-line segment ab, and the term
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line e means the line which contains the edge e. A vertex with degree 1 is called an
end-vertex.
A non-self-intersecting spanning tree of K(U ) (i.e., a spanning tree T of K(U ) such

that no two edges in E(T ) intersect except at their common end-point) is said to be
a plane spanning tree (on U). We call a plane spanning tree with two end-vertices a
plane Hamilton path.
Plane spanning trees have been frequently studied. For example, Ikebe et al. [3]

showed that any rooted tree with n vertices can be embedded as a plane spanning tree
on U , with the root being mapped onto an arbitrary speciEed point of U . In [4], the
following theorem was presented.

Theorem 1.1 (KFarolyi et al. [4]). Let U be a set of points in the plane in general
position and G be a geometric graph whose vertex set is U. If G does not have a
plane spanning tree, then the complementary geometric graph of G contains a plane
spanning tree.

Rivera-Campo [5] showed that a geometric graph G contains a plane spanning tree
if the subgraph of G induced by any vertex subset with Eve vertices of V (G) has a
plane spanning tree (on the vertex subset). In this paper, we shall introduce a new
kind of plane spanning tree, called a geometric independency tree.
Let G be a connected graph. If the end-vertices of a spanning tree of G are pair-

wise non-adjacent in G, then the spanning tree is called an independency tree. It is
easy to see that a graph which does not have an independency tree is Hamiltonian.
Furthermore, BHohme et al. [1] characterized the graphs containing an independency
tree.

Theorem 1.2 (BHohme et al. [1]). A connected graph does not have an independency
tree if and only if the graph is isomorphic to a cycle, a complete graph or a balanced
complete bipartite graph.

We consider a geometric version of an independency tree as follows. Let a and b
be two vertices of a geometric graph G. The two vertices a and b see each other
or a sees b if there does not exist an edge e in E(G) such that the edge ab and e
intersect internally. (Such an edge e is called a shield between a and b.) A geometric
independency tree (on U) is a plane spanning tree T (on U ) such that no two end-
vertices of T see each other.
In the next section, we shall determine the conEgurations of a set U of n points

in which there does not exist a geometric independency tree on U . Moreover, we
shall show that any geometric independency tree on U does not have more than
�n=2� end-vertices and prove that given a set U of n¿5 points in the plane, there
exists a geometric independency tree T on U such that T has at least �n=6�
end-vertices.
All notation and terminology not explained here are given in [2].
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2. Main results

Let U be a set of n points in general position in the plane. Let conv(U ) denote the
convex hull of U , which is the smallest convex set containing U . Denote by @U the
set of points of U lying on the boundary of conv(U ). First we show the following
fundamental lemma.

Lemma 2.1. For any two points a and b in U, there exists a plane Hamilton path
with end-vertices a and b.

Proof. We use induction on n. Let p be the middle point of the edge ab. We divide
the plane into two half-planes by a line px, where x is a point in U which is neither
a nor b. Let A be the set of points in U in the closed half-plane which contains a. Set
B=U\(A\{x}). By the hypothesis there exist a non-self-intersecting Hamilton path P1
for the set A with ends a and x and a non-self-intersecting Hamilton path P2 for the
set B with ends x and b. Since conv(A)∩ conv(B)= {x}, then P1 ∪P2 is a non-self-
intersecting Hamilton path on U .

Let �(T ) be the number of end-vertices of a geometric independency tree T . A geo-
metric independency tree T with �(T )= 2 is called a geometric independency Hamilton
path. By using Lemma 2.1 we prove the following proposition.

Proposition 2.2. For any two points a and b in U, there exists a geometric indepen-
dency Hamilton path with end-vertices a and b if and only if a and b do not see
each other on K(U ).

Proof. We can easily see that only if part is true by the deEnition of a geometric inde-
pendency Hamilton path. Suppose that a and b do not see each other. Then, there exists
an edge xy which is a shield between a and b. We divide the plane into two half-planes
by the line xy. Let A and B be the sets of points of U in the closed half-planes contain-
ing a and b, respectively. By Lemma 2.1, there exist a non-self-intersecting Hamilton
path P1 for the set A\{y} with ends a and x and a non-self-intersecting Hamilton path
P2 for the set B\{x} with ends y and b. Since conv(A\{y})∩ conv(B\{x})= ∅, then
by connecting P1 and P2 with the edge xy we obtain a non-self-intersecting Hamilton
path on U with ends a and b.

