On geometric independency trees for points in the plane

Atsushi Kaneko ${ }^{\text {a }}$, Yoshiaki Oda ${ }^{\text {b,* }}$, Kiyoshi Yoshimoto ${ }^{\text {c }}$
${ }^{\text {a D Department of Computer Science and Communication Engineering, Kogakuin University, }}$ 1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan
${ }^{\mathrm{c}}$ Department of Mathematics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

Received 14 July 1999; received in revised form 21 August 2001; accepted 22 October 2001

Abstract

A plane spanning tree is a tree drawn in the plane so that its edges are closed straight-line segments and no two edges intersect internally, and no three of its vertices are collinear. In this paper, we present several results on a plane spanning tree T such that the graph obtained from T by adding a line segment between any two end-vertices of T is self-intersecting.

(c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Discrete geometry; A geometric graph; A spanning tree

1. Introduction

A geometric graph is a graph drawn in the plane whose edges are straight-line segments. Let U be a set of n points in the plane. If no three points are collinear, then we say that U is in general position. In this paper, we suppose that all sets of points in the plane are in general position. For a set U of points in the plane we denote by $K(U)$ the complete geometric graph whose vertex set is U. For two points a and b in the plane, we denote by $a b$ the closed straight-line segment joining a to b. If an edge e joins a to b, these vertices are called end-points of e. In this paper, an edge e with end-points a and b is the same as the straight-line segment $a b$, and the term

[^0]line e means the line which contains the edge e. A vertex with degree 1 is called an end-vertex.
A non-self-intersecting spanning tree of $K(U)$ (i.e., a spanning tree T of $K(U)$ such that no two edges in $E(T)$ intersect except at their common end-point) is said to be a plane spanning tree (on U). We call a plane spanning tree with two end-vertices a plane Hamilton path.

Plane spanning trees have been frequently studied. For example, Ikebe et al. [3] showed that any rooted tree with n vertices can be embedded as a plane spanning tree on U, with the root being mapped onto an arbitrary specified point of U. In [4], the following theorem was presented.

Theorem 1.1 (Károlyi et al. [4]). Let U be a set of points in the plane in general position and G be a geometric graph whose vertex set is U. If G does not have a plane spanning tree, then the complementary geometric graph of G contains a plane spanning tree.

Rivera-Campo [5] showed that a geometric graph G contains a plane spanning tree if the subgraph of G induced by any vertex subset with five vertices of $V(G)$ has a plane spanning tree (on the vertex subset). In this paper, we shall introduce a new kind of plane spanning tree, called a geometric independency tree.

Let G be a connected graph. If the end-vertices of a spanning tree of G are pairwise non-adjacent in G, then the spanning tree is called an independency tree. It is easy to see that a graph which does not have an independency tree is Hamiltonian. Furthermore, Böhme et al. [1] characterized the graphs containing an independency tree.

Theorem 1.2 (Böhme et al. [1]). A connected graph does not have an independency tree if and only if the graph is isomorphic to a cycle, a complete graph or a balanced complete bipartite graph.

We consider a geometric version of an independency tree as follows. Let a and b be two vertices of a geometric graph G. The two vertices a and b see each other or a sees b if there does not exist an edge e in $E(G)$ such that the edge $a b$ and e intersect internally. (Such an edge e is called a shield between a and b.) A geometric independency tree (on U) is a plane spanning tree T (on U) such that no two endvertices of T see each other.

In the next section, we shall determine the configurations of a set U of n points in which there does not exist a geometric independency tree on U. Moreover, we shall show that any geometric independency tree on U does not have more than $\lfloor n / 2\rfloor$ end-vertices and prove that given a set U of $n \geqslant 5$ points in the plane, there exists a geometric independency tree T on U such that T has at least $\lceil n / 6\rceil$ end-vertices.

All notation and terminology not explained here are given in [2].

2. Main results

Let U be a set of n points in general position in the plane. Let $\operatorname{conv}(U)$ denote the convex hull of U, which is the smallest convex set containing U. Denote by ∂U the set of points of U lying on the boundary of $\operatorname{conv}(U)$. First we show the following fundamental lemma.

Lemma 2.1. For any two points a and b in U, there exists a plane Hamilton path with end-vertices a and b.

