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In this paper we present several new slightly nonlinear variants of the bipolar and 
the open mapping theorems in Banach spaces, which we abstracted from the recent 
developments in the theory of dual operator algebras. 

A new application of our techniques to the theory of operator algebras is also 
given. <p 1988 Academic Press. Inc 

1. INTRODUCTION 

The basic problem that we discuss in this paper is the surjectivity and 
openness of bilinear maps. We consider bilinear maps 

where 94(z) c X x X, and S’“, Xx, L’Z are Banach spaces. By analogy with 
Banach’s open mapping theorem (for linear operators) we will be 
concerned with the richness of the sets 

B= {z(h, k): (h, k)eB’(~), llhll d 1, Ilk11 G 1, IlT(h, k)ll GM}, (1.1) 

where M > 0. Thus we will consider two problems. 

1.2. Problem. Find conditions under which the closure of B necessarily 
contains an open ball centered at the origin in .%%. 

1.3. Problem. Find conditions under which B necessarily contains a 
ball centered at the origin in X. 

We will present two approaches to these problems. In Part I we give 
some answers to Problem 1.2 in an abstract framework in which we give 
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ourselves the set B rather than the bilinear map T. In Part II we give 
answers to both problems. Even though there are similarities between the 
approaches in Parts 1 and II, the results do not overlap completely. In fact 
we will see in our application in Part III that the two approaches can be 
combined to yield new results. 

We want to emphasize some new ideas introduced in this paper. In 
Part I we consider a new type of convexity and dominancy in Banach 
spaces. The basic observation is as follows. Let B be a bounded balanced 
set in a Banach space X. Even if B is not absolutely convex, there may be 
many points x E X such that all absolutely convex combinations CLX + /$, 
y E B, 1~1 + I/?[ 6 1, are in the closure of B. The set of all such points x 
forms a closed absolutely convex set D(0) contained in B. Under certain 
circumstances this allows us to conclude that B contains a given convex set 
C (see Section 4 for the precise statements). It is seen that the set B defined 
in ( 1.1) does sometimes satisfy the conditions in Part I, and this is based on 
the observation that c.~(h, k) + bz(h’, k’) is very close to z(ccli2h + f1112h’, 
cx”2k + fi”‘k’) if z(h, k’) and z(h’, k) are very close to zero. See Section 10 
for an application of this observation. 

In Part II we consider Problem 1.2 and we give sufficient conditions for T 
to be open (at every point). It is interesting that our conditions imply with 
little additional work the solvability of arbitrary systems of the form 

~(hi, kj) = XI/, O<i,j<co, (1.4) 

where {.xij: i, j 3 0) is a given array in X. 
In Part III we give an application of the methods developed in Parts I 

and II to the structure theory of contractions on Hilbert space. Our results 
are formulated using the concept of an HP-functional calculus. More 
precisely, let T be a contraction on a Hilbert space 2; assume that the 
unitary part of T is absolutely continuous, and let cp E HP with p > 2. One 
can then define an operator cp( T) acting continuously on a Banach space 
denoted H;, l/p + l/q = t. The space H; is a dense linear manifold in 3’, 
and H$= A?“. In Section 8 we define this functional calculus under the 
additional assumption that T is of class C,. The general case will be 
treated elsewhere [9]. 

The basic result in Part III is that, if T is of class Coo and there is 
p E [2, + co ) such that 

for some y > 0 then T belongs to the class ANo defined in [S]. 
We conclude this introduction with a few remarks on the history of the 

problems treated here. The question of openness for bilinear maps was con- 

580:7X.2-8 
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sidered by Cohen, who showed in [15] that a surjective bilinear map is not 
necessarily open at the origin. Later Horowitz [17] provided an example 
in this direction with z: C3 x C3 + C4. The abstract results in this paper 
were inspired by certain techniques that proved to be very powerful in the 
theory of operators on Hilbert space. (As a matter of fact, in operator 
theory it is convenient to work with maps r(h, k) that are linear in h and 
conjugate linear in k. Our results apply in this situation because any such 
map z can be traded for a bilinear one upon replacing x by its conjugate 
version.) The first open mapping theorem of the kind proved in Part II was 
proved by S. Brown, who used it in [13] to show that all subnormal 
operators have invariant subspaces. The idea of solving systems of the form 
(1.4) first emerged in [12] and was further used in [S, 11, 3, 71, etc. 

We believe that the abstract results in this paper will prove fruitful in 
operator theory and in other areas of functional analysis. In particular, the 
concept of super-dominancy (cf. Section 2) seems to point to new 
interesting properties in the geometry of Banach spaces. The HP-functional 
calculus introduced in Part III represents a new application of function 
theory to the analysis of absolutely continuous contractions, and it is 
expected to yield further insights about the structure of such contractions. 
We thank Professor D. van Dulst for his pertinent remarks on the first 
version of this paper. These remarks are included here with due reference. 

PART I: SUPER-DOMINANCY 

2. STATEMENT OF THE PROBLEM 

Let X be a separable complex Banach space. For two bounded subsets 
A. BcX we set 

Dist(A, B) = sup{dist(a, B): a E A} 

=sup inf Ila-bll, 
oeA htB 

where 11. II denotes the norm on X. 
Let B denote a balanced (i.e., 1B c B for A E C, 121 d 1) bounded subset 

of X, and let C be a closed absolutely convex set. The sets B and C will 
remain fixed throughout Sections 2 and 3. We will say that B dominates C 
if 
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for every fe X*. By the bipolar theorem, this is obviously equivalent to the 
inclusion 

(ace(B) 1 C, 

where ace(B) denotes the absolutely convex hull of B. The following 
stronger condition of dominancy occurred naturally in the study of dual 
operator algebras (cf. [7]). 

2.1. DEFINITION. The set B is said to super-dominate C if for every 
fEx*, every finite subset F of B, and every E > 0 there exists XE B such 
that 

(i) f(x)+~>su~{lf(~)I:y~C}, and 
(ii) Dist(aco{x, 61, B) -c E for every bc F. 

A useful property of super-dominancy is the obvious fact that it is 
preserved by continuous linear maps. That is, if T: 5? -+ GY is a continuous 
linear map and B super-dominates C, then TB super-dominates TC. (This 
property also holds for usual dominancy.) 

The solution of several major problems in the theory of dual operator 
algebras can be reduced to the following question for certain Banach 
spaces % (cf. Part III below). 

2.2. Problem. Assume that B super-dominates C. Is then B strongly 
dense in C, i.e., is Cc B? 

Unfortunately, the answer to this problem is NO, as shown by the 
following simple example due to D. van Dulst: 

2.3. EXAMPLE. Let 3 be the space L’ of (classes of) Lebesgue integrable 
functions on U = (e”: t E [0,277)} endowed with the usual norm 

llxll I =I& Jbi^ Ix(e”)l dt, XEL’. 

Set C= {xE%: llx\l <l} and B={xEC:X=O on a subset 8, of T of 
measure (1/27c) Se, dt > t}. Then it is obvious that B is not strongly dense in 
C. But B super-dominates C since for every essentially bounded measurable 
function u on T there exist xje C, j>, 1, such that 

1 2x 
(24, Xi) =- s 27L 0 

u(e”) x,(e”) dt 

+ ess max{ lu(e’l)l: t E [O, 27r)) 
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forj-+ co, and 

meas{e’!: x,(e”) = 0) + 0. 

We will show, however, that there are many useful cases in which 
Problem 2.2 has an affirmative answer. 

There is a version of super-dominancy for the weak topology. 

2.4. DEFINTION. The set B is said to super-dominate C weakly if for 
every f E %*, every finite subset Fc B, every finite subset 
hg2, ...> g,} c X*, and every E > 0, there exists x E B such that 

(i) f(x)+~>su~{If(y)l:~~C}, and 
(ii) Dist(aco{ TX, Tb), TC) < E, b E F, where T: X + @” is given by 

TY = k,(y)> gz(yh ...T g,(y)), Y E 3. 

The remarks above show that super-dominancy implies weak super- 
dominancy. Of course the two notions coincide if 55 is finite-dimensional. 
We will show in Section 4 (cf. Theorem 4.2) that the analogue of 
Problem 2.2 always has a positive answer for weak super-dominancy. 

3. ASYMPTOTIC CONVEX STRUCTURES 

In this section we introduce certain techniques that are relevant in the 
study of Problem 2.2. These techniques will allow us to prove in Section 4 
that Problem 2.2 has an affirmative answer for a rich family of Banach 
spaces. 

It is convenient to write sF= l/(card(F) + 1) for every finite set F. Now, 
if F is a finite subset of B, we define 

B,= (xE.!Z: Dist(aco(x, b}, B)<sFfor every b6 F}. (3.1) 

It is clear that the sets B, are balanced since ace{ Ix, y } c aco{x, y } if 
x, YE X and 1111 d 1. It is also obvious that B, = !E, (x: llxll <Ed} c B,c 
{x: dist(x, B) <Ed} for F# 0, and that B,, F c B,n B, for all finite sets 
F, F c B. 

A basic property of the sets B, is given in the following result. 

