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Recently, Thompson [9] constructed a new simple group E of order 21 o
3195572 o 13 0 19 o 31 = 90, 745, 943, 887, 872, 000. In particular, E contains
only one conjugacy class of involutions, and if e is an involution in E then Cg(e) is
a (nonsplit) extension of an extra-special 2-group of order 2° by .2, the altern-
ating group of degree 9.

The aim of this paper is to prove the following result.

TueorREM. Let G be a finite group which contains an involution =z. Let
H = C4(2) and suppose that G % H - O(G) and H satisfies:

(i) J = Oy(H) s extra-special of order 2°;

(i) H|J = <4, the alternating group of degree 9. Then G is a simple group
with the same order and the same conjugacy classes as Thompson’s simple group E.

CoroLLARY (Thompson). If G is a finite group satisfying the assumptions of
the theorem then G ~ E.

(This follows immediately from Thompson’s paper [9].)
The notation in this paper will follow Gorenstein [4]. In addition we
will use:

X %Y :a central product of the groups X and Y;
X ~yx Y :x1s conjugate to y in X
Z,, : the cyclic group of order n;
D,, : the dihedral group of order #;
O,n : the (generalized) quaternion group of order 27;
SD,a : the semidihedral group of order 27;

oy , 2, ¢ the alternating, symmetric groups of degree .
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1. PrReLIMINARY RESULTS

ProposITION 1 [4, pp. 105, 328]. If x is an involution in the finite group X and
x & Oy(X), then x inverts an elements of odd order in X*.

ProposiTiON 2 [10). Let Y = {1, ¥, , ¥, , ¥s} be a d-group of automorphisms
of the finite group X of odd order. Then

[ X[ C(Y)P = | Cx(3)] - | Cxl2)] * | Co(35)]-

Recall that a p-group P is extra-special if P’ = Z(P) = @(P), and | P’ | = p.

ProposiTION 3 [4, Theorem 5.5.2). An extra-special 2-group | is the central
product of n = 1 non-Abelian groups of order 8. (Thus | has order 227+1,)
Further,

J =2 Dgx Dy« - x Dy (J of type +)
or

Ja2Dy* - *Dy*Qy (] of type —).

In the rest of this section we prove some simple but useful results under the
following assumption:

HypotHesis 1. Let G be a finite group, let 2 be an involution in G, let
H = C4(2) and let J = Oy(H) be extra-special of order 227+, > |.

Let P s£ 1 be a p-subgroup of H( p an odd prime), and let ¢ be an involution
in H — {z> with  ~g 2.

ProrosiTION 4. Under Hypothesis 1, each of C,(P), [P, J] is extraspecial or
equal to {z) = Z(]).

Proof. 'This follows immediately from C;(P) - [P, J] = ][4, Theorem 5.3.5]
and the three subgroups lemma [4, Theorem 2.2.3].

PropoOSITION 5.  Suppose that Hypothesis 1 holds, that t € Cy(P), and that P
satisfies:

(*) If y 1Py C H with y € G, then there exists h e H such that y Py =
h~1Ph.

Then t ~yp) 2, and further if No(P) = Ny(P) o Co{P) then t ~¢p) 2.

Proof. Obvious. (Note that if P is a Sylow p-subgroup of H then P
satisfies (*).)
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LEmMA 6. Let H satisfy Hypothesis 1 with Cy(J) =<2). If x€ H — [ and
| J: Cy(x)] = 2 then x* ¢ (2.

Proof. Suppose x* € {z>. By Proposition 1 (applied to H/{z>) x inverts an
element 7 of odd order in H. Hence r has order 3, [r, J] 22 Qg , and {x, [r, J]> =~
Q15 01 SDyg . In any case C(x) N [r, J] = <{z), which contradicts | [ : C){x)| = 2.

ProposiTiON 7 (Janko). Suppose Hypothesis 1 holds and in addition Cy(J) =
{2y and t € | — {(z). Then Oy(Cy(t))/C,(t) contains a normal elementary Abelian
subgroup of order = 271 if [ is of type +, and of order = 2™ if ] is of type —.

Proof. From Lemma 6 we have £,(Z(T)) = <t, ), where T'is a Sylow 2-sub-
group of Cy(2). It follows that N4((2, 2>)/Cy(t) == X, . Let T* be a Sylow 2-sub-
group of Ng(<t, )) which contains 7, but T* ¢ H. If x € T* — T then x nor-
malizes C,(t)* N Ci(t). Hence C,(£)* N C,(t) is elementary Abelian, and so of
order <27*! (] of type +), < 2# (J of type —). Thus C,(t)/C,(t}* N Cy(t) =~
Cy(2)* Cy(2)/C,(2) is elementary of order 2> 271 (type --) or = 2" (type —). The
proposition follows as C,(£) <1 Oy(Cy(?)) <1 N4, 2D).

2. SoME PROPERTIES OF H|J o 2,

In this section we use the bar convention for H/J = H and use «» to denote
the correspondence of elements in the isomorphism H =~ o4(H, ], z as in the
staterment of the theorem.)

Let u, v be elements of minimal order in H with # <> (14)(25)(36)(78) and
7 <> (15)(24). (Recall that &7 has precisely two classes of involutions.) Thus
Cil@®) o2 (Dg * Dg) o Zyand Cy(D) == (Z, X Zy X ) o Zy.

Let B = <{b) be a Sylow 5-subgroup of H with b <> (12345). Thus Cy(b) =~
Z, X st and Ng(B)/Cy(B) = Z,

Let Hy = {¢; |1 = 1, 2, 3, 4) be a Sylow 3-subgroup of H where ¢, «> (789),
&, > (123)(456), &5 < (123)(465)(789), and &, «> (147)(268)(359). Therefore we
have Cg(?,) =~ Z; X s, Cqlts) = H, and Cg(e,) = Cl{u), where C = (¢,
¢y ,Cyy is the only elementary Abelian subgroup of order 27 in H,. Further,
Ny(H;) = Hy@) and O(H,) = <z,, &p. Let f;, i = 1, 2 represent the two
conjugacy classes of elements of order 9 in H, with f3 = ¢;, 7 = 1, 2. Note that
Cg(f)) = {f) and f; is conjugate to each element in {f;> — {¢;> in Ny(H,)
i=12

Finally 4 = {a) will denote a Sylow 7-subgroup of H, @+ (1263549). Hence
Cp(a) = 4 and Ng(A) = A<G,, @), a Frobenius group of order 42.