We note that every geometric graph with ¡4 vertices is non-self-intersecting and
therefore it cannot contain an geometric independency tree. On the other hand, since
the complete graph Km with m¿5 is not planar, by the above proposition there exists
a geometric independency Hamilton path for any set U with n¿5. It is obvious that
if n=4 and K(U ) is non-self-intersecting, i.e., |@U |=3, then K(U ) has no geometric
independency tree. Hence, we obtain the following corollary.

Corollary 2.3. For a set U of n points in general position in the plane with n¿4,
there exists a geometric independency tree if and only if U does not satisfy the
condition that n=4 and |@U |=3.
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Fig. 1. An example of the procedure in Theorem 2.4.

Next, we consider upper and lower bounds on the number of end-vertices in geo-
metric independency trees. First we mention an upper bound.

Theorem 2.4. Let U be a set of n points in general position in the plane, where n¿5.
Let T be a geometric independency tree on U. Then �(T )6�n=2�.

Proof. For a given T , we proceed as follows.

(i) Set E :=E(T ) and F :=E(T ).
(ii) Choose an edge e= xy∈E such that y∈ @U and extend it to inEnity in the

direction of y to form a half-line e′; call x the free end of e′.
(iii) Extend e′ in the direction of its free end x until it Erst hits a segment f∈F

not passing through x, or (if this does not happen) extend it to inEnity; call the
resulting segment l.

(iv) Set E :=E\{e} and F := (F\{e})∪{l}.
(v) If E= ∅, then stop. Otherwise, choose an edge e= e′ = xy∈E that has an end-

vertex y in common with some edge in E(T )\E, and call its other end x the free
end of e′ = e. Go to (iii).

The above procedure divides the plane into n regions, because every application of
rule (iii) increases the number of regions by exactly one (see Fig. 1). Moreover, the
regions are convex, since for every vertex u∈U some edge incident with u has been
extended in the direction of u. Each end-vertex of T is in the boundary of at least
two regions, and two end-vertices cannot be in the boundary of the same region. Thus
�(T )6n=2.

In addition, this bound is tight. Let U be a set of n points in the plane such
that U = @U . Let the vertices of U be labelled u1; u2; : : : ; un in clockwise order round
the boundary cycle. Let T be the spanning tree on U whose edges are u2i−1u2i and
u2i−1u2i+1 for every integer i with 16i¡�n=2�, and un−1un if n is even, and un−2un−1

and un−1un if n is odd (see Fig. 2). This tree T is a geometric independency tree
whose end-vertices are u2i with 16i¡�n=2� and un.
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Fig. 2. A geometric independency tree with �n=2� end-vertices, where n=9.

Next, we consider a lower bound on the number of end-vertices. In Corollary 2.3,
we mentioned that for a set U such that n=4 and |@U |=3, K(U ) does not have any
geometric independency tree.

Theorem 2.5. Let U be a set of n points in general position in the plane, where n¿5.
Then there exists a geometric independency tree T on U such that �(T )¿�n=6�.

Proof. Let U0 =U . For i=1; 2; : : : proceed as follows. If Ui−1 = ∅, set j= i − 1 and
stop. Otherwise, deEne Bi to be the bounding cycle of conv(Ui−1) if |Ui−1|¿3, or to
be K(Ui−1) if |Ui−1|62, and deEne Ui =Ui−1\V (Bi). Then B1; : : : ; Bj−1 are cycles, Bj

is a cycle or K1 or K2, and U =
⋃

16i6j V (Bi).
If j=1, then remember the example which states that the upper bound �n=2� of

end-vertices is tight (see Fig. 2).
Suppose j¿2. Let K = {1; 2; : : : ; j}. Let M comprise all even or all odd numbers in

K , chosen so that∑
i∈M

|V (Bi)|¿
∑
i∈M c

|V (Bi)|;

where M c =K\M . If
∑

i∈M |V (Bi)|¿
∑

i∈M c |V (Bi)| and M = {1; 3; : : :}, or
∑

i∈M
|V (Bi)|=

∑
i∈M c |V (Bi)| and |M |= |M c|, then we say that U is Type 1 and set k = j

and Ci =Bi for all integer i with 16i6k. For convenience, deEne C0 to be empty.
Otherwise, we say that U is Type 2 and set k = j − 1 and Ci =Bi+1 for all integer i
with 06i6k. Let Md be the set of odd integers i with 16i6k and Me be the set of
even integers i with 26i6k. For all i with 06i6k, let ni = |V (Ci)|. Then, it is easy
to see that

∑
i∈Md

ni¿
∑

i∈Me∪{0} ni and we note that

if |Md|�=|Me| then
∑
i∈Md

ni¿
∑

i∈Me∪{0}
ni: (1)

We shall construct an independency tree with
∑

i∈Md
�ni=2� end-vertices. This is enough

because
∑

i∈Md
�ni=2�¿n=6, as we will show.
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Fig. 3. The case that k =1 and U is Type 2.