3.2. LEMMA. Given a finite set Fc B and x E B,, there exists a finite set 
F, Fc F c B, such that Ax + py E B, for all y E BF and A, p E @ satisfying 
the inequality 111 + IpI < 1. 
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Proof The lemma is obvious for F= 0, so there is no loss of generality 
in assuming that F# @. We must find F such that 

dist(ab + B(Ax + my), B) < sF (3.3) 

for all b E F, YE B,, and all pairs (c(, p), (A, ,u) E r, where 
r= {(t, v)E@*: 151 + 1~1 6 1). Let us set M=sup{ llzjl: ZE B}, and 

Obviously A4 < cc and E > 0. Fix 6 = &/5(5M + 2), and let f, c r be a finite 
&net in r (i.e., every point of I- is at distance at most 6 from some point in 
Z-,). Of course we can, and shall, assume that lip # 0 for every (A, p) E f,. 

For every (a,, PO) and (A,,, cl,,) in r, an b E F, we have 

dist uob + BOAOX 
bol + IBo~ol 

,B <F~--E, 
> 

and hence there is x,, E B such that 

II 
sob + BoAox Iao( + I/?()& -xo <EF-;. II (3.4) 

Choose now a finite set F’ 1 F containing all the points x0 constructed 
above, and satisfying the inequality sFS < 6. 

For (a, /3), (A, p) E r we choose (Q, PO), (A,, po) E r. such that 
(c( - cl01 < 6, I/? - /IO1 < 6, IA- & < 6, and 1~ - poI < 6. Then, for every b E F 
and y E BFs we have 

dist(ctb + B(Jx+ ,uy), B) < dist(a,b + Bo(&x + p. y), B) 

+ ll~b+B(~x+~~)-~,b-Bo(~ox+~o~)ll 

6 dist(cc,b + Bo(lox + p. y), B) + 6M + 26 llxll + 26 II yll 

6 dist(crob+Bo(~oX+~oy), B) + 6hf+ 26(kf+ &f)+&?(M+ Ed) 

< dist(cc,b + Bo(Aox + p. y), B) + ~/4, 

and hence in order to prove (3.3) it will suffice to show that 

dist(a,b + bo(&,X + ,uO y), B) < EF- s/4. 

With the vector x0 as it occurs in (3.4) we have 



312 BERCOVICI, FOIAS, AND PEARCY 

dist(aob + Bolox + Pop0 Y, B) 

6 dW(bol + IPo~ol) x0 + Pop0 Y, B) 

+ (bol + IBOAOI) II 
mob + BOAOX 
IaoI + IsoAol -x0 

II 

< Efh-C<E$ 
2 4 

by the choice of F’ and 6. This concludes the proof. 

We note for further use that the calculations in the above proof show 
that 

dist(crb + fl(Ax + ,uY)), B) < sF- yl, $‘=E/4-EEF, 

for all y E Br and (CI, b), (A, p) E K This inequality can be rewritten as 

Dist(aco{b,x,y}, B)<E~-Q yeBF’, bEF. 

Let us define now 

d,(x) = dist(x, BF), XEX, 

for every finite set Fc B. It is easy to see that 

d/d-(x) d dF’(X) 6 II-4, XEX, 

if F c F’ are finite subsets of B. Furthermore, we have 

d,(x) > dist(x, B) - Ed-, XEX, F#@, 

because BFc { y: dist(y, B) < Ed}, 

d&X) < 14 dF(X), XEX, 111 6 1, 

because B, is balanced, and 

ldAX)-df4Y)l G lb-Yll? x, yex. 

We see now that the limit 

d(x) = lifm dF(x) = sup{d,(x): Fc B, Ftinite} 
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exists for every x E X and enjoys the properties 

Id(x) - d(Y)1 6 lb -ylL X,YEX, 

d(lx) d IAl d(x), XEX, 14 Q 1, (3.5) 

d(x) 3 dist(x, B), XEX. 

or every finite set F c B and every x E B, there exz :;~::~r SEh t:at . 

d,(lx + PYY) d IPI d,(y) G IPI d(y) 

for every y E X and A, p E C such that 111 + IpI 6 1. 
(ii) For every finite set Fc B, every x E X, and every E > 0, there exists 

a finite set F’ such that 

dAAx+w)6&+ I4 dAx)+ IPI d,(y) 

for every YE X and i, ~EC such that 121 + IpI < 1. 

Proof: (i) Let F’ be given by Lemma 3.2, let y E X, and let q be an 
arbitrary positive number. Choose y’ E B, such that II y - y’I/ < dp( y) + ye. 
Then, by virtue of Lemma 3.2, 

d,(~x+~y)bd,(~x+~y’)+ IPI IIY-Y’II 

= IPI IIY-Y’ll 

6 IPI d,.(y) + v, &PEE> l4+1/4~1. 

Part (i) of the corollary follows since r] is arbitrary. 
(ii) Choose x,, E B, such that IIx - x011 < dF(x) + E, and choose F as 

in the proof of (i), with x replaced by x0. Then we have 

d,(ix+pyLy)G Il~x-~Wl +dAh,+pyLy) 

6 6 + I4 dAx) + IPI d,(y) 

for -r E X and IAl + 1~1 d 1, as desired. Thus the proof is complete. 

3.1. COROLLARY. Let Fc B be a finite set. Then 

d,(Jbx + wY) d I4 d&I + IA d(y) 

.for all x, y E X and A, p E C such that [I,[ + IpI d 1. 
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Proof: Fix X,YEX, 1, PE@, 121 + Ip[ < 1. It follows from 
Corollary 3.6(ii) that 

dF(Ax+PY)G&+ 14 d,(x)+ IPI d(Y) 

for every E > 0. The conclusion follows immediately. 

3.8. PROPOSITION. The function d is absolutely convex, i.e., 

42x + PY) d 121 d(x)+ IPI d(y) 

forallx,yEXand~,~E@with II(+I~l<l. 

Proof. Fix x, y E .5? and 2, p E @ such that 121 + 1~1 < 1. By the preceding 
corollary 

d(~x+~y)=li~d,(ix+~y)~li~(liJ d,(x)+Ipl d(y)) 

= 121 0) + 114 d(y). 

The proposition is proved. 

For every number 8 3 0 we define now the set 

D(e)= {x~~:d(x)60}. 

The following properties of the sets D(0) readily follow from 
Proposition 3.8 and (3.5). 

3.9. COROLLARY. For every 8 2 0, D(0) is closed and absolutely convex, 

{x: llxll d 0} c D(e)c {x: dist(x, B) d e}, 

and 

D(e) = n {x: dist(x, BF) G e}, 

where the intersection is taken over all finite subsets F of B. In particular, 
D(0) c B. 

4. SUPER-DOMINANCY AND APPROXIMATION 

We come now to a first positive answer to Problem 2.2 in an easy case. 

4.1. LEMMA. Assume that B super-dominates C. If B is relatively 
(strongly) compact then D(0) contains C. 



BANACHSPACEMETHODSANDDUALOPERATORALGEBRAS 315 

Proof Fix f~ X* and observe from Definition 2.1 that for each finite 
set Fc B we can choose a vector x+ B,n B such that 

limjnf.f(x,) 3 sup{ If(y ye C}. 

Since B is relatively compact there exists x E B such that 

XE~ {x,:G~F,Gfinite}-cnB,=~(0); 
F F 

clearly f(x)>sup(jf(y)l:yEC}. S’ mce D(O) is closed and absolutely 
convex, the conclusion follows from the bipolar theorem. 

4.2. THEOREM. Assume that B super-dominates C weakly. Then C is 
contained in the weak closure of B. 

Proof. Fix X@E C and an arbitrary weak neighborhood of x0 given by 

v= {x&2”: Ifi(x-x,)1 < l,j= 1,2, .,.) n], 

where f,, f2, . . . . f, E X*. The map T: 9 + @” defined by 

TX= (fib),fAxh -.,fnb)), XEZ-, 

is linear and continuous and clearly TB super-dominates TC weakly. Since 
@” is finite-dimensional, TB super-dominates TC. By Lemma 4.1, i% r> TC 
and, in particular, there exists b E B n V. This completes the proof. 

4.3. COROLLARY. Assume that B super-dominates C. Then C is 
contained in the weak closure of B, A B for every finite set F c B. 

Proof: The corollary follows directly from Theorem 4.2 and the remark 
that B,n B super-dominates C for every finite set Fc B. To prove this, fix 
fE %-*, E > 0, and a finite set F0 c B,n B. We must show that there exists 
y E B, n B such that 

and 

Dist(aco{ y, x>, B,n B) <E, XEFO, 

f(Y) + E > SUPi If @)I: z E q. 

By Definition 2.1, for every finite set F’ c B we can find y E B, such that 

f(Y)+&>suP(lf(Z)I:ZEC). 



316 BERCOVICI, FOIAS, AND PEARCY 

so it will suffice to produce a set F such that 

Dist(aco { y, x}, BFn B) < E, XEF,, ye BF. 

A repeated application of the remark following the proof of Lemma 3.2 
shows the existence of rl> 0 and F such that 

Dist(aco(b, x, y}, B) 6 cl;- q, bEF, XEF,, YEB~. 

We may of course assume that F 2 F, and sF’ < min{s, q}. Now, if A, p E @, 
[A[ + 1~1 < 1, x E F,, and y E BF, we can find z E B such that 

(IAx+py-zll -c&p. 