Remark. There is precisely one (proper) maximal subgroup of H which
contains H; , namely, Ng(C). (This property of .o will be needed in Section 3.).
Note that Ng(C)/C ~ Z,, and that ¢, c,, ¢c; have 6, 12, 8 conjugates, res-
pectively, in Ng(C).
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3. Tue FusioN OF INVOLUTIONS

For the rest of this paper G will denote a finite group which satisfies the
hypothesis of the theorem. In addition the notation introduced in Section 2 will
retain its meaning throughout the paper.

By assumption G = H o O(G), whence Glauberman’s theorem {3] yvields the
following result.

(3.1) There exists an involution k€ H — {2) with & ~¢ 2.

Suppose that H is not 2-constrained, i.e., Cgy([J) 5 <{2)>. Then Cy(J) covers
H|J and Cy(J) = H', with H'[{z) =~ o,. Let he H — {2 and h ~; 2. As
ze Cy(hy C H', it follows that 2 is conjugate to one of (the involutions) u, uz,
o, vz by (3.1). Note that 9, vz are involutions only if H' =~ Z, X o4, .If 2 ~s v,
let S, S* be Sylow 2-subgroups of Cy(v), Cs(v), respectively, with | S* : §| = 2.
Choose x € .S* — S and set ¥ = (JS') N (JS')* Since | § : §' | = 21 and
JNn S =<z wehave | Y| > 28 Thus Y is not Abelian and so x normalizes
(2> = Y’, which contradicts & ~;v. The same argument with v replaced by
vz shows 2 ~g vz,

Now let S denote a Syllow 2-subgroup of Cp(w). If H = | X Y, ¥ ~ <, then
Z(S) = <{u, z), [S’, S] = <{u)>. Burnside’s lemma [4, Theorem 7.1.1] yields
2 gu. As| S : S | = 21, the same argument as above shows 2z ~¢ uz either.
Finally, if H ~ ., , the covering group of 2% , then S <] Cy(u), Cy(u) = S o P,
where | P| = 3, and Cg¢(P) = | X {(u). From 2 ~¢ u or  ~¢ uz it follows that
No(Cu, 2))/Crlu) == Z; . However, this forces Cg(P) <1 Ng(<{%, 2)), which is
impossible. We have shown therefore that Cy(J) = {2). Thus if T is a Sylow
2-subgroup of H, Z(T) = {2>. Sylow’s theorem then yields the final part of the

next result.

(3.2) The centralizer H is 2-constrained; namely, Cx([f) = <(z). Also a
Sylow 2-subgroup T of H is a Sylow 2-subgroup of G.

We observe that if x € J — (2> then Cy{(x) does not cover H/J. For if
Cy(x)/C,(x) =2 o, then Cy(x) must act nontrivially on C,(x)/{x, 2 (elementary
of order 64) by (3.2). Thus GL(6, 2) would have to contain subgroups isomorphic
to &%, which is not the case.

Since f;3 = ¢; and ¢, acts fixed-point-free on [cz, J]/<z), it follows from
Proposition 4 and (3.2) that [c;, J] =~ Qs * Qg * Qg and | Cy(c3)] = 8. If [H;,
Cy(c;)] = 1 then for x € C)(¢g) — <{z)> we have Cy(x) C C)(x) o Ny(C) (by the
remark at the end of Section 2). It follows that x has at least 280 conjugates in
H, which is not possible. Thus [H; , Cu(cs)] # 1, whence C)(cs) =2 Qs .

(3.3) We have J o2 Dg * Dy x Dy * Dy (=2 Qg * Qg+ Og * Qg), Cy(e3) = (O,
and C,(H,) == {z).

Note that | — <{z) contains 270 involutions and 240 elements of order 4. It
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follows immediately from (3.3) and Proposition 4 that [a, J] =~ Dy * Dy x Dy
and Cy(a) ~ Dy . Thus as ¢, € Ng({a)), C)(cy) 2 Cy(a), and Cj(c;) N [a, J]1O (=)
[4, Theorem 5.3.14]. Hence | Cy{c,)| = 32. Now ®(H;) = (¢, , ¢3», whence
[es , Co(es)] — L. This implies [c; , Cs(co)] = O and C(es) 22 Oy * Oy 2= [cs , J1.

(3.4) We have Cj(c,) = Qg + Qg and C)(a) = Dj .

Choose u € Ny(H;) so that u?e C,(H;) = {2). Hence Cg(u) = {¢,> and
[#, C] = <c1, €3> s0 that (cues)* = coc3™. Now o5 ~p ¢, and Cye) C C)(c,),
whence C)(cye5) N [¢5, J] == Qs - It follows that u interchanges the two quaternion
groups in [¢,, J]. On the other hand % normalizes C){c,) and [¢;, C,(c,)] so that
¥ must act as an outer automorphism on both quaternion subgroups of Cj{c,)
(recall that [H, , Cy(c)] 5 1).

Let C(c5) = (ry, s, [Cilea), €3] = <3, 550, Coleaes) N [, J] = <13, 537, and
Cilese™YN e, J]1 =<1y, 8, 80that{r;, s> =05, =1,..,4.

(3.5) Choosing the 7, , s; suitably we have

r¥ :71'_1, S =148, i=1,2

and

U — U —
Tyt =Ty, 3" = 5.

In particular, Cy(u) = {ryr, , r5r4, $35, , ), which is elementary Abelian of
order 16. If u is an involution then all (32) involutions in »] are conjugate in
{u, J>, and no element in # | squares to z.