Proof. We use induction on n. Let p be the middle point of the edge $a b$. We divide the plane into two half-planes by a line $p x$, where x is a point in U which is neither a nor b. Let A be the set of points in U in the closed half-plane which contains a. Set $B=U \backslash(A \backslash\{x\})$. By the hypothesis there exist a non-self-intersecting Hamilton path P_{1} for the set A with ends a and x and a non-self-intersecting Hamilton path P_{2} for the set B with ends x and b. Since $\operatorname{conv}(A) \cap \operatorname{conv}(B)=\{x\}$, then $P_{1} \cup P_{2}$ is a non-selfintersecting Hamilton path on U.

Let $\gamma(T)$ be the number of end-vertices of a geometric independency tree T. A geometric independency tree T with $\gamma(T)=2$ is called a geometric independency Hamilton path. By using Lemma 2.1 we prove the following proposition.

Proposition 2.2. For any two points a and b in U, there exists a geometric independency Hamilton path with end-vertices a and b if and only if a and b do not see each other on $K(U)$.

Proof. We can easily see that only if part is true by the definition of a geometric independency Hamilton path. Suppose that a and b do not see each other. Then, there exists an edge $x y$ which is a shield between a and b. We divide the plane into two half-planes by the line $x y$. Let A and B be the sets of points of U in the closed half-planes containing a and b, respectively. By Lemma 2.1, there exist a non-self-intersecting Hamilton path P_{1} for the set $A \backslash\{y\}$ with ends a and x and a non-self-intersecting Hamilton path P_{2} for the set $B \backslash\{x\}$ with ends y and b. Since $\operatorname{conv}(A \backslash\{y\}) \cap \operatorname{conv}(B \backslash\{x\})=\emptyset$, then by connecting P_{1} and P_{2} with the edge $x y$ we obtain a non-self-intersecting Hamilton path on U with ends a and b.

We note that every geometric graph with <4 vertices is non-self-intersecting and therefore it cannot contain an geometric independency tree. On the other hand, since the complete graph K_{m} with $m \geqslant 5$ is not planar, by the above proposition there exists a geometric independency Hamilton path for any set U with $n \geqslant 5$. It is obvious that if $n=4$ and $K(U)$ is non-self-intersecting, i.e., $|\partial U|=3$, then $K(U)$ has no geometric independency tree. Hence, we obtain the following corollary.

Corollary 2.3. For a set U of n points in general position in the plane with $n \geqslant 4$, there exists a geometric independency tree if and only if U does not satisfy the condition that $n=4$ and $|\partial U|=3$.

Fig. 1. An example of the procedure in Theorem 2.4.

Next, we consider upper and lower bounds on the number of end-vertices in geometric independency trees. First we mention an upper bound.

Theorem 2.4. Let U be a set of n points in general position in the plane, where $n \geqslant 5$. Let T be a geometric independency tree on U. Then $\gamma(T) \leqslant\lfloor n / 2\rfloor$.

Proof. For a given T, we proceed as follows.
(i) Set $E:=E(T)$ and $F:=E(T)$.
(ii) Choose an edge $e=x y \in E$ such that $y \in \partial U$ and extend it to infinity in the direction of y to form a half-line e^{\prime}; call x the free end of e^{\prime}.
(iii) Extend e^{\prime} in the direction of its free end x until it first hits a segment $f \in F$ not passing through x, or (if this does not happen) extend it to infinity; call the resulting segment l.
(iv) Set $E:=E \backslash\{e\}$ and $F:=(F \backslash\{e\}) \cup\{l\}$.
(v) If $E=\emptyset$, then stop. Otherwise, choose an edge $e=e^{\prime}=x y \in E$ that has an endvertex y in common with some edge in $E(T) \backslash E$, and call its other end x the free end of $e^{\prime}=e$. Go to (iii).

The above procedure divides the plane into n regions, because every application of rule (iii) increases the number of regions by exactly one (see Fig. 1). Moreover, the regions are convex, since for every vertex $u \in U$ some edge incident with u has been extended in the direction of u. Each end-vertex of T is in the boundary of at least two regions, and two end-vertices cannot be in the boundary of the same region. Thus $\gamma(T) \leqslant n / 2$.

In addition, this bound is tight. Let U be a set of n points in the plane such that $U=\partial U$. Let the vertices of U be labelled $u_{1}, u_{2}, \ldots, u_{n}$ in clockwise order round the boundary cycle. Let T be the spanning tree on U whose edges are $u_{2 i-1} u_{2 i}$ and $u_{2 i-1} u_{2 i+1}$ for every integer i with $1 \leqslant i<\lfloor n / 2\rfloor$, and $u_{n-1} u_{n}$ if n is even, and $u_{n-2} u_{n-1}$ and $u_{n-1} u_{n}$ if n is odd (see Fig. 2). This tree T is a geometric independency tree whose end-vertices are $u_{2 i}$ with $1 \leqslant i<\lfloor n / 2\rfloor$ and u_{n}.