Let the vertices of Ci be labelled ui
1; u

i
2; : : : ; u

i
ni in clockwise order round Ci if i∈Md

and in counterclockwise order if i∈Me ∪{0}. Set ui
0 = ui

ni ; ui
−1 = ui

ni−1, u
i
ni+1 = ui

1 and
ui
ni+2 = ui

2. We split into three cases.
Case 1: k =1 and U is Type 2.
We will construct a tree with vertex set V (C1) as in the case when j=1, and then

replace one edge of it by a path through all the vertices of V (C0) so that the resulting
tree is non-self-intersecting (see Fig. 3). Here are the details. Fix the indices of the
points u0i with 16i6n0 in counterclockwise order round C0. It is easy to see that
for some t with 16t6n1 there exist consecutive points u1t and u1t+1 in C1 such that
C1 ∪{u01u1t ; u0n0u1t+1} is non-self-intersecting. Set t=1 and let C1 = (u11 ; u

1
2; : : : ; u

1
n1 ) in

clockwise order. Clearly, the following tree T is a geometric independency tree on U .

T =




C0 ∪{u12i−1u
1
2i ; u

1
2i−1u

1
2i+1: 16i¡n1=2}

∪ {u1n1−1u
1
n1 ; u

0
1u

1
1 ; u

0
n0u

1
2}\{u0n0u01 ; u11u12} if n1 is even;

C0 ∪{u12i−1u
1
2i ; u

1
2i−1u

1
2i+1: 16i¡(n1 − 1)=2}

∪ {u1n1−2u
1
n1−1u

1
n1 ; u

0
1u

1
1 ; u

0
n0u

1
2}\{u0n0u01 ; u11u12} if n1 is odd:

(Here u1n1−2u
1
n1−1u

1
n1 denotes the path with two edges u1n1−2u

1
n1−1 and u1n1−1u

1
n1 .) Since

n1¿n0¿3, we have �(T )¿�n1=2�¿max{�n=4�; 2}. If n¿8, then �n=6�6�n=4�. If
n67, then �n=6�62. Hence, we have �(T )¿�n=6�.

Case 2: k =2 and U is Type 1.
For each i with 16i6�n1=2�, we will choose a point w2i−1 ∈C2 and deEne

Q=

{
C2 ∪{w2i−1u12i−1u

1
2i: 16i6n1=2} if n1 is even;

C2 ∪{w2i−1u12i−1u
1
2i: 16i6(n1 − 1)=2}∪ {u1n1−1u

1
n1} if n1 is odd:

If n2 = 1, then n1¿4 since n1 + n2 = n¿5. In this case, for all i with 16i6�n1=2�,
deEne w2i−1 = u2

1 ; then the degree of u2
1 is at least 2, and Q is a geometric independency

tree on U with �(Q)¿�n1=2�= �(n− 1)=2�¿�n=6�.
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Next, suppose that n2¿2. If n1 = 3, then n=5 or 6. We know that for both
cases there exists a geometric independency tree with at least two end-vertices by
Corollary 2.3. Hence, we may assume that n1¿4. Let W = {w2i−1: 16i6�n1=2�}. We
choose w2i−1 for all i with 16i6�n1=2� so that:

(i) Q is non-self-intersecting.
(ii) Subject to (i), W has a pair of points wa and wa+2 such that wa and wa+2 are

adjacent in C2.

We claim that we can choose such points. Suppose that no two points in W are adjacent
in C2. Since n1¿n2, either there exist two distinct indices a and b such that wa =wb,
or there exist two indices a and b such that wa and wb are distance 2 apart around C2

and n1 − n261. However, for both cases we can take another point in C2 and obtain
the set of points satisfying (i) and (ii) because each point in C1 sees at least two
consecutive points in C2. Let T =Q if n2 = 2 and T =Q\{wawa+2} if n2¿3. Then
T is a geometric independency tree on U . In a similar way as in Case 1, we have
�(T )¿�n=6�.