From (3.3) and (3.5) we see that C,(cy), <1, C)(c,)) are Sylow 2-subgroups of
Celey), Colcy), respectively. Thus ¢, g €3 %6 ¢ (recall that 23 | | Cg(e))).
Suppose that ¢, ~¢ ¢, . Then C){(¢,) = (2D, as C)(c;) D () implies | C,(c,)| = 27
Note that all involutions in Cj(c,) — {2) are conjugate in Cy(c,) and if ¢ is such
an involution, | C(t) N Cg{c,)| = 2° - 3. Also if « is an involution then all involu-
volutions in Cy(c;) — Cy{c,) are conjugate to w and | C(u) N Cy(cy)| = 23 - 3. On
the other hand, | C(2) N Cg(ey)| = | Cyuley)| = 2% - 3% - 5. This is incompatible
with the orders of the centralizers listed above. Thus ¢, % ¢, .

(3.6) The elements c, , ¢, , ¢; lie in distinct conjugate classes of G.

We next argue, by way of contradiction, that C,(¢;) = {(2). From Proposition
4, Cgl(c)) == Zy X S, and C)(c;) # <2, it follows that C,(c;) =~ Qg * Qg * Oy,
[e1s J] = Qg . Further, as we may assume [b, ¢;] = 1, C(b) N C)(c,) o~ Dy and
Cy(b) == Dy + Q-

Suppose t € C)(¢;) and t ~¢ 2. Then # ~ t in Cg{c;) by Proposition 5 and
(3.6). However, this is impossible by Proposition 7, as [C/(c;), Cylc;)] # 1 and
Cule,)/Cyley) == Zy X 4. If j is an involution in ] then we claim j is conjugate
to an involution in C,(c,). For if not, as ¢, € {c7yc,, 16630

gl

1
€ €ty ~pn
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61663  ~g ¢p, and | Cy(czcaes) N Chlercaez?)| = 25, we have 3 + | Cy{f)l. Thus
7 has 2 -3% = 162 conjugates in H and | Cgx(f)/C)(7)] = 2% -5 -7, which is
impossible. We conclude that 2 4 jforanyje J — (2.

Suppose next that z ~ %. It follows from Proposition 5 and (3.6) that ¥ ~ z in
Ciles). Now (u, ryry , 2) is a Sylow 2-subgroup of Cy(c,) N C(u) whence there
exists a 2-group ¥ C C(u) N Cglc,) with | Y @ {u, 77, , 2)| = 2. However,
{ryrs , 11752} <1 Y (as these are the only involutions in <{u, 7,7, , 2> not conjugate
to 2 in G) whence (2> <1 Y, a contradiction. This shows z ~ #f for any involu-
tion uj € uJ (see (3.5)).

Finally we suppose 2 ~¢ v. Let T} be a Sylow 2-subgroup of Cy(v), let T, be
a 2-subgroup of Cy(v) with | Ty, : Ty | = 2,and let x € T, — T, . By Proposition 1
we may assume that v inverts 8. Clearly O;(Cg(8))(=¢ &) acts trivially on
[6, J1(=2 Dy x Q) whence O,(Cg(bh)) acts nontrivially on C,(b). This implies
[z, Cy(b)] C<z) and therefore C(v) N Cy(b) D O*, where O* == Q. As x AgjJ
for any je J — (=) it follows that (Q*)* N C,)(v) = 1, which contradicts the
structure of 73/C,(v). This completes the proof that Cy{c;) = (). It follows
immediately (as we may assume [¢, , b] = 1) that C,(b) = (z) also.

(3.7) We have Cy{c;) = Cy(b) = (2.

The above results yield that any involution t € | — () has at least 2 - 335 =
270 conjugates in H. Thus all involutions in | — z are conjugate in H and from
the structure of &% we have Cy(#)/C,(t) o2 (Z, X Z, X Zy) - PSL(2, 7).

(3.8) Allinvolutions in | — {z) are conjugate in H.

For any s € ], s of order four, (3.7) yields that s has 30 - # conjugates (n = 1).
Thus 3 || Cy(s)! and it then follows that we may assume s € C)(c,). Let u, €
Ny({ep) — Crles), 4y ~g u, and i, <> (14)(26)(35)(78). From (3.5) we see that
u, interchanges the two quarternion subgroups in Cj(c,), whence all elements
of order four in C)(c,) are conjugate in Ny({c,>). All elements of order four in
J are therefore conjugate in H and | Cy(s)/C){(s)| = 23 o 3% o 7. The structure of
o, yields that Cy(s)/C,(s) == Aut(PSL(2, 8)).

(3.9) All elements of order four in [ are conjugate in H. If 5 is an element

of order four in J then Cy(s)/C,(s) == Aut(PSL(2, 8)).

If v is an involution then we may assume v € Ny(B) (Proposition 1). If o | does
not contain involutions, choose v € Ny(B), so that ¢ (2} in either case. It
follows that o has 16 fixed points on J/{2>, whence | C)(v)| < 32. For je ],
(vj)? € =) implies [v, j] € {z), whence »] has at most two classes of elements
with square in (z>. Hence we have &', ¢," € Cy(v), b’ ~y b, ¢, ~g ¢; , which
implies (by (3.7)) that C,(v) is elementary of order 32 and v »L vz in (], 2>.

(3.10) By choosing v € Ny(B) we have 2 € (2> and C,(v) is elementary of
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order 32. Further if v is an involution then v ] contains no elements of order four
with square z.

Suppose that 3 ~g ¢ = r;7, . Then 2 ~ t in Cg(c,) by (3.6) and Proposition 5.
Let S = {Cy(cy), >, a Sylow 2-subgroup of C¢lc,). As Cy(t) N J =~ Z, X Dy,
it follows (using (3.8)) that 2 ~ u in Cg(c,) also. Conversely, suppose 2 ~¢ u.
As above 2 ~u in Cg(c,) and as Cg(u) = (u, 2, t) we have z ~t in Cg(c,).
(We use (3.5) and the fact that {#, £z} can not be a characteristic subset of Cg(u).)
In either case our arguments show that Cs(¢,) contains one class of involutions.