Fig. 2. A geometric independency tree with $\lfloor n / 2\rfloor$ end-vertices, where $n=9$.

Next, we consider a lower bound on the number of end-vertices. In Corollary 2.3, we mentioned that for a set U such that $n=4$ and $|\partial U|=3, K(U)$ does not have any geometric independency tree.

Theorem 2.5. Let U be a set of n points in general position in the plane, where $n \geqslant 5$. Then there exists a geometric independency tree T on U such that $\gamma(T) \geqslant\lceil n / 6\rceil$.

Proof. Let $U_{0}=U$. For $i=1,2, \ldots$ proceed as follows. If $U_{i-1}=\emptyset$, set $j=i-1$ and stop. Otherwise, define B_{i} to be the bounding cycle of $\operatorname{conv}\left(U_{i-1}\right)$ if $\left|U_{i-1}\right| \geqslant 3$, or to be $K\left(U_{i-1}\right)$ if $\left|U_{i-1}\right| \leqslant 2$, and define $U_{i}=U_{i-1} \backslash V\left(B_{i}\right)$. Then B_{1}, \ldots, B_{j-1} are cycles, B_{j} is a cycle or K_{1} or K_{2}, and $U=\bigcup_{1 \leqslant i \leqslant j} V\left(B_{i}\right)$.

If $j=1$, then remember the example which states that the upper bound $\lfloor n / 2\rfloor$ of end-vertices is tight (see Fig. 2).
Suppose $j \geqslant 2$. Let $K=\{1,2, \ldots, j\}$. Let M comprise all even or all odd numbers in K, chosen so that

$$
\sum_{i \in M}\left|V\left(B_{i}\right)\right| \geqslant \sum_{i \in M^{\mathrm{c}}}\left|V\left(B_{i}\right)\right|,
$$

where $M^{\mathfrak{c}}=K \backslash M$. If $\sum_{i \in M}\left|V\left(B_{i}\right)\right|>\sum_{i \in M^{c}}\left|V\left(B_{i}\right)\right|$ and $M=\{1,3, \ldots\}$, or $\sum_{i \in M}$ $\left|V\left(B_{i}\right)\right|=\sum_{i \in M^{\mathrm{c}}}\left|V\left(B_{i}\right)\right|$ and $|M|=\left|M^{\mathrm{c}}\right|$, then we say that U is Type 1 and set $k=j$ and $C_{i}=B_{i}$ for all integer i with $1 \leqslant i \leqslant k$. For convenience, define C_{0} to be empty. Otherwise, we say that U is Type 2 and set $k=j-1$ and $C_{i}=B_{i+1}$ for all integer i with $0 \leqslant i \leqslant k$. Let M_{d} be the set of odd integers i with $1 \leqslant i \leqslant k$ and M_{e} be the set of even integers i with $2 \leqslant i \leqslant k$. For all i with $0 \leqslant i \leqslant k$, let $n_{i}=\left|V\left(C_{i}\right)\right|$. Then, it is easy to see that $\sum_{i \in M_{\mathrm{d}}} n_{i} \geqslant \sum_{i \in M_{\mathrm{c}} \cup\{0\}} n_{i}$ and we note that

$$
\begin{equation*}
\text { if }\left|M_{\mathrm{d}}\right| \neq\left|M_{\mathrm{e}}\right| \text { then } \sum_{i \in M_{\mathrm{d}}} n_{i}>\sum_{i \in M_{\mathrm{c}} \cup\{0\}} n_{i} \text {. } \tag{1}
\end{equation*}
$$

We shall construct an independency tree with $\sum_{i \in M_{\mathrm{d}}}\left\lfloor n_{i} / 2\right\rfloor$ end-vertices. This is enough because $\sum_{i \in M_{\mathrm{d}}}\left\lfloor n_{i} / 2\right\rfloor \geqslant n / 6$, as we will show.

Fig. 3. The case that $k=1$ and U is Type 2.