Hence for b E F we have 

Dist(aco{b, z}, B)dDist(aco{b, Ix+,u.Y}, B)+E~ 

< Dist(aco{b, x, y}, B) + EF 

dEF-q-l-Ep<EF, 

and thus z E B, n B. We deduce that 

Dist(aco{y,x}, BFnB)bEF.<E, x~Fc,, YEBF, 

as desired. This concludes the proof. 

The following results show that Problem 2.2 has a positive answer in a 
large number of cases. We start with a statement which is a substantial 
improvement, due to van Dulst, of our original result concerning uniformly 
convex Banach spaces. 

4.4. PROPOSITION. Assume that B c C, and B super-dominates C. Then 
every strongly exposed point of C belongs to D(0). If, in particular, X has the 
Radon-Nikodym property, then B is norm-dense in C. 

ProoJ If X has the Radon-Nikodym property then C is the closed 
convex hull of its strongly exposed points (Phelps’s theorem, cf. 
Proposition 5.14 of [ 161). Thus, the second part of the ‘proposition follows 
from the first part and the fact that D(0) is convex and closed. 

To prove the first part fix a strongly exposed point x E C, and a strongly 
exposing functional f E Z’*. In other words, 
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and 

h; diam s,(C, x,f) = of 

where 

By the remark made in the proof of Corollary 4.3, we can find 
xF E B n B, c C satisfying the relation 

Ref(x,) >f(x) - cF 

or, equivalently, X~E S,,.(C, x,f). We clearly have then x = lim, xF, and 
this concludes the proof of our proposition. 

As a consequence of Proposition 4.4 we see that in all separable dual 
Banach spaces, Problem 2.2 has an affirmative answer provided that B c C. 
Indeed, every separable dual Banach space has the Radon-Nikodym 
property (cf. Corollary 6.3 in [ 16]), and hence Problem 2.2 has a positive 
answer for such spaces. 

The following is the main result given by the methods developed in 
Section 3. 

4.5. THEOREM. Assume that B super-dominates C. If the weak topology 
on Bu C is metrizable, then D(0) contains C. 

Proof. Fix XE C and a basis V, 1 I/, 1 V, I> . .. of weak neighborhoods 
of x0 in B u C. By Corollary 3.9 it suffices to prove that dF(x) = 0 for every 
finite subset Fc B. Fix such a set F. We construct inductively sequences 
{F,:j>O} and {x,:j>O} c B with the following properties: F,= F, 
xje B,,n Bn Vi, and 

d,(lxj+ PYY) G IPI d,,+,(Y), 

for all y E E and ;i, p E C such that 121 + 1~1 < 1. This construction is clearly 
possible by virtue of Corollaries 3.6 and 4.3. Since the sequence (xj: j> O> 
converges weakly to x, a classical theorem of Mazur implies that for every 
v > 0 there exists a finite sequence {;lk: 0 <k 6 n} c @ such that 1, # 0, 
x;!0 l&l < 1, and [lx--~;=,&x,ll ~4. We have then 
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and consequently dF(x) < q. The theorem follows by letting 11 tend to zero. 

The following is an immediate consequence of Theorem 4.5. 

4.6. COROLLARY. Assume that B super-dominates C. If %^* is separable 
then D(0) I C. 

We conclude this section with a remarkable property of the sets D(0). 

4.7. THEOREM. Let y > 19 3 0 be fixed. Then D(0) I (x: jjxjj < y} if and 
only if D(0) 3 {x: llxll d y - 0). 

Proof: Assume first that D(0) I> (x: I/xl/ < y - 0> and let ZE:X with 
((z(( <JJ. We have then 

and therefore z E D(0), thus D(0) 2 {x: llxll d y }. 
Before proving the converse we note an additional property of the 

function d,, where Fc B is finite. Let fl> 0, x E %“, and y E B,. Then we 
have 

d&)=d&y+&y) 

1 - 
%+p 44y)+I+B Yd(?$+&d(y). (4.8) 

Assume now that D(0) 2 {x: I/XII d y} and note that this is equivalent to 

4x) G B Ilxll, XCX, IId GY, (4.9) 

where B = B/y. We will use (4.8) to show that (4.9) implies 

d(z) G P’ llzll, 
Y 

ZEX, llzll Gl+p. (4.10) 
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Indeed, fix ZEX such that 0 < llzl/ 6 y/(1 +/I), a finite set PC B, and 
8’ E (/I, 1). Write x = (1 + /I) z. From (4.9) we have d(x) </I’ llxll so that 
I/x -yll -C/I’ (Ix/I for some y E B,. Again by (4.9) applied to (x --y)/b’, we 
have 

f-Y)q-Y)+ ll~-Y;llp’B) 

<B IIX-Yll +wP) 
P 

<p l,x;~~yy. 

An application of (4.8) yields now 

P dF(Z) dl+p ( 
p llxll +y(p’-@J -c/P lIzI +yp(p’-b) 

) P ’ (l+P)P’ 
and hence d,(z) < 8’ //z/l since 8’ f (8, 1) is arbitrary. Relation (4.10) 
follows by taking the supremum over 1”. 

An inductive application of the previous argument shows that we have 

&I G P, IM? ZEE> llzll QY,, n = 0, 1) 2 . . . . 

where /I,, =/I, y. = y, and /I,+, =/Ii, yn+ l,= y,/( 1 + B,). It is clear that 
p,, = j3’“, and 

n-1 1 
L=YklJo (1 +p27=7Tj+ y(l--B)>y(l -/?)=y-e. 

Thus, for z E X with llzjl 6 y - 8, we have 

d(z) 6 ,fl_mm B, llzll = 0. 

This last relation means exactly that D(0) ZJ (x: /1x1( dy- f3}, so the 
theorem is proved. 

PART II: AN OPEN MAPPING THEOREM FOR BILINEAR MAPS 

5. NOTATION AND PRELIMINARY RESULTS 

Let X, X, and X be normed spaces, and let 
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be a partially defined bilinear map. The fact that r is bilinear means, in 
particular, that whenever (h, k), (h’, k), and (h, k’) are 9(t), the pairs 
(h + h’, k) and (h, k + k’) also belong to 9(r) and 

z(h + h’, k) = z(h, k) + z(h’, k), z(h, k + k’) = z(h, k) + r(h, k’). 

Note that 63(r) is not generally a linear manifold. We will make, however, 
the following assumption. 

5.1. Assumption. There exist linear manifolds Z0 c YE’ and X0 c X (not 
necessarily closed) such that So x X0 c 9(c). 

Our results will be based on the richness of the sets Z8 = .?&(t, X0, X0) 
defined as follows for 8 b 0. 

5.2. DEFINITION. Assume that 5.1 holds and 8 2 0. The set XJt, X0, X0) 
consists of all vectors x E X with the following property: Given an integer 
p, vectors 5,) t2, . . . . tP E X0, vectors r], , q2, . . . . q,, E X0, and a number E > 0, 
there exist vectors h E ZO, k E X such that 

(i) llhll < 1, llkll 6 1, 
(ii) 1(x - z(h, k)ll < 0 + E, 

(iii) Ilz(ti, k)II -c E, Ilrth, qi)ll -cc for 1 < i< p. 

5.3. LEMMA. The sets &(T, X0, X0) are closed. 

Proof: Let x E -%+t^e(z, yi”o, %)-, tl, t2, . . . . 5, E ~6, vl, r12, ..,, vp E %,, and 
E > 0. There exists then X’E Z&(t, X0, X0) such that I/x - x’I\ < ~/2, and by 
Definition 5.2 there are h E Z0 and k E X0 such that 1) hll < 1, IlkI/ d 1, 
lb’ - r(h, k)ll < 0 + 42, and llr(5i, k)ll <E, llz(h, vi)\1 <E for 1 < i<p. The 
lemma follows now easily because 

11x - dh, k)ll < lb - x’ll + llx’ - $h, k)ll 
< E/2 + 8 + E/2 = 8 + E. 

We can now define the property of z which will be relevant to our 
results. 

5.4. DEFINITION. Let t be a bilinear map satisfying Assumption 5.1, and 
let y > 0. The map z is said to have property (A,,,) relatioe to X0 and X0 if 

%?tac? -6, %)3 {xg%: ll4I Gr}. 

Let us note that X0(7, A$, X0) always contains (XC%: j/xl] < f?>, and 
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hence z always has property (A,,) if y 6 8. Thus, when working with the 
properties (A,,), we will normally assume that y > 8 > 0. 

5.5. Rmmk Let x~%d~ ;rl”,, .X,1, tl, t2, . . . . 5,~-%, vl, v2, . . . . rp~-X,, 
and E>O. Then there are vectors heS0, ke X0 such that 

6) II4 < 1, llkll < 1, 
(ii) Ilx-z(h,k)ll <8+~, 

(iii) 117(5,, k)ll -c E, ll~(h, rli)ll <E for 1 < i< p. 

Indeed, by Definition 5.2 there are h, k satisfying (ii) and (iii), and llhll 6 1, 
II kll < 1. We can replace h and k by crh and elk, where c1 E (0, 1) is chosen 
sufficiently close to one such that IIx - a2t(h, k)ll < 0 + E. 