Suppose 3 ~gt ~gu and let #; be an involution in Nu({cy)) — Crlc,),
i, <> (14)(26)(35)(78). As above (in the proof of (3.9)) u, interchanges the two
quaternion subgroups <{ry, 5,5, {ry, s> of C,(c;). Without loss, let 7{1 =r,,
whence (ry4,)? = ry7, = t. Hence there exists y e (S, u;) — S with 32 = 2.
It follows from u, ~gzu and (3.5) that yeuu,Cy(c,), uu, <> (23)(56). As
uu, | ~y v] and because of (3.10) we see that v] does not contain involutions.
Thus & ~¢ t ~¢ u implies G contains one class of involutions.

Suppose now that 2 ~¢ v, and take o', ¢;" € Cy(v) as above. Then we must have
Crle)) = (&> x (2> x Y, where Y ~ &7;. Now as before, 2 ~ v in Cs(e;').
Hence, as Ty = C(v) N Cyle,') = Z, X Dy, we have Ty = {(vz) and vz g 2.
Set (z, v, v'> = Oy(Cy(b’)) and note that as v is an involution, {z, v, v') is ele-
mentary (of order 8). Thus C)(v") = Cj(v), whence V' = (v, v', C;(v)) is element-
ary of order 27, As v oty vz, Cy(v) J|] = Cg(?) and | Cy(v): Cy(Ko, v'>)] = 2
with Cy(<{w, vD)V = of,. Further Ny(V) = ] - Cy(v){c}>, where {c;>(z,
2,0 = O;(Cy(b')) == Z, X o, which implies that both v and vz have 48
conjugates in Ny(17). Also all involutions in C,(v) — {2 are conjugate in Ngy(V).
Recall that # ~g 2 #%; # under the assumption 2 ~¢ v. This implies V" contains
precisely 49 involutions conjugate to z in G.

Let Ty, T, be Sylow 2-subgroups of Cy(v), Cu(<v, v")), respectively, with
| Ty : Ty | = 2; let T1* be a 2-subgroup of Cg(v) with | 7y*: T, | = 2; and let
xe Ty¥ —T,.If V* 5= Vthen V* C T, and V* covers T,/C,(v). However, this
implies that ¥® contains 25 involutions conjugate to z in G, a contradiction.
Hence V* = Vand Ng(V) 2 Ng(V). Clearly (Cy(v) — {2>) <0 Ng(V), so vz has
79 conjugates in Ng(¥'), obviously a contradiction. We have shown therefore that
2z ~ v and (as we could replace v by vz above) that 2 is not conjugate to any
involution in v J. By (3.1), (3.5), (3.8) either 2 ~ # or 2 ~ u. We have therefore
completely determined the fusion of involutions in G.

(3.11) The group G contains only one conjugacy class of involutions;
more precisely, 8 ~¢ t ~¢ # and the coset v ] does not contain involutions.

We complete this section with three results which follow from the proof of

(3.11).
(3.12) We have Cg(c,)/{ca> = Gy(3).
Proof. From (3.3), (3.5), (3.7), Culcs)/<cy> is isomorphic to the centralizer of
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an involution in Gy(3). Further, as 2 ~ u in Cg(c,), Cs(c,) contains no subgroup
of index two. The result of Janko [7] yields Cg(e,)/<cy> 22 Gy(3), as required.

(3.13) We have Cg(a) = <a) x L, where L o~ PSL(2, 7).

Proof.  Let {a,) be a Sylow 7-subgroup of Cg(c,). Then Ng(<{¢,) N Co{ay) ==
Z, X 23, which implies a; ~¢ a (by (3.11)), and <c,)> is a Sylow 3-subgroup of
Cg(a). Since Cgyla) = Z; X Dy, (3.11), Proposition 5, and the Gorenstein-
Walter result [5] yield Ci{a) = <{a) x L, where L ~ PSL(2, 7).

(3.14) There is an elementary Abelian subgroup F of order 32, F C J with
NG(F)[F =~ GL(5, 2). In particular, 31 | | G |.

Proof. Let t be an involution in C,(a) and let S be a Sylow 2-subgroup of
Cu(?). Then Z(S) = (t, 2> which implies that Ng(<t, 20)/Cy(t) =2,
(using (3.11)). It follows that Ng(<2, 2>)/Oy(Cr(t)) == Z5 X PSL(2, 7) (see the
proof of (3.8)), where Oy(Cu(t))/C,(t) o2 Z, X Z, X Zy. As{t, 2> C O,(Cylt)y C
C,(2) it follows that F' = O,(Cy(t))’ is elementary Abelian of order 32. Let
¢y, €3 be a Sylow 3-subgroup of N(4) N Ns(<t, 2>) with {¢,y € C4(a). Then
F =<, 2y X Crleg)and if (> = Cy({cy , €5)), 11 has 28 conjugates in N({Z, 2>).
It follows from (3.11) and the structure of H that F C O,(C4(t,)), whence
No(F)D Ng(<t, ). Thus = has 31 conjugates in Ng(F) and | Ng(F)| |
215-32-7-3]. From C4(F) = F and the fact that GL(5, 2) is simple we get
No(F)/F ~ GL(5, 2).

4. THE 3-STRUCTURE OF G

Throughout this section S will denote a Sylow 2-subgroup of Ny(C) with
u € S. From (3.11) it follows that S N Oy 3(Nx(C)) is a quaternion group and so
S o= SDyq (as u is an involution). In particular # ~ uz and Ny(C)/C ~ GL(2, 3).

(4.1) If K = Oy(Cs(C)) then K = C X D, where D = [z, K] is ele-
mentary Abelian of order 9. In addition Ng(C) = K - Nyx(C), Ng(C)/K =~
No(D)/Co(D) = GL(2, 3).