Let the vertices of C_{i} be labelled $u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{i}}^{i}$ in clockwise order round C_{i} if $i \in M_{\mathrm{d}}$ and in counterclockwise order if $i \in M_{\mathrm{e}} \cup\{0\}$. Set $u_{0}^{i}=u_{n_{i}}^{i}, u_{-1}^{i}=u_{n_{i}-1}^{i}, u_{n_{i}+1}^{i}=u_{1}^{i}$ and $u_{n_{i}+2}^{i}=u_{2}^{i}$. We split into three cases.

Case 1: $k=1$ and U is Type 2.
We will construct a tree with vertex set $V\left(C_{1}\right)$ as in the case when $j=1$, and then replace one edge of it by a path through all the vertices of $V\left(C_{0}\right)$ so that the resulting tree is non-self-intersecting (see Fig. 3). Here are the details. Fix the indices of the points u_{i}^{0} with $1 \leqslant i \leqslant n_{0}$ in counterclockwise order round C_{0}. It is easy to see that for some t with $1 \leqslant t \leqslant n_{1}$ there exist consecutive points u_{t}^{1} and u_{t+1}^{1} in C_{1} such that $C_{1} \cup\left\{u_{1}^{0} u_{t}^{1}, u_{n_{0}}^{0} u_{t+1}^{1}\right\}$ is non-self-intersecting. Set $t=1$ and let $C_{1}=\left(u_{1}^{1}, u_{2}^{1}, \ldots, u_{n_{1}}^{1}\right)$ in clockwise order. Clearly, the following tree T is a geometric independency tree on U.

$$
T= \begin{cases}C_{0} \cup\left\{u_{2 i-1}^{1} u_{2 i}^{1}, u_{2 i-1}^{1} u_{2 i+1}^{1}: 1 \leqslant i<n_{1} / 2\right\} & \\ \cup\left\{u_{n_{1}-1}^{1} u_{n_{1}}^{1}, u_{1}^{0} u_{1}^{1}, u_{n_{0}}^{0} u_{2}^{1}\right\} \backslash\left\{u_{n_{0}}^{0} u_{1}^{0}, u_{1}^{1} u_{2}^{1}\right\} & \text { if } n_{1} \text { is even, } \\ C_{0} \cup\left\{u_{2 i-1}^{1} u_{2 i}^{1}, u_{2 i-1}^{1} u_{2 i+1}^{1}: 1 \leqslant i<\left(n_{1}-1\right) / 2\right\} & \\ \cup\left\{u_{n_{1}-2}^{1} u_{n_{1}-1}^{1} u_{n_{1}}^{1}, u_{1}^{0} u_{1}^{1}, u_{n_{0}}^{0} u_{2}^{1}\right\} \backslash\left\{u_{n_{0}}^{0} u_{1}^{0}, u_{1}^{1} u_{2}^{1}\right\} & \text { if } n_{1} \text { is odd. }\end{cases}
$$

(Here $u_{n_{1}-2}^{1} u_{n_{1}-1}^{1} u_{n_{1}}^{1}$ denotes the path with two edges $u_{n_{1}-2}^{1} u_{n_{1}-1}^{1}$ and $u_{n_{1}-1}^{1} u_{n_{1}}^{1}$.) Since $n_{1}>n_{0} \geqslant 3$, we have $\gamma(T) \geqslant\left\lfloor n_{1} / 2\right\rfloor \geqslant \max \{\lfloor n / 4\rfloor, 2\}$. If $n \geqslant 8$, then $\lceil n / 6\rceil \leqslant\lfloor n / 4\rfloor$. If $n \leqslant 7$, then $\lceil n / 6\rceil \leqslant 2$. Hence, we have $\gamma(T) \geqslant\lceil n / 6\rceil$.

Case 2: $k=2$ and U is Type 1.
For each i with $1 \leqslant i \leqslant\left\lfloor n_{1} / 2\right\rfloor$, we will choose a point $w_{2 i-1} \in C_{2}$ and define

$$
Q= \begin{cases}C_{2} \cup\left\{w_{2 i-1} u_{2 i-1}^{1} u_{2 i}^{1}: 1 \leqslant i \leqslant n_{1} / 2\right\} & \text { if } n_{1} \text { is even, } \\ C_{2} \cup\left\{w_{2 i-1} u_{2 i-1}^{1} u_{2 i}^{1}: 1 \leqslant i \leqslant\left(n_{1}-1\right) / 2\right\} \cup\left\{u_{n_{1}-1}^{1} u_{n_{1}}^{1}\right\} & \text { if } n_{1} \text { is odd. }\end{cases}
$$

If $n_{2}=1$, then $n_{1} \geqslant 4$ since $n_{1}+n_{2}=n \geqslant 5$. In this case, for all i with $1 \leqslant i \leqslant\left\lfloor n_{1} / 2\right\rfloor$, define $w_{2 i-1}=u_{1}^{2}$; then the degree of u_{1}^{2} is at least 2 , and Q is a geometric independency tree on U with $\gamma(Q) \geqslant\left\lfloor n_{1} / 2\right\rfloor=\lfloor(n-1) / 2\rfloor>\lceil n / 6\rceil$.