From this point on it will always be assumed that Assmption 5.1 is 
satisfied and t is closed, i.e., the graph {(h, k, x): (h, k) E 9(z), x = z(h, k)) 
is a closed set in X x X x X. Denote by Xi and $7, the closures of X0 
and X0. Observe that in this case the formulas 

N,,={h~~~:{h}x~~~~(t)andt(h,k)=Ofork~X~} 

N,- = {k E Xi- : X0 x (k} c g(7) and 7(/z, k) = 0 for h E ZO) 

define closed subspaces of 2 and X, respectively. In fact it also follows 
that 

and 

(N.flx~X,)u(*, xN,,-)cWt), 

7(h, k) = 0 if (h,k)~(N,xX~,)u(#; xN,,). 

It is clear that the sets i&(7, X0, X0) (cf. Definition 5.2) do not change if 
we replace X0 and X0 by X0 + N, and -X, + N,, respectively. Therefore 
the following technical assumption will not be restrictive. 

5.6. Assumption. N, C& and N,,cXO. 

5.7. Remark. Let 7: g(7) c 2 x X + 97 be a closed bilinear map 
satisfying Assumptions 5.1 and 5.6. Assume in addition that X and X are 
Hilbert spaces. Then we have X0 0 N, c X0, X0 0 N, c X0, and 

%(7, &, =G) = %(7,X, 0 N,, -x, 0 N,), e 3 0. (5.8) 

Indeed, if h and k satisfy conditions (i), (ii), and (iii) of Remark 5.5, then 
h’= P x,, 0 Nx h and k’ = P.x-o 0 NX k also satisfy these conditions. 

We conclude this section by showing that properties (A,,) are substan- 
tially easier to verify in the case in which Y? and X are Hilbert spaces. 
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5.9. LEMMA. Let z: ~(T)c .Z x x -+ X be a closed bilinear map 
satisfying Assumptions 5.1 and 5.6. Assume in addition that Z and %C are 
Hilbert spaces. If 8 b 0, x E Xo(s, x0, .X0), E > 0, p is an integer, and 
51, 52r-7 5,E=%, VI, yl2, . . . . yl,,~ S,, then there are h E x0 and ke x0 such 
that 

(i) llhll 6 1, llkll 6 1, 
(ii) Ilx-z(h, k)ll <e+E, 

(iii) IIT(<i, k)ll <E, ll$h, v,)II < 6, 1 d idp, 
(iv) I(h I 5i)l <G I(k I vIi)l <G 1 < i < p, where (. I . ) denotes the 

scalar product. 

Proof: Let PC X0 and G c X0 be finite sets. By (5.8) and Definition 5.2, 
we can find h,, E So 0 N,, , k,, E X0 0 N,- such that 

IlhF,cll d 1, Ilk,,11 d 1, II= @,a k,,)ll < 0 + EF,G, 

and 

llT(t, k,,,)ll d &F,G? Ib(h,,, rl)ll < &F,G, (l, rl) E Fx G, (5.10) 

where E~,~ = l/(card (F) +card (G)). The idea is to show that the weak 
limit of the net {(h,,,, k,.,)},, c SF x X is (0,O). Indeed, if this is shown, 
it will suffice to take F, G sufficiently large so that h = h,, and k= k,, 
satisfy conditions (i)-(iv). By symmetry it sufftces to show that the weak 
limit of the net (h,,},;, is zero. Let < denote an aribtrary weak 
accumulation point of this net, and fix E > 0 and g E X0. Choose F and G 
such that E~,~ < E and q E G and note that by Mazur’s theorem 5 belongs to 
the norm-closed absolutely convex hull of the set { hF,,.: F’ 3 F, G’ 3 G}. 
Thus there are F,, F2, . . . . F,,, G,, G2, . . . . G, with Fj 2 F, Gj I> G, 1 6 id n, 
and there are constants cur, Q, . . . . ~1, E @ such that CT= I loljl d 1 and 
115 - C;=, mjh.o,ll < E. Note further that (5.10) implies the inequality 

Since EqG,<EF~, 1 <j< n. But E > 0 is arbitrary; so we conclude that the 
tiple (cl q, 0) ‘belongs to the closure of the graph of T, and hence 
(<, q) E 9(~) and ~(5, q) = 0. Now, 9 E X0 is arbitrary, whence 4 E N,. But 
we also have 5 E J? @ N, because h,, E X0 0 N,. We conclude that 
necessarily 5 = 0, and this completes our proof. 

5.11. PROPOSITION. Let T: 9(t) (~2 x,X) -+X be a closed bilinear 
map satisfying Assumption 5.1. If Z and x are Hilbert spaces, then the sets 
X@(T, Z, ,X) are closed and absolutely convex for 8 2 0. 
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Proof As we noted above, we may assume that 5.6 holds. We already 
know from Lemma 5.3 that the sets !&(z, 2, X) are closed. Fix O>O, 
x1, x~E!&(~, X0, X0), and a,, a,~@ such that Ic(i1 + Itlz( 6 1; we want to 
show that c(, x, + a2x2 E !&(r, X0, X0). Choose then E > 0 and 
51, r2, ...? r,E=%, VI, fl2, . ..3 qP E X0, and use Remark 5.5 and Lemma 5.9 to 
find h,, h,tzZo, k,, k,eXo with the following properties: 

llh,II < 1, llh,ll G 1, Ilk,ll < 1, llkzll 6 1, 

lb,-@,,k,)ll <0+&/2, II+ - %, kz)ll < 0 + 42, 

II@, 9 vi)ll ~42, Il+hz> rl,)ll < 429 

ll~(ti, k,)ll ~42, lb(ti, M < 429 1 <i<p, 

IW,, Ml1 <c/4, II@,, k,)ll <g/4, 

I(h, I &)I G 31 - IA - Ia,1 llh,l12h 

I(k, I Ml G$ (1 - I4 - b,l Ilk,ll*). 

Of course, in order to satisfy the last inequalities, the pair (h,, k,) is chosen 
after (h,, k,). If tl, =0 we can choose h, =0 and k, =O. Fix some square 
roots &;I’ and ai12, and define 

We have 

h = a112h + g112h 
I 1 2 29 

k = u’12k + a’12k 
1 1 2 2. 

llhl12= Iall Ilh,l12+ Ia21 llh2112+2 Re(af/2hl 1 a:j2h2) 

G b,l llh,l12 + 1~21 + 2 I(h, I Ml 6 1 

and, analogously, /I k I[ B 1. 
Next, 

Ib,x, + a2x2 - z(k k)ll 

d Ib,x, +~,x,--,~(h,, k,)-~,T(h,, k2)ll 

+ llc+2@;‘2T(h,, kz)ll + IIcc;‘2c$‘2T(h2, k,)ll 

d lull lb, -T(h,, k,)ll+ Ia21 Ilx,-$h,, k2)ll 

+ ;+$<(la,l+ lcl*l) o+; +++e, 
( > 

and 

IIT(k ~i)l/ d IIT(h,, ~i)ll + IIT(h2, VOII <G 1 <i<p, 

IIT(C;, k)ll d IIT(ti, k,)ll + IIT(4i,k2)II <G 1 dibp. 

We conclude that x E ?&(T, &, .X0), as desired. The proposition is proved. 
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An easy consequence of Proposition 5.11 and the bipolar theorem is the 
following. 

5.12. COROLLARY. Let T: g(5) (~2 x,X) +X be a closed bilinear map 
satisfying Assumption 5.1. Assume, in addition, that 2 and 2” are Hilbert 
spaces. Then z has property ( AB,Y) relative to &$ and x0 zf and only if 

~~P{lf~~~l:~~~~ac~~~~,X,~)~~IlfIl 

for every f E X’*. 

6. THE OPEN MAPPING THEOREM 

Let X and X be Hilbert spaces, let .% be a normed space, and let 

z: 9(T)( c Jf x X) + x 

be a closed bilinear map satisfying Assumptions 5.1 and 5.6. These objects 
will remain fixed throughout this section. 

6.1. LEMMA. Assume that t has property (A,,) relative to Z0 and Z, for 
some y>O20. Let XEX, h, t,, t2 ,..., (,E&& k,q,,qZ ,..., q,,E-X,, and 
E > 0 be given. Then there exist h’ E So and k’ E -X, with the following 
properties: 

llhl12+~ Ilx-$h,k)ll +E 
> 

I!2 

, 

llkll”+j lb-r(kk)ll +E 
112 

, 

(ii) (Ih’ - /zll 6 

(iii) 11x--r(h’, k’)ll <y 11x---z(h, k)ll, 

(iv) 117th’ - h, Vi)ll < E, llT(4i, k’-k)ll <ET 1 Gi,Cp, 

and 

(VI ItA’-h I ifi)I <&v I(k’-k I sill <G 1 <i<p. 

Proof: If x = r(h, k) we can choose h’ = h and k’ = k. If x # r(h, k) then 
the vector x, = (y/11x-z(h, k)ll)(x-r(h, k)) has norm y and hence 
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x, E%“@(T, X0, X0). Fix 6 > 0 and choose (h,, k,) E X0 x X0 with the follow- 
ing properties: 

lIh,ll d 1, Ilk, II d 1, 

Ib,-~(~,,k,)ll<~+~, 

Ib(h,, rl,)ll <4 ll~(t,, k,)ll < 4 1 Qi<p, 

Ilz(h, 3 k)ll < 4 IlG, k,Nl < 4 

IthI I5i)l c6Y I(k, I tl,)l ~6 1 <idp, 

and 

I(h, I h)l < 6, I@, I k)l < 6. 