Case 3: Cases 1 and 2 do not apply. Then, either k =2 and U is Type 2, or else
k¿3.
We Erst Ex the indices of the points u2

i with 16i6n2 in counterclockwise order
round C2. For all i and j with 16i6nj and j∈Me\{2}, we label the points uj

i in Cj in
counterclockwise order so that all points in

⋃
j6l6k V (Cl) are in the closed half-plane

which is bounded by the line uj
nju

j
1 and does not contain uj−2

nj−2 (see Fig. 4). Then, we
can easily see that the path

P=
⋃
j∈Me

Cj ∪{uj−2
nj−2

uj
1: j∈Me\{2}}\{uj

nju
j
1: j∈Me};

is non-self-intersecting; it has u2
1 as one end-point.

We attach the vertices in C1 to P. Let A be the half-plane which is bounded by the
line u2

n2u
2
1 and contains the point u2

2 , and let B be the other half-plane. Let l be the
index such that u1l lies in B and u1l+1 lies in A (see Fig. 5). Then, it is easily seen
that P ∪{u2

1 u
1
l u

1
l+1} is non-self-intersecting. We may assume that l=1. It is easy to

see that we can choose points w2i−1 ∈C2 for all i with 26i6�n1=2� so that P2
I is
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Fig. 5. Choosing u1l in the cycle C1.

non-self-intersecting, where

P2
I =




P ∪{u2
1 u

1
1u

1
2}∪ {w2i−1u12i−1u

1
2i: 26i6n1=2} if n1 is even;

P ∪{u2
1 u

1
1u

1
2}∪ {w2i−1u12i−1u

1
2i: 26i6(n1 − 1)=2}

∪ {u1n1−1u
1
n1} if n1 is odd:

Note that P2
I ∪{u1s v} is self-intersecting for all s with 26s6n1 and all v∈ ⋃

36i6k
V (Ci). Thus, P2

I is a geometric independency tree on V (P2
I ). If U is Type 2, in a similar

way as in Case 1, we replace an edge of P2
I by a path passing through all points in C0.

Choose a pair of consecutive points u0l and u0l+1 in C0 with 16l6n0. Then there exist
two consecutive points u1m and u1m+1 with 16m6n1 such that P2

I ∪{u0l u1m+1; u
0
l+1u

1
m}

is non-self-intersecting. If u1mu
1
m+1 ∈E(P2

I ), then set t=m and u0l = u0n0 and we label the
points u0i with 16i6n0 in counterclockwise order. Otherwise, we have u1m−1u

1
m ∈E(P2

I ).
If P2

I ∪{u0l u1m; u0l+1u
1
m−1} is non-self-intersecting, then set t=m − 1 and u0l = u0n0 and

Ex the indices of the points in C0 in counterclockwise order. Otherwise, let a be the
smallest positive integer such that P2

I ∪{u0l+au
1
m−1} is non-self-intersecting. Then, set

t=m − 1 and u0l+a = u01 and Ex the indices of the points in C0 in counterclockwise
order. We note that P2

I ∪{u0l+a−1u
1
m; u

0
l+au

1
m−1} is non-self-intersecting. We deEne

P2
II =P2

I ∪C0 ∪{u0n0u1t+1; u
0
1u

1
t }\{u0n0u01 ; u1t u1t+1}:

We can easily see that P2
II is a geometric independency tree on V (P2

II). We deEne
P2 =P2

I if U is Type 1 and P2 =P2
II if U is Type 2.

Next, we attach to P2 all points in Cj for all integers j∈Md\{1; k}. For m∈Me\{2},
we recursively deEne Pm as follows, so that P2 ⊆Pm−2 ⊂Pm and Pm is non-self-inter-
secting.
There is exactly one edge e∈E(Cm−1) which intersects the edge um−2

nm−2
um
1 of Pm−2.