Fig. 4. A path P.
Next, suppose that $n_{2} \geqslant 2$. If $n_{1}=3$, then $n=5$ or 6 . We know that for both cases there exists a geometric independency tree with at least two end-vertices by Corollary 2.3. Hence, we may assume that $n_{1} \geqslant 4$. Let $W=\left\{w_{2 i-1}: 1 \leqslant i \leqslant\left\lfloor n_{1} / 2\right\rfloor\right\}$. We choose $w_{2 i-1}$ for all i with $1 \leqslant i \leqslant\left\lfloor n_{1} / 2\right\rfloor$ so that:
(i) Q is non-self-intersecting.
(ii) Subject to (i), W has a pair of points w_{a} and w_{a+2} such that w_{a} and w_{a+2} are adjacent in C_{2}.

We claim that we can choose such points. Suppose that no two points in W are adjacent in C_{2}. Since $n_{1} \geqslant n_{2}$, either there exist two distinct indices a and b such that $w_{a}=w_{b}$, or there exist two indices a and b such that w_{a} and w_{b} are distance 2 apart around C_{2} and $n_{1}-n_{2} \leqslant 1$. However, for both cases we can take another point in C_{2} and obtain the set of points satisfying (i) and (ii) because each point in C_{1} sees at least two consecutive points in C_{2}. Let $T=Q$ if $n_{2}=2$ and $T=Q \backslash\left\{w_{a} w_{a+2}\right\}$ if $n_{2} \geqslant 3$. Then T is a geometric independency tree on U. In a similar way as in Case 1 , we have $\gamma(T) \geqslant\lceil n / 6\rceil$.

Case 3: Cases 1 and 2 do not apply. Then, either $k=2$ and U is Type 2, or else $k \geqslant 3$.

We first fix the indices of the points u_{i}^{2} with $1 \leqslant i \leqslant n_{2}$ in counterclockwise order round C_{2}. For all i and j with $1 \leqslant i \leqslant n_{j}$ and $j \in M_{\mathrm{e}} \backslash\{2\}$, we label the points u_{i}^{j} in C_{j} in counterclockwise order so that all points in $\bigcup_{j \leqslant l \leqslant k} V\left(C_{l}\right)$ are in the closed half-plane which is bounded by the line $u_{n_{j}}^{j} u_{1}^{j}$ and does not contain $u_{n_{j-2}}^{j-2}$ (see Fig. 4). Then, we can easily see that the path

$$
P=\bigcup_{j \in M_{\mathrm{e}}} C_{j} \cup\left\{u_{n_{j-2}}^{j-2} u_{1}^{j}: j \in M_{\mathrm{e}} \backslash\{2\}\right\} \backslash\left\{u_{n_{j}}^{j} u_{1}^{j}: j \in M_{\mathrm{e}}\right\},
$$

is non-self-intersecting; it has u_{1}^{2} as one end-point.
We attach the vertices in C_{1} to P. Let A be the half-plane which is bounded by the line $u_{n_{2}}^{2} u_{1}^{2}$ and contains the point u_{2}^{2}, and let B be the other half-plane. Let l be the index such that u_{l}^{1} lies in B and u_{l+1}^{1} lies in A (see Fig. 5). Then, it is easily seen that $P \cup\left\{u_{1}^{2} u_{l}^{1} u_{l+1}^{1}\right\}$ is non-self-intersecting. We may assume that $l=1$. It is easy to see that we can choose points $w_{2 i-1} \in C_{2}$ for all i with $2 \leqslant i \leqslant\left\lfloor n_{1} / 2\right\rfloor$ so that P_{I}^{2} is