We define now 

h’=h+ Ilx - $k k)ll 
> 

1’2 h k’=k+ llx - ~(k k)ll 
19 

“2 k 
19 

Y Y 

and we will see that 6 can be chosen so small that (i)-(v) are satisfied. 
Condition (ii) is clearly satisfied. We have 

llh’l126 llhl12+ II-T(kk)ll ilhll12+2 llx-e~k)ll Ii2 l(h l h,), 
Y ( Y ) 

< llhl12+ llx-+, k)ll +26 
Y 

An analogous calculation for k’ shows that (i) is satisfied if 

< E. 

Moreover, if (6.2) holds we also have 

(6.2) 

IIt@ -A, Vi)11 = ‘Ix- yh9 k)‘l 
( > 

“2 llr(h19 ?i)ll <f? 
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so that (iv) and (v) are also satisfied. Finally, 

11.x - T(h’, k’)ll d 
il 
x - T(h, k) - lb - T(h, k)ll 

Y e,, k,) 

+ ll.~-~(k k)ll “2 
( Y ) 

(ll~(k k1)ll + II@,, k)llI 

< llx - w4 k)ll 
Y 

1(x, -z(h,, kl)ll +26 i’x-:(h’ k)” “2 
( > 

6+6 
cy 1(x - t(h, k)ll + 26 ‘lx - ‘;h’ k)” 

> 
1’2, 

and we see that (iii) is satisfied if 

e+6 
y Ilx-z(h, k)ll +26 

o+E 
< y lb-W, k)ll. 

It is clear that 6 can be chosen to satisfy both (6.2) and (6.3), and this 
concludes the proof 

6.4. COROLLARY. Assume that t has property (A+) relative to X0 and 
X0. Then t also has property (A 
8, = O’/(y + 0) and yI = y’/(y + 0). 

O,,y,) relative to SO and X0, where 

Proof Let x ET be such that llxll < yi, and let t,, . . . . &,E &, 
rl 1 > ..‘, up E X0, E >O, be given. Choose 6 so small that the following 
inequalities are satisfied: 

8+y+6 
Y2 

llxll + 6 < 1 

and 

( > 7 2 /(XII y&+,=0, +E. 

An application of Lemma 6.1 (with h = 0, k = 0, and E replaced by 6) yields 
vectors h’ E Ho and k’ E X0 such that 
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Ib(h’? ?Jll < 429 Il~(ri, k’)ll < 42, 1 di<p. 

A second application of Lemma 6.1, with h and k replaced by h’ and k’, 
respectively, yields h” E X0, k” E X0 such that 

( 

112 
llh”ll < llh’lI’+; lb--(A’, k’)ll +6) , 

IlkI +; llx-t(h’, k’)ll + 6) 
112 

, 

Ilx-r(h”, k”)lj ~7 llx - $A’, k’)ll, 

and 

Ilrth” -h’, v]i)ll < E/2, Ilr(ti, k” -WI < 42, 16iGp. 

Note that 

Ilh”l, < llxll I 1 fJ+d (-) llxll +d=e+;+-6 llxll+6<1, 
‘Y Y Y 

2 

11x - ~(h”, k”)ll < 

and 

IIz(h”7 VIII1 6 IITCh’, tli)ll + Ilz(h”-h’, rli)<G 

Il~(ti, k”)ll G IIz(ti, k’)ll + llz(ti, k”-k’)ll <ET 
1 <i<p. 

This clearly implies that XE !&,(r, X0, .X0), and we conclude from 
Lemma 5.3 that z has property (A,,,,,) relative to X0 and X0. The corollary 
is proved. 

6.5. PROPOSITION. Assume that z has property (A,,) relative to & and 
X0 for some y > 8 > 0. Then T also has property (A,,+ 0) relative to Z0 
and X0. 
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Proof: It follows from Corollary 3.4 that z has property (dB.,YJ, where 
0, = 0, y. = Y, ~2nd en+ 1 = W(Y, + en), yn+ 1 = yj?j(y,, + en). Note that 
6, + I/Y, + 1 = (enlYn)*? and by induction 8,/y, = (B/y)2”. Thus 

and, analogously, 

Yn Yn+‘=i +e,jy, =Y ( 1 :(y;“+,)- 

Clearly we have lim, _ cc 8, = 0, lim, _ co yn = y - 8, and y, 2 y - 8. Suppose 
now that XEX with 1JxII <y-8, E>O, and <i,r2 ,..., ~,EX~, 
q i, q2, . . . . qP E X0. Choose n so large that 8, < s/2, and choose, by virtue of 
property (den,,)), vectors h E so, k E X0, with the properties 

llhll 6 1, llkll d 1, 

Ilx - r(h, k)ll < 8, + 42, 

II@, rli)ll < E, ll$5;, k)ll <E, 1 <i<p. 

Since 8, + ~12 <E and t,, . . . . rP, q,, . . . . qP were arbitrary, we deduce that t 
has property (A,,,~- e) relative to X0 and X0. The proposition is proved. 

6.6. THEOREM. Assume that z has property (A,,) relative to X0 and X0. 
Given x E X, h E So, k E X0, and E > 0, we can find (h’, k’) E Lo such that 

(i) x = z(h’, k’), 

(ii) llh’ll d lVl12+ -&, lb-$h,k)ll +E)‘l’ 
3 

& lb-V%k)ll +& 
> 

l/2 
> 

and 

112 
(iii) llh’ - hll < &j IL- t(h, W) + E, 

Ilk’-kll $ 5 II - 7th k)ll)“’ + E. 
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Proof: Choose 6 > 0 such that 

llhl12 + --& Ilx-z(h,k)l( +6 I”+ 
1 

“” 
(y - fp( 1 - P2) 

-$j Ilx - +, k)ll + &) 
112 

and 

Keeping in mind the fact that t has property (A,,,-~,), a first application of 
Lemma 6.1 (with E replaced by 6y/llx-r(h, k)ll) provides vectors h, EZ~ 
and k, E X0 such that 

llh,II G Ilhl12+ 5 11x- z(h, k)il + 6 “2, 
> 

--+ 11.x - z(h, k)ll + 6 
> 

I’*, 

IV, -hII G -&j I/x- T(h, k)ll)li2, 

Ilk, -kll6 -& lb-T(k k)ll)1’2, 

and 

Successive applications of the same lemma will yield sequences 
{h,:n>2}cXo and {k,:n>,2}cXo with the properties 

llx - $h,,, k)ll < 8’3 n>2 

Ilh Ilk n+,-kll< n>, 1. 

It is clear that h’ = lim,, ~ h, and k’= lim,, o. k, exist and, since 
lim, -. m z(h,, k,) =x and T is closed, it follows that (h’, k’) E 52(z) and 
r(h’, k’) =x. It is easy to see that h’ and k’ satisfy the other conditions in 
the theorem. Indeed, 
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= Ilh,II + 
6112 

(y - 6)“‘( 1 - f3”2) 

and 

Ilh’-hlldllh,-WI+ f Ilk+,-M~llh,-hII 
n=l 

(j 112 

+ (y-Q’/*(l 4’/2)’ 

and the required inequalities follow from the way in which 6 was chosen. 
This concludes our proof. 

6.7. Remark. Under the conditions of Theorem 6.6, suppose that X is 
complete and we are given <i, . . . . <pi SO and g,, . . . . qP E x0. Then h’ 
and k’ can be chosen such that (h’, qi)~.9(r), (ti, k) Es(T), and 
(Is(h’-h, vi)11 <a, ilr(<,, k’-k)ll <E for 1 QiQp. Indeed, the sequences 
{h,} and {k,} could be chosen such that (upon denoting h, = h and 
k, = k) we have 

llT(h, + I -4, vi)ll +i, IMt;, k,, I- k)ll <j&9 

It follows that the sequences { t(h,, vi): n 3 0}, { t( ri, k,): n 3 0) converge 
for 1 d i<p and, since r is closed, (h’, qi)~9(f), (ti, k’) E 9(r). The 
estimate of r(h’- h, vi) and 7(ei, k’- k) is now immediate. A similar 
argument shows that we can require the additional conditions 
((h’-h ( ti)l <E and I(k’-k I vi)1 <E for 1 di<p. 

A less precise form of Theorem 6.6 is the open mapping theorem referred 
to in the Introduction and in the title of this section. 

6.8. THEOREM. If T is closed and has property (A,,,) relative to X0 and 
X0 for some y > 0 3 0, then z is surjective and open. 

7. SYSTEMS OF EQUATIONS 

Let 3?, $C, X, and t be as in the previous section. In order to treat the 
solutions of infinite systems of equations of the form 

T(h,, kj) = X~J> O<i,j< co, 
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we will consider another bilinear map 

f: is(?) c 2 x 2 +x. 