We may assume e= um−1
nm−1

um−1
1 . Suppose that Pm−2 is non-self-intersecting. Clearly,

there exists a point xm1 in Cm such that Pm−2 ∪{xm1 um−1
1 } is non-self-intersecting. We

claim that if xm1 = um
1 then Pm−2 ∪{um

nmu
m−1
1 } is also non-self-intersecting. (We prove

this claim later.) In this case, redeEne xm1 = um
nm . It is easy to see that we can choose
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Fig. 7. The case that k ∈Me\{2}.

points xm2i−1 ∈Cm for all i with 26i6�nm−1=2� so that Pm is non-self-intersecting,
where

Pm =




pm−2 ∪{xm2i−1u
m−1
2i−1u

m−1
2i : 16i6nm−1=2} if nm−1 is even;

pm−2 ∪{xm2i−1u
m−1
2i−1u

m−1
2i : 16i6(nm−1 − 1)=2}

∪ {um−1
nm−1−1u

m−1
nm−1

} if nm−1 is odd:

Claim 1. Suppose that Pm−2 is non-self-intersecting for some m∈Me\{2}. If Pm−2∪
{um

1 um−1
1 } is non-self-intersecting, then Pm−2∪{um

nmu
m−1
1 } is also non-self-intersecting.

Proof. Suppose that Pm−2 ∪{um
1 um−1

1 } is non-self-intersecting and Q=Pm−2 ∪{um
nm

um−1
1 } is self-intersecting. Then um

nm and um−1
1 do not see each other on Q and the

edge um−2
nm−2

um
1 is a shield between um

nm and um−1
1 . This contradicts the fact that all

points in
⋃

m6l6k V (Cl) are in the closed half-plane which is bounded by the line
um
nmu

m
1 and does not contain um−2

nm−2
(compare with Figs. 4 and 6).

Suppose that k ∈Me. Then, remark that the point uk
nk may be an end-vertex of Pk .

In this case, it is also easy to see that uk
nk does not see any other end-vertex (see

the right side of Fig. 7). Hence, Pk is a geometric independency tree on V (Pk). Let
T =Pk . If k ∈Md, then take a vertex u in Ck such that Pk−1 ∪{uk−1

nk−1
u}∪Ck is non-
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self-intersecting, and let uk
1 = u. We deEne

T =




Pk−1 ∪{uk
2i−1u

k
2i ; u

k
2i−1u

k
2i+1: 16i¡nk=2}

∪ {uk
nk−1u

k
nk ; u

k−1
nk−1

uk
1 } if nk is even;

Pk−1 ∪{uk
2i−1u

k
2i ; u

k
2i−1u

k
2i+1: 16i¡(nk − 1)=2}

∪ {uk
nk−2u

k
nk−1u

k
nk ; u

k−1
nk−1

uk
1 } if nk is odd:

This is also a geometric independency tree on U (see Fig. 8).
We calculate �(T ) for the geometric independency tree T constructed above. Note

that |Md|= k=2 or (k+1)=2. We can easily see that �(T )¿
∑

i∈Md
�ni=2�. Suppose that

k¿n=3. Remark that if k ∈Md then for V (Ck) there exists at least one end-vertex of
T even if nk =1. Hence,

�(T )¿
∑
i∈Md

⌊ni

2

⌋
¿

k
2
¿

n
6
:

Next, we suppose that k6n=3. If |Md|= k=2, then we have

�(T )¿
∑
i∈Md

⌊ni

2

⌋
¿

1
2

∑
i∈Md

(ni − 1)¿
1
2

(
n
2
− k

2

)
¿

n
6
: (2)

Assume that |Md|=(k + 1)=2. Since |Md|�=|Me|, we have
∑

i∈Md
ni¿

∑
i∈Me ∪{0} ni

by (1), that is,
∑

i∈Md
ni¿(n + 1)=2 by the deEnition of Types 1 and 2. Thus, (2)

again holds. The proof is now complete (Fig. 9).
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Fig. 9. An example of geometric independency tree on U (U is Type 1).

3. Conclusion

We propose the following problem.

Problem 3.1. For each integer k¿2, ;nd a characterization of those sets U of points
for which there is no geometric independency tree with k end-vertices.

In Corollary 2.3, the case k =2 was done. The authors found a characterization for
the case k =3 but do not know for k¿4.
In conclusion, we present the following conjecture.

Conjecture 3.2. Let U be a set of points and X be the set of geometric independency
trees on U , and we deEne Tmax and Tmin as follows:

Tmax = max
T∈X

�(T ); Tmin = min
T∈X

�(T ):

Then, K(U ) has a geometric independency tree with k end-vertices for every integer k
with Tmin6k6Tmax.
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