Fig. 5. Choosing u_{l}^{1} in the cycle C_{1}.
non-self-intersecting, where

$$
P_{\mathrm{I}}^{2}= \begin{cases}P \cup\left\{u_{1}^{2} u_{1}^{1} u_{2}^{1}\right\} \cup\left\{w_{2 i-1} u_{2 i-1}^{1} u_{2 i}^{1}: 2 \leqslant i \leqslant n_{1} / 2\right\} & \text { if } n_{1} \text { is even, } \\ P \cup\left\{u_{1}^{2} u_{1}^{1} u_{2}^{1}\right\} \cup\left\{w_{2 i-1} u_{2 i-1}^{1} u_{2 i}^{1}: 2 \leqslant i \leqslant\left(n_{1}-1\right) / 2\right\} & \\ \cup\left\{u_{n_{1}-1}^{1} u_{n_{1}}^{1}\right\} & \text { if } n_{1} \text { is odd. }\end{cases}
$$

Note that $P_{\mathrm{I}}^{2} \cup\left\{u_{s}^{1} v\right\}$ is self-intersecting for all s with $2 \leqslant s \leqslant n_{1}$ and all $v \in \bigcup_{3 \leqslant i \leqslant k}$ $V\left(C_{i}\right)$. Thus, P_{I}^{2} is a geometric independency tree on $V\left(P_{\mathrm{I}}^{2}\right)$. If U is Type 2 , in a similar way as in Case 1, we replace an edge of P_{I}^{2} by a path passing through all points in C_{0}. Choose a pair of consecutive points u_{l}^{0} and u_{l+1}^{0} in C_{0} with $1 \leqslant l \leqslant n_{0}$. Then there exist two consecutive points u_{m}^{1} and u_{m+1}^{1} with $1 \leqslant m \leqslant n_{1}$ such that $P_{\mathrm{I}}^{2} \cup\left\{u_{l}^{0} u_{m+1}^{1}, u_{l+1}^{0} u_{m}^{1}\right\}$ is non-self-intersecting. If $u_{m}^{1} u_{m+1}^{1} \in E\left(P_{\mathrm{I}}^{2}\right)$, then set $t=m$ and $u_{l}^{0}=u_{n_{0}}^{0}$ and we label the points u_{i}^{0} with $1 \leqslant i \leqslant n_{0}$ in counterclockwise order. Otherwise, we have $u_{m-1}^{1} u_{m}^{1} \in E\left(P_{\mathrm{I}}^{2}\right)$. If $P_{\mathrm{I}}^{2} \cup\left\{u_{l}^{0} u_{m}^{1}, u_{l+1}^{0} u_{m-1}^{1}\right\}$ is non-self-intersecting, then set $t=m-1$ and $u_{l}^{0}=u_{n_{0}}^{0}$ and fix the indices of the points in C_{0} in counterclockwise order. Otherwise, let a be the smallest positive integer such that $P_{\mathrm{I}}^{2} \cup\left\{u_{l+a}^{0} u_{m-1}^{1}\right\}$ is non-self-intersecting. Then, set $t=m-1$ and $u_{l+a}^{0}=u_{1}^{0}$ and fix the indices of the points in C_{0} in counterclockwise order. We note that $P_{\mathrm{I}}^{2} \cup\left\{u_{l+a-1}^{0} u_{m}^{1}, u_{l+a}^{0} u_{m-1}^{1}\right\}$ is non-self-intersecting. We define

$$
P_{\mathrm{II}}^{2}=P_{\mathrm{I}}^{2} \cup C_{0} \cup\left\{u_{n_{0}}^{0} u_{t+1}^{1}, u_{1}^{0} u_{t}^{1}\right\} \backslash\left\{u_{n_{0}}^{0} u_{1}^{0}, u_{t}^{1} u_{t+1}^{1}\right\}
$$

We can easily see that P_{II}^{2} is a geometric independency tree on $V\left(P_{\mathrm{II}}^{2}\right)$. We define $P^{2}=P_{\mathrm{I}}^{2}$ if U is Type 1 and $P^{2}=P_{\mathrm{II}}^{2}$ if U is Type 2.

Next, we attach to P^{2} all points in C_{j} for all integers $j \in M_{\mathrm{d}} \backslash\{1, k\}$. For $m \in M_{\mathrm{e}} \backslash\{2\}$, we recursively define P^{m} as follows, so that $P^{2} \subseteq P^{m-2} \subset P^{m}$ and P^{m} is non-self-intersecting.