The Hilbert spaces 2 and G? are orthogonal direct sums of infinitely many 
copies of 2 and Xx, respectively. Thus 

{h,:j>,O}:hjEX’and f l~hjl12<co 
j=O 

and 

Ilh”l12= f IIhjl129 h”= {h,:j>O}E2. 
/=O 

The space !? consists of all arrays (xii: i, j 2 0} c 2” such that 
lI{%j: ~,jHqll =c;=o lbijll < co. Finally, B(T) consists of those pairs 
({hi:i>O}, {k,:j>O})~%x% with the property that (h,,k,)~g(r) for 
all i,j>O, and CG=, Ilz(h,, ki)ll <co. If ({h,: i>O}, {kj:j>O})~9(?), we 
set 

w,: i>o>, {k,:j20})= (T(hi, k,): i,j>O}. 
It is easy to see that ? is a closed bilinear map (remember that t was 
assumed to be closed in Section 6). However, ? is not generally continuous, 
even if z is continuous. (In fact ? is continuous if and only if r = O!) 

Assume now that X0 c 2’ and X0 c X are as in Assumption 5.1, i.e., 
X0 x X0 c 9(t). Then $. x 2. c 9(f), where $. and & consist of all 
finitely nonzero sequences with elements in X0 and X0, respectively. 

7.1. LEMMA. Assume that z has property (A,.,) relative to co and X0 for 
some y > 8 2 0. Then ? has property (A,,) relative to %0 and X0. 

Proof. The ball of radius y centered at the origin in !t! is the closed 
absolutely convex hull of all arrays {xii: i, j 2 0} such that xii = 0 for all 
pairs (i, j) except one (depending on the array), say (i,, j,), satisfying 
llxi,jOll d y. It sunices then to show that such arrays belong to X0(?, 20, &). 
Assume therefore that x= {xii: i,j=O}~$:, x0=0 for (i,j)#(io,j,), and 
I/X~ojoll<y. Let <r,52 ,..., <,E$~, ?I,~2 ,..., ?,~2~, and E>O be given. 
Write c,= (51”): i>O), qn= {q. i”):i>,O), lbn~p;then<~“)=Oand~j”)=O 
for i > N for some large enough N. We can now use property (A,,) for r to 
find heZo and keXo such that 
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llhll d 1, llkll Q 1, 

lIx,g;o - $k k)ll < 0 + E, 

Ilr(h, v?‘)II <E/N, ll$SP, k)ll <&IN, 
1 dn6p, OdidN. 

We now define h”~%~, EE& by x= {hi: i>O}, E= {k;: >O}, hi=6,h, 
kj = di,k. (Here, of course, 6, = 0 or 1 according to whether i #j or i =j.) It 
is not difficult to verify that 

llhll = llhll d 1, ll~ll = llkll d 1, 

/IX-f(h”,E)ll = llx,j,-z(h, k)ll <Q+E, 

and 

ll@i rln)ll = 2 II+ @‘II <E, 
j= I 

llf(L E)ll = : II,( k)ll <E, 1 <nbp. 
i=l 

We conclude that x E ?&(f, %& &), and the proof is complete. 

We see now that all results proved in Section 6 can be applied to f. We 
will give only two applications which are very useful in operator theory: 

1.2. THEOREM. Assume that Assumption 5.1 is satisfied, and z has 
property (A,,) relative to x0 and x0 for some y > 8 > 0. Then for every 
infinite array { xij: i, j> 0) c X there exist sequences {hi: i 3 0} E &? and 
{k,:j>O}cx such that (h,,k,)Eg(z) and z(h,,k,)=x,for all i,jaO. 

Proof: Determine first constants cli > 0 and pi > 0 such that 

Gli~jllXoll < 2p’p’t i, ja0. 

We can then define an element 2 = {cc~P,x~: i, ja 0} E &:. By virtue of 
Lemma 7.1 and Theorem 6.6 there exists (i;, k) E 9(f) such that ?(x, i;) = 2. 
If h= {ti: i>O} and it= {oj:j20}, the vectors hj=a;15i and kj=/?:‘q, 
will satisfy the conditions of the theorem. 

The following result about finite systems of equations requires the full 
strength of Theorem 6.6. 

7.3. THEOREM. Assume that Assumption 5.1 is satisfied, and z has 
property (A,,) relative to .#O and x0 for some y > f3 20. Suppose n E N, 
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a > 0, and let {ho, h,, . . . . hn-,}C%, (ko,kl,...,LI)~%, and 
{x,i:Odi,j<n}c!.E besuch that 

IIXij- T(h;, kj)II < ~1, O<i,j<n. 

Then there exist { hb, h’, , . . . . hip, } E X, {kb, k;, . . . . kLp ,} E X such that 
(h,!, k;)Eg(t)for O<i,j<n, 

r(h;, k;) = xd, Odi,j<n, 

and 

Proof: Define i; E L%~, RE&, and a~!? such that ii = {h,, h,, . . . . 
hnel, O,O, . ..}. E= (k,, k,, . . . . k “-,, O,O, . ..}. and Z= {Us: i,jaO) with 
uii=xii if i,j<n-- 1 and uU=O if max(i,j)an. We have 

II.2 - ?(& it)/1 = c llxjj- r(hi, ki)ll <n%. 
i,j=O 

Choose a’ < a and E > 0 such that I/Z - ?(i;, it)11 < n’a’ and 

,112 na’12 
(~y3)l~2+~~(+3~l,2~ 

Theorem 6.9 implies the existence of (K’, i;‘) E g(f) such that f(z’, k”‘) = 2 
and 

ll?i’ - hll < (yy;;,,2 + E, [lit’ - itI/ < (yy;;l,2 + E. 

If x’= (h;: i>O} and i;’ = {k,‘:j> 0}, it is easy to check that 
{hb, h;, . . . . h;p, ) and {kb, k;, . . . . kL-,} satisfy the conditions of the 
theorem. 

8. REMARKSON THE CASE OF BANACH SPACES #F AND X 

Some of the results presented in Sections 6 and 7 remain valid in case X 
and X are Banach spaces. The estimates for the solutions h and k are 
somewhat different, and the technique for solving infinite systems of 
equations is much more complicated. We refer to [8] for the detailed proof 
of the results outlined below. 
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It will be assumed throughout this section that X’, Y, and .% are 
Banach spaces, and T: 9(z) c 2 x X + 3 is a closed bilinear map satisfy- 
ing Assumption 5.1. 

8.1. PROPOSITION. Assume that z has property (A,,) relative to &, and 
X0 for some y > 0 >/ 0. Then T also has property (A 0,Cy~12 _ 0~,2j2) relative to X0 
and X0. 

8.2. THEOREM. Assume that z has property (A,,) relative to X0 and X0 
for some y>t?>O. Given XEX, hE&, kE&, and E>O, we can find 
(h’, k’) E 9(~) such that 

(i) x = z(h’, k’), 

IV’ - hll Ilx - r(h, k)ll “* + E, 

(ii) 

Ilk’ - kll 1(x - z(h, k)l\ “* + E. 

8.3. THEOREM. Assume that 7 has property (A,,) relative to %0 and X0 
for some y>8>0. Let {xii: i, jZ 0} c X be an array such that 
c,“=O ll~,J”~< co, O<i< 00, CzO ll~J”~< 00, O<j< 00, and let 
{E,: i 2 0) be a sequence of positive numbers. Then there exist sequences 
{h,:i>O}ES, {k,:j>O}EX such that 

0) (hi, kj) E W7) and 7(h,, kj)=X, for i,j>O, 

If Y? and X are Hilbert spaces then (ii) can be replaced by 

llhill*<~i+ 
(iii) 

llk~l12 G Ej + 
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PART III: APPLICATION TO OPERATOR THEORY 

9. A BASIC ILLUSTRATION FROM OPERATOR THEORY 

Let 2 be a separable complex Hilbert space, and suppose T is a 
GO contraction on X, that is, 11 TII < 1 and lim,, m 11 T”hll = 
lim, + 3cI 11 T*“hji = 0 for all h E X. It is well known (cf. [ 19, Chap. VI]) that 
T is unitarily equivalent to a functional model S(O), where 0 E H&(9(&‘)), 
IIO(I ~ 6 1, @(e”) is unitary for almost every t E [0, 27r), and d is a suitable 
Hilbert space. We recall the relevant definitions. 

If d is a separable Hilbert space, and 1 <p < co, we denote by Lp(b) the 
space of measurable d-valued functions f on U = {e”: t E [0,27r)} such that 

If d = @ we will write simply Lp for Lp(b). The space HP(&) [resp., H{(b)] 
consists of those functions f E Lp(b) such that @ e"'f (e") dt = 0 for n > 0 
[resp., n >O]. We denote by H”(y(b)) the set of all bounded, analytic, 
y(b)-valued functions @J on D = {1~@: I,? < 1 }. As before, we use the 
notation H” in the numerical case. If @E H”(Z(b)) then the limit 
@(ei’) =lim,, , @(rei’) exists in the strong operator topology for almost 
every t E [0, 27r). We refer to [ 191 for a detailed account of these facts. 

We can now define the operator S(B), where 0 is as above. Let S denote 
the unilateral shift in H’(8) (i.e., multiplication by ei’), and let 
X’(O) = H*(S) 0 OH’(&). Then 

S(Q) = PS I d%?(Q), 

where P denotes the orthogonal projection of H*(E) onto X(O). Without 
loss of generality, in the sequel we take X = s(O) and T = S(Q). 