Proof. As C char Hy and 37 || G| (by (3.12)), No(C) L H. Clearly {2> is a
Sylow 2-subgroup of C(C) so H covers Ng(C)/Ce(C) and C5(C) has a normal
2-complement. From the structure of Gy(3) (see [7]), | Co(C) N Calcy)l | 3° - 2.
This forces | C5(C)| = 3% - 2 and C4(C) = K - {2), where K = Oy(C4(C)).
The result follows as K is Abelian (because C is a minimal normal subgroup of
Ne(C)).

(4.2) We have R = O4(C(cy)) is elementary of order 3% and Cg(c,)/R =
SL(2,9).
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Proof. From{3.11) we see that Cy(e,}/<c;> == SL(2,9), so a Sylow 2-subgroup
of Cglc;) is isomorphic to Qs . A result of Brauer and Suzuki [1] yields that
Cs(er) = O(C4l(cy)) - Culey). By (4.1) we have O(Cgley)) D <{ep>. Now S C
Ny(e)) and u ~; uz, so Proposition 2 and the action of Cy{c;) on O(Cg4(cy))
yield O(Cg(c,)) = Oy(Cqs(cy)) = R with | R | = 3% Let C; = R - C, a Sylow
3-subgroup of C4(c,). If R is non-Abelian then {(¢,> = Z(R) = Z(C}), whence C,
is a Sylow 3-subgroup of G. This contradicts (3.12) and (3.6). Thus R is Abelian
and so elementary Abelian (R = {¢;> X [z, R]).

(4.3) Each d € D* is conjugate to ¢; in G. Both O(Ng{{d})) = O4(Ns({d)))
and M = CgD) = OyNg(D)) have order 3% and Ng(<d))/O(Ns({d))) ~
GL(2, 3). Also, a Sylow 3-subgroup G; = M{c,> of Cs(d)is a Sylow 3-subgroup
of G, with Z(G;) = {d) and Ni(G;) = Gyu, 2>.

Proof. Asabove, C; = C - R is not a Sylow 3-subgroup of G. Now N(C;) N
Ngllep) = C, - S, Z(CY) = {¢;p X D, and ¢, d, ¢; d have 2, 8, 16 conjugates
in C,S (where d € D¥). Thus | Ng(C)): C1.S | = 9 and Ng(C}) = Oy(Ng(CY)) - S.
Let M = O4(Ng(Cy)) so that D = Z(M). Also, let D = {d> x {(d;>, where
(&> = Cp(u)and {dyy = Cp(uz). Clearlyd ~¢;,as 2 - 3 | | C(d)| (see (4.2) and
(3.12)).

Since {ry, ;> =~ Oy is a Sylow 2-subgroup of Cg(c;) the Brauer-Suzuki result
[1] yields Coley) — O(Celcs)) - Cales)- Thus No(<ey)/OsNe{<es))) = GL(2, 3).
Proposition 2 applied to <{u, 2> acting on Cg(d) and the structure of H yield
that O(Cg(d)) = O4(Cs(d)) has order 3°. It follows that C's(D) = M. Without
loss choose ¢, € Cg(d) so that G; = M<{¢,> is a Sylow 3-subgroup of Ng(D) N
Ci{d) and {d) = Z(Gy)(see (4.1)). It follows immediately that G, is a Sylow
3-subgroup of G.

In order to determine the conjugacy classes of 3-elements of G, we study
Ng(D) and Ng({d>)in some detail. Note that No(D) = MS{c,), where {(C, ¢,> =
Hyand S5{¢,) = GL(2, 3). Let C; = Cy(c,), 7 = 2,3 and recall C; = C - R(CM)
is a Sylow 3-subgroup of Cs(c;) (so C; = Cyle,) also). We begin by studying
Ng(D) and list some properties of this subgroup:

(i) K <t NgD) and if xe (] — K then ™ e R — K for some me M.
Further, R¥ only contains elements conjugate to ¢, , ¢; in G.

{Note that for c€ C — ¢y, Crlc) = {¢;> X D = Z(C)); this follows from
the action of Cyx{e;) on R. In Ng({epd), ¢, d, ¢; d have 2, 80, 160 conjugates,
respectively, whence NG(R) = Ng({¢;>) by (4.3). As¢; d ~g ¢y ,andd ~g¢y , R
contains 162 conjugates of ¢; and 80 conjugates of ¢, . Obviously R ~¢ K, and
from above, R N R™ = {¢;> X D (for me M — C,) whence C, is the disjoint
union of K and (nine) M-conjugates of R — (K N R). Thus K <j M, whence
K <1 Ng(D) as Ng(C) covers Ng(D)/Co{D); see (4.1).)

(i) M/K is elementary Abelian (of order 81), | C; | == 3%, and Z(C)) =
e, Dy, i =1,2,3.
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(As z acts fixed-point-free on M/K, M/K is Abelian; as M/K = Cy(u) -
K|K x Cyfuz) K|K, M|K is elementary Abelian (note that Cy(u) ~s H; and
Cy(u) = <{cy, d> = Cp(u)'). From (4.3) we have | M: C; | == 9 for each 7. Since
Z(M)Nn K <t Ng(D), KC Z(M), whence | M : C; | = 9 as required. In
particular ¢, , ¢, , ¢; have 54, 108, 72 conjugates (respectively) in Ng(D), and C,
is a Sylow 3-subgroup of Cg(c,). Finally, Z(C,) = {¢, , D) by (4.3), Z(C,) =
ey, D) follows from the structure of G4(3), and Z(C,) = {¢3, D> as ¢, nor-
malizes C N Z(Cy).)

(i) [C3N Cy:K| =3 and Cyuley) = Co/K.