There is exactly one edge $e \in E\left(C_{m-1}\right)$ which intersects the edge $u_{n_{m-2}}^{m-2} u_{1}^{m}$ of P^{m-2}. We may assume $e=u_{n_{m-1}}^{m-1} u_{1}^{m-1}$. Suppose that P^{m-2} is non-self-intersecting. Clearly, there exists a point x_{1}^{m} in C_{m} such that $P^{m-2} \cup\left\{x_{1}^{m} u_{1}^{m-1}\right\}$ is non-self-intersecting. We claim that if $x_{1}^{m}=u_{1}^{m}$ then $P^{m-2} \cup\left\{u_{n_{m}}^{m} u_{1}^{m-1}\right\}$ is also non-self-intersecting. (We prove this claim later.) In this case, redefine $x_{1}^{m}=u_{n_{m}}^{m}$. It is easy to see that we can choose

Fig. 6. The case that $u_{n_{m}}^{m}$ and u_{1}^{m-1} do not see each other. (We show that this case cannot arise.)

Fig. 7. The case that $k \in M_{\mathrm{e}} \backslash\{2\}$.
points $x_{2 i-1}^{m} \in C_{m}$ for all i with $2 \leqslant i \leqslant\left\lfloor n_{m-1} / 2\right\rfloor$ so that P^{m} is non-self-intersecting, where

$$
P^{m}= \begin{cases}p^{m-2} \cup\left\{x_{2 i-1}^{m} u_{2 i-1}^{m-1} u_{2 i}^{m-1}: 1 \leqslant i \leqslant n_{m-1} / 2\right\} & \text { if } n_{m-1} \text { is even, } \\ p^{m-2} \cup\left\{x_{2 i-1}^{m} u_{2 i-1}^{m-1} u_{2 i}^{m-1}: 1 \leqslant i \leqslant\left(n_{m-1}-1\right) / 2\right\} & \\ \cup\left\{u_{n_{m-1}-1}^{m-1} u_{n_{m-1}}^{m-1}\right\} & \text { if } n_{m-1} \text { is odd. }\end{cases}
$$

Claim 1. Suppose that P^{m-2} is non-self-intersecting for some $m \in M_{\mathfrak{e}} \backslash\{2\}$. If $P^{m-2} \cup$ $\left\{u_{1}^{m} u_{1}^{m-1}\right\}$ is non-self-intersecting, then $P^{m-2} \cup\left\{u_{n_{m}}^{m} 1_{1}^{m-1}\right\}$ is also non-self-intersecting.

Proof. Suppose that $P^{m-2} \cup\left\{u_{1}^{m} u_{1}^{m-1}\right\}$ is non-self-intersecting and $Q=P^{m-2} \cup\left\{u_{n_{m}}^{m}\right.$ $\left.u_{1}^{m-1}\right\}$ is self-intersecting. Then $u_{n_{m}}^{m}$ and u_{1}^{m-1} do not see each other on Q and the edge $u_{n_{m-2}}^{m-2} u_{1}^{m}$ is a shield between $u_{n_{m}}^{m}$ and u_{1}^{m-1}. This contradicts the fact that all points in $\bigcup_{m \leqslant l \leqslant k} V\left(C_{l}\right)$ are in the closed half-plane which is bounded by the line $u_{n_{m}}^{m} u_{1}^{m}$ and does not contain $u_{n_{m}-2}^{m-2}$ (compare with Figs. 4 and 6).

Suppose that $k \in M_{\mathrm{e}}$. Then, remark that the point $u_{n_{k}}^{k}$ may be an end-vertex of P^{k}. In this case, it is also easy to see that $u_{n_{k}}^{k}$ does not see any other end-vertex (see the right side of Fig. 7). Hence, P^{k} is a geometric independency tree on $V\left(P^{k}\right)$. Let $T=P^{k}$. If $k \in M_{\mathrm{d}}$, then take a vertex u in C_{k} such that $P^{k-1} \cup\left\{u_{n_{k-1}}^{k-1} u\right\} \cup C_{k}$ is non-

Fig. 8. The case that $k \in M_{\mathrm{d}}$.
self-intersecting, and let $u_{1}^{k}=u$. We define

$$
T= \begin{cases}P^{k-1} \cup\left\{u_{2 i-1}^{k} u_{2 i}^{k}, u_{2 i-1}^{k} u_{2 i+1}^{k}: 1 \leqslant i<n_{k} / 2\right\} & \\ \cup\left\{u_{n_{k}-1}^{k} u_{n_{k}}^{k}, u_{n_{k-1}}^{k-1} u_{1}^{k}\right\} & \text { if } n_{k} \text { is even }, \\ P^{k-1} \cup\left\{u_{2 i-1}^{k} u_{2 i}^{k}, u_{2 i-1}^{k} u_{2 i+1}^{k}: 1 \leqslant i<\left(n_{k}-1\right) / 2\right\} & \\ \cup\left\{u_{n_{k}-2}^{k} u_{n_{k}-1}^{k} u_{n_{k}}^{k}, u_{n_{k-1}}^{k-1} u_{1}^{k}\right\} & \text { if } n_{k} \text { is odd. }\end{cases}
$$