We note that for f, g G H*(8) we can define a function f .g E L’ by 

(f.gMe") = (f(e") I de”)), t E co, 2x1, 

where the scalar product is taken in 8. It will be convenient to denote by 
[$] the class in L’/HA of a function $ E L’. 

The sesquilinear map T ,:Zx&‘-+L’/H~ defined by zl(xg)=[f.g], 
f, g E H, has proved a basic object in the study of T. It was shown that T 
displays a very rich structure (for instance, it is reflexive, and is a strong 
dilation of every strict contraction on a separable Hilbert space) whenever 
r, is surjective (cf. [ 14, 1, 3, 5, 10, 71). Indeed, if T is, as above, of class 
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Coo, and r, is surjective, it was shown in [3] that T belongs to the class 
A NO’ and hence the dilation theory of [S] can be applied to T. It is 
therefore important to characterize the operators T of class C, for which 
r, is surjective. It is important to realize that an operator T, for which z, is 
surjective, necessarily satisfies the relation a(T) I T. 

We recall now such a characterization which was first conjectured in 
[3]. For u E H” define a bounded operator u(T) E Y(X’) by 

4T)Pf=P(uf), f~H2W, (9.1) 

where P, as before, is the projection of H’(b) onto S’. The association 
u + u(T) is the H”-functional calculus for T (cf. [19]). Recall that 
lMT)ll G ll4a:, ~EH~. It is easy to show that the H”-functional calculus 
is an isometry (i.e., Ilu(T = IIuilm, u E H”) whenever r, is surjective. The 
conjecture states that the converse is also true, i.e., z, is surjective if the 
Ha-functional calculus is an isometry. In this paper we prove weaker forms 
of this statement, and the conjecture may be viewed as a limiting case of 
our results. Our difficulty in proving the conjecture lies in the fact that 
Problem 2.2 has a negative answer for X = L’/HA as shown by the 
following slight modification of van Dulst’s example (see (2.3)). 

9.2. EXAMPLE. Let X= L’/Hh, C= {[xl E X: l/[x][I d l}, B= {[xl: 
XEL’, ~~x~~,61,x=Oonasubset8,ofUofmeasure(1/2~)~,~~dt~f}.As 
in Example 2.3, since H” N (L’/H,!,)* and the norm of u E H” is 

ess max{u(e”): t E [0, 27c)}, 

we readily infer that B super-dominates C. If B were strongly dense in C 
then [ 1 ] E B-, and hence we can find sequences {x,),2 i c B, { yj},“, , c L’, 
and { cpi},“_ , c HA such that 

1 +cp/=xj+yj, j = 1, 2, . ..) (9.3) 

and 

IIYjllI +O for j-+00. (9.4) 

Let 

$j(Z)=eXp(&~fK$$lOg 11 +q,(e”)l&), ZED, 

be the outer factor of 1 + ‘pie H’. Then 
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IXj+Y,I dt 

1 
. exp 271 ( s log l~jl dt 3 o,, 

which tends to 0 forj-+ co, which is a contradiction. 

10. I!P-F~~~~~~~~~ CALCULI AND SURJECTIVITY OF 7, 

Let T= S(0) E 2’(% = X(O), be as in Section 9; thus T is an operator 
of class Coo. Fix a number r E (1, + co) and define the space &- as 

H;.=H’(b)nX if r 3 2, 

H;. = closure of 2 in H’(b) if rG2. 

Denote, as before, by P the orthogonal projection of H2(&) onto 2’. We 
recall that, for f~ H’(Q), 

9f=f-@PtlqA.,g, where g(8) = O(e”)* f (e”) almost everywhere. 

A famous theorem of M. Riesz, and the fact that E is a Hilbert space, 
implies that there exists a constant c, such that 

IIP”~M,gllr6cr IISII,~ g E L2(d) r-7 L’(b). 

We conclude that P(H’(B) n H’(b)) c H> and 

llwll,~(~r+ 1) IIsIIr~ fE H2(d) n H’(b). 

Now H’(F) n H’(6) is dense in H’(b), and therefore there exists a con- 
tinuous linear map P,: H’(b) -+ E& such that P, coincides with P on 
H’(S) n H’(b). It is easy to check that P, is actually a projection of H’(b) 
onto H’,. We remark that the scalar product ( .I .) extends to a sesquilinear 
form 

if l/r + l/s< 1. 

(.I.):H;.xH”,+@ 
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10.1. LEMMA. Letr,sE(l, +co)besuch that l/r+l/s= 1. Then wehave 

k5+c.s--‘llfll.~suP{IU-I g)l:gE&-“~0, Ilgll,~l~~llfll, 

for f E H’,. 

Proof Observe first that the sesquilinear form (. 1. ) extends to 
L’(b) x L”(b) by the formula 

(h ( k) =& l2n (h(e”) 1 kfe”)) dt, h E L’(b), k E L”(6), 
0 

and 
Ilhll,=~~p~I(hI~)l:~~~S(~~~ ll~ll,~l> 

for all h E Lr(& ). The inequality 

sup{I<f I g)l:gE&n~, llgsll G l>G llfll, 

is obvious, and for the first inequality in the lemma it suffices to consider 
elements f~ II;. n 2”. We have, indeed, 

II.fIIr==~P{I<f I g)l:g~L’(a Ilgll,~ 1) 

=su~jI(.fI g)l:gEL3(~)nL2(6, llgll,~1~ 

=~~P{I(P~~~~J I g)l:gELS(OnL2(~L Ilg/l.y< 11 

=su~{I(f I PH2,8,g)l:g~LS(~)nL2(6), llgll,~ 11 

<SUP{ IV I k)l: kEffYOn H*(d), Ilkll,<c,} 

=sup{I(WI k)l:kEWF)nH*(6), Ilkll,dc,} 

=supCt(f I Wt:k~H”WnH2W, ttklt,~c,) 

Gsup{l(f I h)l:hEfCnX, llhll dc.Ac,+ 1)) 

and this completes the proof. 

We now define the HP-functional calculi. Let PE (1, co], r E 
[p/Q - 1 ), co 1, and let q be defined by l/q = l/r + l/p. For cp E HP we 
define a bounded linear operator I’,,,(cp): H’,+ H$ by 

fp,,(cp)f= Pq(vf), fc 6 

Clearly T,,,(cp) = cp( T), as defined in (9.1), for qn E H”. A density argument 
based on (9.1) shows that, in fact, 

fp.r(cp) Prf = P,(vfL f E H’(e). 
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Since Il~fll, < lldlp llfll, for cp E HP, f~ W&I, we have 

IIq&J)ll d (1 + cq) llrpllP~ cpEHP. 

The spaces H> and the functional calculi fp,r can be defined for arbitrary 
absolutely continuous contractions, and for Y E [ 1, + co], without the use 
of functional models. We refer to [9] for details. 

We can now state the main result of this section. 

10.2. THEOREM. Fix pi (2, + 00) and rE [2,2p/(p-2)]. Zf the 

functional calculus r,,, is an isomorphism, i.e., 

lI~p,rb)II 2-c IIVllP? (PEHP, (10.3) 

for some c > 0, then T, is surjective. 

It can be shown (cf. [9]) that the above sufficient condition is also 
necessary. The conjecture alluded to in Section 9 is equivalent to the 
limiting case p = cc in the statement of the above theorem. 

The remaining part of this section will be devoted to the proof of 
Theorem 10.2, which will be broken into a sequence of lemmas. We will 
consider analogues of the map zi which, unlike t, , take values in Banach 
spaces with a separable dual. More precisely, note that for p’ > 1 we have a 
continuous injection LP’/Hg’ -+ L’/HA. In order to simplify notation we will 
identify LP’/H$ with a linear manifold in L’/HA. We define now 

TV. : 9(t,r) ( c H x 2) + LP’/H,p’ 

by setting g(z,,) = {(f, g) E 2 x 2”: ri(f, g) E Lp’/H{‘} and writing 
T,,(f, g) = z,(f, g) for (f, g) E g(tPz). The fact that rPz is a closed ses- 
quilinear map (as defined in Section 5) is immediate. It is also clear that 

and 

(H’,n&‘)x (Hj.nX)e9(rp,) 

Ib,~(f, g)ll G Ilf llr /IgIl,, fEH;.nZ, gEH+nX, (10.4) 

provided that l/r + l/s < l/p’. 