(First note that for m € M, Cy(m) O D.lf me M, [m, ¢,] € K then ¢4 normalizes
C(m) whence ¢; € C(m). Thus Cy3/K = Cyyx(cs) as both have order 9. As we
chose ¢, € Co(d), [Kep>, D] = {d, whence [{¢,>, K] = {d, ¢;, ¢3). By the result
just proved [{cp>, K] <1 C;, so C,; N C; D K. The result follows immediately
from (ii).)

We now introduce some more notation. Let Cy = {5, €5, KD, C) =
ey s €z, KD (recall C3n C; = K) and (as above) [{¢,>, D] = {d) so that
[Keoy, C3] = <d) also. As (u, 2> normalizes each C; choose Cp(u) = {4, ¢;,
€1 €11y, Cy(uz) = {dy, ¢y, €59, €15, and we may suppose u inverts cg,,
¢, and uz inverts ¢y, ¢y . Since [Cy, {exp] = {d) = Cplu), [cg, ) =
[es2 s €]* = [c3m) 2] = [ean, 2] 7%, whence [eg, ¢o] = 15 ie., C3 N C, =
Legy, K. As u ~y(p) uz, we may choose ¢y ~p(p) €11Car- It is now straight-
forward to determine the conjugacy classes of M/K in Ng(D)/K.

(iv) 'The following are representatives for the conjugacy classes of M/K in
N(D)/K: ¢;,K (8 conjugates); ¢ K (8 conjugates); ¢565,K (16 conjugates);
¢1 K (24 conjugates); ¢;;65, K (24 conjugates); K.

We now consider the structure of Ng(<d>) and (unfortunately) introduce still
more notation. Let N = Ng{d>), O = Oy(N), Gy = M<c,) so that Gy is a
Sylow 3-subgroup of N and let U D {u, 2> be a Sylow 2-subgroup of N. Note
that U o~ SD g and Z(U) = {u).

From the structure of Cy{cs) and ¢; ~¢ d it follows that £,(Co(u)) = {cy, d>
and Cy(#) is non-Abelian of order 27. Clearly U normalizes <{c,,d) and as
Culey) covers Gyf0, | Colc)l == 3% Now Cp(uz)C O, whence Co(cy) =
(g0, K> = C3n Cy.

Since {cg, K> <1 G; we have <cyy, K) <t N. It follows that Dy, = {¢,,
¢, D> = Z({ez, K>) <A N, hence {cz, D> <t N as well. Finally, ¢; ~yd,
yields | Cgles)] = 38, Coles) = {Cy, ¢p>, and Cy = Cy({cz, D) <1 N also.

Clearly Ng(K) = Ng(D) so all (8) nontrivial cosets of Dy in (¢, , K) are
conjugate in N i.e., the coset ¢;,K only contains elements of order three con-
jugateto ¢, , ¢, , €3 in G.

It also follows easily that [Cy, O] C Dyg and (OfDyy) = {¢3> Dy; - Hence
Cs1 Doy » €3 Dyy , €416 Doy have 2, 8, 16 conjugates, respectively, in N. (Note that
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€316 Doy ~n €31€35 Doy~ €31€35¢; Dy .) We now show that all elements in
€51 Dy are conjugate in G . From the structure of Cp,(u) = {¢3; , €13, €5, d) We
have [Cp(u), <¢5)] = {c5, d). Further, as [, 6] € D, [c5 , e1]* = [c51, &]*
implies [¢;, , ¢;] = d, say. Finally, as Cy" <{ N, C3’ O D, which implies C;' ==
{¢5, DY or [cq , €39] € (¢35, D) — D. A similar argument shows that all elements
in ¢3¢, Dyy are conjugate in Gy .

From the above remarks it follows that each element in the cosets ¢4 K,
€51630K is conjugate in G either to ¢ or cye,. If we choose f; so that
[fi» Cics)] = 1, then clearly ¢5y ~¢ f; . Further | Cp(cg)] = 3%+ 23, (¢5; ¢1)° =
d#, | Cy(eqey)] = 3% and ¢5) Ag cyey -

By assumption ¢y;¢77 ~pn(p) €32 and {Cg5, €, d> ~¢ C 50 €161 ~c fp (nOte
that ¢5¢5, € G; — O). We show now that [{cy6,;>, M] = K. As above, [Cy,(u),
{exy10] = (€5, d) and [cyye5 , 6] € D — {d). Since R has 9 conjugates in },
¢12 has 81 conjugates in M. Now [{e1o), K] = D, [¢y, ¢1a] = 1, [€15, €32] €
{ey,dyy, and [{ep), M]C Doy . Thus [ca, ¢15] € Doy — {cy, D), whence
[€a1611 » €12] € Doy — (¢, D). Finally [cg6qq » €30] € i1 Dyy  which proves
[Kes€11), M] = K. Thus all elements of ¢5¢,{K are conjugate to cyc;y in M,
and | Cy(ezeqy)| =2 - 3%

From (i) above, ¢;;K only contains elements of order three conjugate to one
of ¢, ¢, ¢; in G. Hence we have determined that if m € M# then m is conjugate
inGtooneof ¢, ¢y, 65,01,/ z) €6y -

It remains to consider Gy — M. In Ng(G;) = G(u, 2>, (M N O),
(M 0 O), e3364(M N O) have 2, 2, 4 conjugates, respectively. As all nontriviat
cosets of C; in M are conjugate to ¢;,C; it is only necessary to consider
ennc{ M N O). From the structure of Gy{u, 2] Dyg it follows that ¢,c,,(M N O)
consists of three conjugacy classes of cosets modulo Dy, with representatives
¢4e1 Dag s €atuCsn Dog ,  €4tniCas Doy ~n  (CgeuCs)™ Dpy.  Further, as
Kew s MIL Crylcs), (€4€11652) Doy has order 9, € = 0, 1, —1. It is easily seen
that Cy(esencsp) € e , K> and that Cylcyeyy65) = {d). An easy computation
yields that for each e € {0, 41}, [€4¢41€55 5 €31] € {€a1, D) — D whence (c,eq5¢5, )% €
56 Doy, o, Be {1} ie, (cench)® ~oc €36 - Thus Cgleyecss) =
{e4epi59) Of order 27, e € {0, £1}.