This is also a geometric independency tree on U (see Fig. 8).
We calculate $\gamma(T)$ for the geometric independency tree T constructed above. Note that $\left|M_{\mathrm{d}}\right|=k / 2$ or $(k+1) / 2$. We can easily see that $\gamma(T) \geqslant \sum_{i \in M_{\mathrm{d}}}\left\lfloor n_{i} / 2\right\rfloor$. Suppose that $k>n / 3$. Remark that if $k \in M_{\mathrm{d}}$ then for $V\left(C_{k}\right)$ there exists at least one end-vertex of T even if $n_{k}=1$. Hence,

$$
\gamma(T) \geqslant \sum_{i \in M_{\mathrm{d}}}\left\lfloor\frac{n_{i}}{2}\right\rfloor \geqslant \frac{k}{2}>\frac{n}{6} .
$$

Next, we suppose that $k \leqslant n / 3$. If $\left|M_{\mathrm{d}}\right|=k / 2$, then we have

$$
\begin{equation*}
\gamma(T) \geqslant \sum_{i \in M_{\mathrm{d}}}\left\lfloor\frac{n_{i}}{2}\right\rfloor \geqslant \frac{1}{2} \sum_{i \in M_{\mathrm{d}}}\left(n_{i}-1\right) \geqslant \frac{1}{2}\left(\frac{n}{2}-\frac{k}{2}\right) \geqslant \frac{n}{6} . \tag{2}
\end{equation*}
$$

Assume that $\left|M_{\mathrm{d}}\right|=(k+1) / 2$. Since $\left|M_{\mathrm{d}}\right| \neq\left|M_{\mathrm{e}}\right|$, we have $\sum_{i \in M_{\mathrm{d}}} n_{i}>\sum_{i \in M_{\mathrm{e}} \cup\{0\}} n_{i}$ by (1), that is, $\sum_{i \in M_{\mathrm{d}}} n_{i} \geqslant(n+1) / 2$ by the definition of Types 1 and 2 . Thus, (2) again holds. The proof is now complete (Fig. 9).

Fig. 9. An example of geometric independency tree on U (U is Type 1).

3. Conclusion

We propose the following problem.
Problem 3.1. For each integer $k \geqslant 2$, find a characterization of those sets U of points for which there is no geometric independency tree with k end-vertices.

In Corollary 2.3, the case $k=2$ was done. The authors found a characterization for the case $k=3$ but do not know for $k \geqslant 4$.

In conclusion, we present the following conjecture.
Conjecture 3.2. Let U be a set of points and X be the set of geometric independency trees on U, and we define $T_{\max }$ and $T_{\min }$ as follows:

$$
T_{\max }=\max _{T \in X} \gamma(T), \quad T_{\min }=\min _{T \in X} \gamma(T)
$$

Then, $K(U)$ has a geometric independency tree with k end-vertices for every integer k with $T_{\text {min }} \leqslant k \leqslant T_{\text {max }}$.

Acknowledgements

The authors would like to thank the referees for their appropriate comments and advice.

References

[1] T. Böhme, H.J. Broersma, F. Göbel, A.V. Kostochka, M. Stiebitz, Spanning trees with pairwise nonadjacent end-vertices, Discrete Math. 170 (1997) 219-222.
[2] N. Hartsfield, G. Ringel, Pearls in Graph Theory, Academic Press, New York, 1994.
[3] Y. Ikebe, M. Perles, A. Tamura, S. Tokunaga, The rooted tree embedding problem into points in the plane, Discrete Comput. Geom. 11 (1994) 51-63.
[4] G. Károlyi, J. Pach, G. Tóth, Ramsey-type results for geometric graphs I, Discrete Comput. Geom. 18 (1997) 247-255.
[5] E. Rivera-Campo, A note on the existence of plane spanning trees of geometric graphs, Japan Conference on Discrete and Computational Geometry, 1998.

[^0]: ${ }^{*}$ Corresponding author. Tel.: $+81-852-32-6842$; fax: $+81-852-32-6489$.
 E-mail address: oda@cis.shimane-u.ac.jp (Y. Oda).