10.5. LEMMA. Assume that r, s, p’ E [ 1, + co) and l/r + l/s < l/p’. Let 
f,fO,f ,,..., E&n% and g,g,,g, ,..., cH$nX be such that 
suP{Il.fJlr:~w <co, sup{ Ilgjll,:jsO} < 00. Then we have 

lim llt,4T’f,, s)ll =jf”a. Ilt,4T’A g,N =O. ,-a 

580/78/2-IO 
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ProoJ: We notice first that it suffices to prove the lemma under the 
more stringent condition l/r + l/s = l/p’. In order to prove that 

it suffices to show that lim, _ 5 11 T’fll, = 0 for all fE H’,n 2. Since TE Cm 
we know that limi, 1c II P’II 2 = 0 and hence, if r < 2, we have 

It suffices therefore to consider the case in which r > 2. Moreover, since 

/lT!fll,~(c,+ 1) Ilfll,, 

we may restrict ourselves to the case where f belongs to the dense (in H;) 
linear manifold H; with p = 2r - 2 > r. In that case the Schwarz inequality 
yields 

IIWII,~ II~‘N” iwn;- “‘<((l +c,) llfllp)‘-“r Ilm:” 

and again we conclude that limi, m I/ rifll r = 0 because TE C,. The proof 
that 

lim IIr,,( T’fj, g)ll = 0 
I-+% 

is based on the observation that T*jg E Hj, zP.( T’f, g) = z,,,(f', T*jg), and 
limj, o. IIT*jgll, =O. The fact that T*jgE w; and IIT*jglls6ys Ilgll,, 
ge H”,n 2, for some y, < co follows by duality from Lemma 10.1. The 
proof that lim, _ ~ 11 T*jgll,~ = 0 is now similar to the above proof for the 
sequence { T’xj > 0). The lemma is proved. 

Let us note for future reference the useful relation 

(cp? TpUg)> =qJcp)f 18) (10.6) 

for f~ H’,, g E H”,, s = pr/(r( p - 1) - p), l/r + l/s = l/p’, and 40 E H”. This 
relation was implicitly used in the above proof. 

Let now p and r be as in the statement of Theorem 10.2, and set 

pLP, pr S= 
P-l r(p- 1)-P’ 

We define now the set 

B= rs,,(~g):f~H;.n~,gEHSTn~, IIfll~G 1, 

l/d2 G 1, and lb,dS, s)ll G 1). 
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10.7. LEMMA. If (10.2) holds then B super-dominates the ball 
C= {hELP’/Hi’:llhll <y}, where 

c 

y = c,c,(c, + q2(c, + 1)’ 

Proof We use first Lemma 10.1 and relation (10.6) to show that 
B dominates c’ = {h: llhl\ < y’}, where y’ = c/(c, + c,Z). Indeed, for 
cp E HP = (Lp’/H{‘)* and s’ = s/(s - 1) = pr/(p + r) we have 

= su~{I(cp,z,,(f,g))l:f~H;n~“, 
gEH;nx, llfll261, /Isll2<1, Il~,,(f,dll<1) 

2 wW'p.r(df I g)l:fEH;n*,gEHSTnx0, 

llfll,r1* Ilgll,~lI 

where we used the fact that r > 2 and s 2 2. 
Fix now an element (PE H” and define (P,, E H” by q,,(A) =A’“cp(A), 

1” E T, for n = 0, 1, 2, . . . . By the previous calculation, we can find elements 
h,EH’,nZ and k,~ H”,nZ such that llh,ll,< 1, llk,ll,< 1, and 

(cpn> ~p@n, k,)) 2 Y’ Ihllp - l/n = Y’ Ilqllp - l/n. 

Observe that 

(cpm ~ph,, k,)) = (cp,, z,(h,, k,)) 

= (cp,(T) hn I kJ 

= (~2’W’-) h, I k) 
= (q(T) T” h, I T*“k,). 

We have fj,=(l/c,(c,+l))T”h,~H>nX, g,=(l/c,)T*“k,EH”,nX, 
Ilf,ll,G 1, /Ig,II,G 1, and 

Since H” is norm-dense in HP = (LP/H&)*, in order to conclude the proof 
it suffices to show that tps(fn, g,) E B, eventually, for every finite set Fc B. 
This will follow at once if we prove that 

lim Dist(aco(t,,(f,,, g,), r,,(f, g)}, B) =O 
“4cO 
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for every f E H’,n X, gE H”,n Z, such that llf/l 2 B 1, llgllz d 1, and 
IIr,(f,g)/J d 1. It suffices to prove that 

for any sequence { (tl,, jn): n 2 0} c @ such that Jtl,l + I/?,,[ < 1 -E, for some 
E E (0, 1). Fix square roots HA/ and /IA/* and define U, = cr:12 f, + Bk/'f, 
v,=pg,+pg. We have u,EH;n&‘, 

IId: G IA IMS + WA Ilfll: + 2 IanI l’* IP,I “* IV I f,)l 

d (IanI + MA Ml + IV I .L)l) 

6(1 --EM1 + I(f I fn)l), 

and 

We conclude that IIu,II z 6 1 for n sufficiently large. Analogously, 
u, E H”,n X and llunII 2 < 1 for n sufficiently large. Next, 

lI~p~(~,, u,)ll d IhI Ibp4L, s,)ll + l&A II~,,(f, g)ll 

+ IC’I MY’I CIl~,kL s)ll + IIr,LL gJl1 
Q (Ian1 + IP,I I(1 + 1 II~ptfn~ s)ll + t Ib,kL s,Nl) 

<(I --EN1 +t Il~,kL~g)ll +$ II~,&L)ll)~ 

and an application of Lemma 10.5 shows that I[T~.(u,, u,,)ll < 1 eventually. 
We conclude that rP(u,, U,)E B eventually. Finally, we show that 
lim, + co ll~,~p~(fn~ g,) + Pn.sp4L g) - ~Ju,, dl = 0. Indeed, 

Il~n~pLLn~ gJ + P,~,tL g) - ~~44, h)ll 

G NJ21 W’l (lItpUny g)ll + IIr,df, g,N)T 

and the present lemma follows by Lemma 10.5. 

10.8. LEMMA. Under the conditions of Lemma 10.7, zps has property 
(A,,) relative to Hk and FT. 

Proof: The dual HP of Lp’/H,P’ is separable, and therefore the set D(0) 
(associated with B in Section 3) contains the ball C= {XE Lp’/H$‘: (Ix(I <r} 
by Corollary 4.6. In particular, the closure of B contains C. 

Let x E C be such that llxll < y, and choose $ E Lp’ such that ~~$~~ < y and 
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$ + Hi’ = x. Next, define for n = 1,2, 3, . . . . x, E C by x, = 1(1, + H[‘, where 
$,(e”) = ep2in’$(ei’) 1 a most everywhere. Since B is dense in C, we can find 
h,,h, ,... EH;n&‘, k,,k, ,... EH;nX such that Ilh,,j(z< 1, jlknl12< 1, 
IjT,,,(hn, k,)ll 6 1, and IIx, - TJh,,, k,)ll < l/n for n 2 1. Set now f,, = T”h,, 
gn=T*“k,, n> 1. Fix q6Ha, II~llp<l, and set cp,(A)=A2”cp(A), 111 <l. 

We clearly have jI(~~ll p < 11 q (Ip < 1, and hence 

I<cp,x-~,,U,,g,J> I = I(cp~x)-(cp(T)fn I sJl 

= I<cpm x,> - (cpn(T) h I kn)l 

=I(cp,,x,-~,,(h,,k,))l 

6 Ibnllp lb, - QL U G l/n. 

We deduce that 

By Lemma 10.5 we see that x~X,(z,,, H;, Hj), where H;. and I!& are 
viewed as linear submanifolds of X. Thus Cc !&(rp,, H;, Hj) and the 
lemma follows. 

Theorem 10.2 follows at once from Theorem 6.8 and the following 
lemma. 

10.9. LEMMA. Under the conditions of Lemma 10.7, z1 has property 
(A,,) relative to X0 = X and X0 = 2’). 

Proof: For each 1~ @ such that 111 < 1, there exists an element 
cj. E L’/Hh such that llclll = 1 and (u, cl) = u(A) for u E H”. Moreover, the 
closed absolutely convex hull of the elements c1 is the unit ball of L’/Hh. 
Thus, by virtue of Proposition 5.11 in order to prove our lemma, it will 
suffice to show that c1 E X0 = X,(z,, A?, A!). It is easy to see that 
ci. E Lp’/H[‘; indeed, the functional u + u(A) is continuous on HP. Fix II E 6=, 
)A1 < 1. By Lemma 10.8 and Theorem 7.2 we can find sequences {h, : n 2 0) 
and {k,: n 3 0} such that tJh,, k,) = r,(hi, k,) = Giici., i,j> 0. With the 
notation u,,,(z) = (z - 12))11, z E @, IAl < 1, we have 

((TV nJm ht I kj) = <urn, z,(h,, k,)) = QA,(~) = 6,6,,. 

These relations imply that (T - A) A has infinite codimension in JV, where 
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4 = V {Tihj: i,jaO}. Let e,, e,, . . . be an orthonormal system in 
JZ 0 ((T- 1.) A)), and notice that we have 

r,(ei, ei)= cj., i 2 0. 

Since TE C,, we have 

lim jlr,(ei, h)ll = lim Ilt,(h, ei)ll =0 
,-CL i-00 

for every h E X, and this clearly implies that c1 E 5$. The lemma is proved. 

10.10. Remark. It is an easy consequence of Lemma 10.9 and 
Theorem 7.2 that the operator T of class C, belongs to A,, if (10.3) is 
satisfied. We recall that TE A,, is and only if arbitrary systems of the form 
z,(fi, g,) = xii, i, j B 0, can be solved or, equivalently, if T is a strong 
dilation of any strict contraction acting on a separable Hilbert space (see 
c5, 71). 
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