(4.4) Let fie Coley), =3, 4, 5 with fy ~g eaey, fa ~¢ iy, f5 ~c
€ncs > and fi? = ¢35, f® = fi = f;. Then the group G contains precisely
three classes of elements of order 3 with representatives ¢, , ¢, , ¢; ; three classes
of elements of order 9 with representatives f; , f, , f5 ; and three classes of ele-
ments of order 27 with representatives f, , f; , f5*. Further, | Co(f,)| = 23 - 38,
2-3436, 3% 33fori =1, 2, 3, 4, 5, respectively.

Remark. Recall that C, = {¢y,, c5c77, K) is a Sylow 3-subgroup of Cg(c,)
and [C,,K]CD. A simple computation yields [csy, cyet] €4ey, 65, D)
ie., ¢, ¢ Cy'. Hence Gaschutz’ theorem [6, S.1.17.4] yields Cy(c,) =~ Z, x G,(3),

a result not needed in this paper.

481/46/2-7
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5. THE CoNjucacYy CLAsSES OF w-ELEMENTS OF G

Letw = {2, 3, 5, 7, 13} and let =" denote the complementary set of primes.

Set Cp(b) = B X {0y, v5){¢1), Ny(B) = {w)> Cy(b) with (v, , v,> =~ Oy and
w? € C(c;) N Ny(B). Thus w? is of order four and without ioss we choose #? = o
and v,” = o7, v, = v,v, (note that Ny(B)/{B, v) =~ X,). Hence as v; ~y v71
and 9, ] ~g v] we see that v ] contains precisely one class of elements of order
four with square 2(in H).

(5.1) 'The group G contains two classes of elements of order four with
representatives r, , 2(] Cg(v)] = 2° - 3 - 5) and two classes of elements of order
eight with representatives us, , w where (us;)? = r,, w? = v, and | Cg(ury)| =
27 -3, | Cy(w)} = 25- 3.

Proof. 'The statement about the elements of order four follows from Section 3
and the remarks above. As Cy(r,)/Cy(r;) =~ Aut(PSL(2, 8)),if #* = r,and he H
then % is conjugate to an element in us,C,(r;). It is straightforward to verify
(see (3.5)) that us,C,(r;) contains only one class of elements of order 8 with
square r, in {us; , C;{r;)> and that | Cy(us,)| = 27 - 3.

It remains to consider wC,(v) (using the notation above). As we Ngy(B) —
Cu(B), C)(w) is elementary of order 8 and wC,(z) contains two classes of elements
with square v in (w, C(v)>. These classes have representatives w, wz. However,
as w” = w2 and v, € Cy(v) (v, € Cy(b)) we have that there is one class of
elements of order 8 with square v and also | Cy{w)] = 25 - 3(} Cg(@)| = 23 - 3).

(5.2) We have Ng(B) = O4(Cq(b)) - Ny(B) and O4(Cg(d)) is either non-
Abelian of order 5° and of exponent 5 or equal to B. In any case Oi(C4(h)) is 2
Sylow S5-subgroup of G and G contains one class of elements of order 5.

Proof. 1f Cg(b) C H there is nothing to prove, so suppose Cs(b) € H. The
Brauer—Suzuki theorem [1] yields Cg(b) = O(Cg4(b)) - Cy(b) and as Cg(b) N
Csley) C H, O(Cy(d)) is a {2, 3}'-group. Hence Proposition 2 applied to the
4-group <z, , 2) acting on O(Cg(d)) yields that O(Cs(b)) is of order 5 (note
that 2o, ~y(g) v942).

Set C(vyy) N O(Cy(h)) = {by)(~eib)). If O(Cs(b)) is non-Abelian then by
has 120 conjugates in Ng(B) and we are done. It remains to show O(Cg(d)) is not
Abelian. If O(C (b)) is Abelian, b, b, , bb;, have 4, 24, 96 conjugates, respectively,
in Ng(B). It follows that Ng(B) = N(O(Cs(b))), which implies O(C4(b)) is a
Sylow 5-subgroup of G. This contradicts Burnside’s lemma [4, Theorem 7.1.1],
however, as & ~ b, . Thus O(C(b)) is non-Abelian as required.

(5.3) A Sylow 7-subgroup of G has order 72 and G has either one class of
elements of order 7 with representative @ or two classes of elements of order 7
with representatives a, a, , where | Cg(a,)] = 72

Proof. Recall from (3.13) that Cg{a) = {a) X L, where L ~ PSL(2, 7). Let
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<a,> be a Sylow 7-subgroup of L with u € N(<a,>) N Ni(A). Then 3 | | Cg{a,)| so
a ~ga, and u inverts 4, . Let 4, = {a, a,), a Sylow 7-subgroup of Ng(A4).
We see that N(4,) N Ng(A)| A, = Z, X Zy X Zy and a, a;, aa,, aa;* have
6, 6, 18, 18 conjugates, respectively, in Ng(A) N Ng(4,). As a ~gay, 7+
| No(4,): 4, |, whence A, is a Sylow 7-subgroup of G. By Burnside’s lemma
[4, Theorem 7.1.1] @ ~ a, in N(A4,), which leads to two cases:

(x) a~gaa; and all elements of A4,# are conjugate in Ng(4,); ie.,
| No(A;): A; | = 2% - 32 and G has one class of elements of order 7.

(B) a +#¢aa,,so a, aa, have 12, 36 conjugates, respectively, in Ng(4,);
ie., | No(4;y)] = 22 - 32 - 72 and G has two classes of elements of order 7 with
representatives a, a, — aa, .

It remains to show that in case (8), Cs(a;) = 4, . By Burnside’s transfer
theorem [4, Theorem 7.4.3] Cg(a,)/<a,> has a normal 7-complement X/{a,).
However, {u, a>(e< Dy,) acts on X/<a,> and both u, a must act fixed-point-free.
Thus X = <4, as required.

(5.4) If <I> is a Sylow 13-subgroup of Cg(c,) then (I} is a Sylow 13-sub-
group of G. Further, Ng(<{>) C Ng({eyp) so that Ng(<I)>)[{c,> is a Frobenius
group of order 13 - 12 (and clearly N{<I>) covers Ng{(es0)/Co(cs))-

Proof. 1t follows from the structure of Gy(3) and the Frattini argument that
N> N Ng({eyp)[{eg) is a Frobenius group of order 13 - 12. The structure of H
now yields that a Sylow 3-subgroup Y of N({I>) N Ns({¢,))) is elementary (of
order 9). Burnside’s transfer theorem [4, Theorem 7.4.3] yields that Cs(!) has a
normal 3-complement X. As X is Y-invariant, X is a #-group and so X is a
13-group, by our previous results.

Let No({I>) = X - Y - V, where Y - V'is a Hall {2, 3}-subgroup of N{<{1>)
(of order 22 - 3%). Without loss we may assume Y - ¥V C Cylc,) and further,
YCC Then V =), Y =<, ¢, where [v/, '] = 1, v ~4 v, and
¢~y ¢, . Hence (cye,')” = c3'¢;’ and so0 cyey’ ~p ¢y . It follows immediately
from (4.2) and (4.3) that X = (/. This completes the proof of (5.4).

We conclude this section by listing the classes of m-elements of G. First, set
|G| = g and let g, denote the o-part of g for any set of primes ¢. We have
showed that there are two possibilities for g, :

Casel. g, = 210310058072, 13.
Casell. g, =21¥03%05072013.

6. Tue ORDER AND 7'-CLASSES OF G

From the class equation for G and the table of classes of w-elements of G we
obtain a congruence for g,’ in each of the four cases of Section 5:
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g =589 = 1931 (g,)
& = 6, 288, 482, 304, 589 (g,)

&'
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= 1, 232, 542, 546, 309 (g,)

g = 4, 376, 783, 698, 309 (g,)

in Case I(«),
in Case I(B),
in Case I1(«)
in Case 11(B)

»

Let
o = {pex’ | G contains a strongly real element of order p}.
TABLE I
Conjugacy Classes of m-Elements of G
x || [ Cglx)l x [a| [ Ce(x)!
z 2 215.34.5. zb 10 22-3-5
71 4 21 .38 -7 vh 20 22-.5
v 4 2%-3:-5 2bey 30 2:3-5
us, 8 27 -3 (2be)) ! 30 2-3-5
w 8 253 za 14 23 -7
26, 6 2¢-3 -5 ra 28 28 -7
20y 6 26 . 38 a 3 2t-37-5
23 6 23 - 34 Cy 3 26.37-7-13
o 12 25 . 32 Cy 3 23 - 310
(rie2)7t 12 25 - 32 f 9 2% . 38
71C5 12 2% - 32 s 9 2. 34
6, 12 2% -3 fs 9 3¢
21 18 23 . 32 A 27 32
o, 18 2.3 fs 27 38
usyCy 24 2% -3 it 27 3®
(usyc)™t 24 2% -3 b 15 2-3-5
wey 24 2% -3 (c0)? 15 2-3-5
(wep) 24 223 estty 21 3.7
rfi 36 22 . 32 ool 39 3-13
sih 36 22 - 32 (ch)? 39 3-13
(s f)t 36 223 1 13 313
a 7 2%-3-7°
b 5 2%-3-5% (Case I)
28.3-5 (Case II)

ay 7 72 Case (8) only
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(6.1) There exist disjoint subsets oy, 05,..., 0, of o and subgroups P,
of G such that

(1)) o =0UogU Ug,.
(if) P;is an Abelian Hall o;-subgroup of G'and a T'I. set.
(i) P; = Cg4(x) for all x e P*.

(iv) Ng(P;)is a Frobenius group with complement of even order.

Proof. See Lyons [8].

It follows from (6.1) that G contains precisely A, = | P; | — 1/] No(P,): P; |
classes of g;-elements. By a result of Brauer and Fowler [2, (29.7)] g/| H |2 <
30 -+ 37, A, as G has at most 30 classes of real #-elements (see Section 5). Thus
g < (L H 1?/g.)(30 + Y0y ), from which it follows that

g < 87 (30 -+ Z /\i) in Casel,

i=1

g < 1401 (30 -+ Z /\i) in  Case I1.

i=1

Now A, < { P {2, (| P;|, | Py |) = 1 for i 4k, | Py| | P,||g,, and each
| P; | is a w'~-number. These facts and Eq. (*) yieldz < 2in Caseland 7 << 4in
Case II.

Suppose g,- > g, , so that by (*) o is nonempty. Clearly we may assume A,
is the largest of the A; . Then our assumption and (*) yield A; > | H| = | C4()]
for any nonidentity w-element x (in both cases).

From (6.1) it follows that there exists a set of A, exceptional characters y;
which coincide on conjugacy classes not meeting P,* (see [2]). In particular the
x: are rational valued on m-element of G. Hence the orthogonality relations and
the fact that A, > | C4(w)| for any nontrivial w-element x of G yield y,(x) = 0.
Thus g, [ x(I) and so g > g,2 - A, , or A; g, < g,-. Combining this with (*)
yields A(g, — 2.57) < 57.30 in Case I, and A (g, — 4.1401) << 1401.30 in Case
II. Both inequalities are clearly impossible, so we conclude g,- < g, , whence
Case I(«) holds (for example by (3.14)).

(6.2) Theorder of Gis 2150 300 530720 13 0 19 0 31.
Finally the n'~classes of G are determined immediately by Sylow’s theorem.

(6.3) The Sylow 19-normalizer is a Frobenius group of order 18.19 and the
Sylow 31-normalizer is a Frobenius group of order 15.31. The group G contains
one class of elements of order 19 and two (nonreal) classes of elements
of order 31.
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