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Recently, Thompson [9] constructed a new simple group E of order 215 0 
3105372 0 13 o 19 0 31 = 90, 745, 943, 887, 872, 000. In particular, E contains 
only one conjugacy class of involutions, and if e is an involution in E then C,(e) is 
a (nonsplit) extension of an extra-special 2-group of order 29 by .&a, the altern- 
ating group of degree 9. 

The aim of this paper is to prove the following result. 

THEOREM. Let G be a finite group which contains an involution z. Let 
H = C,(z) and suppose that G # H * O(G) and H satisfies: 

(i) J = O,(H) is extra-special of order 29; 

(ii) H/J s SZA~, the alternating group of degree 9. Then G is a simple group 
with the same order and the same conjugacy classes as Thompson’s simple group E. 

COROLLARY (Thompson). If G is a jinite group satisfying the assumptions of 
the theorem then G G E. 

(This follows immediately from Thompson’s paper [9].) 
The notation in this paper will follow Gorenstein [4]. In addition we 

will use: 

X * Y : a central product of the groups X and Y; 

x -r y : x is conjugate to y in X; 

2, : the cyclic group of order n; 

D, : the dihedral group of order n; 

QF : the (generalized) quaternion group of order 2”; 

SD,, : the semidihedral group of order 2”; 

S& , & : the alternating, symmetric groups of degree n. 
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1. PRELIMINARY RESULTS 

PROPOSITION 1 [4, pp. 105, 3281. If x is an involution in the $nite group X and 
x # O,(X), then x inverts an elements of odd order in X#. 

PROPOSITION 2 [IO]. Let Y = (1, y1 , yz , ys} be a 4-group of automorphisms 
of the finite group X of odd order. Then 

I x I . I Cx(Y)12 = I C,r(Yl)l . I C*(Y,)l * I Cx(YJI. 

Recall that a p-group P is extra-special if P’ = Z(P) = Q(P), and / P’ ; = p. 

PROPOSITION 3 [4, Theorem 5.521. An extra-special 2-group J is the central 
product of n > 1 non-Abe&an groups of order 8. (Thus J has order 22n+1.) 

Further, 

or 
JgD,*D,c...*D, (J of type $1 

J=G * ... *Ds *Qs (J of type ->. 

In the rest of this section we prove some simple but useful results under the 
following assumption: 

HYPOTHESIS 1. Let G be a finite group, let x be an involution in G, let 
H = Co(s) and let J = O,(H) be extra-special of order 22n+1, n 3 1. 

Let P # 1 be a p-subgroup of H( p an odd prime), and let t be an involution 
in H - (2) with t ho z. 

PROPOSITION 4. Under Hypothesis 1, each of C,(P), [P, J] is extraspecial or 
equal to (x) = Z(J). 

Proof. This follows immediately from C,(P) . [P, J] = J [4, Theorem 53.51 
and the three subgroups lemma [4, Theorem 2.2.31. 

PROPOSITION 5. Suppose that Hypothesis 1 holds, that t E C,(P), and that P 
satisfies: 

(*) If y-lPy _C H with y E G, then there exists h E H such that y-‘Py = 
h-lPh. 

Then t -N(P) x, andfurther if No(P) = N,(P) 0 Co(P) then t -c(p) z. 

Proof Obvious. (Note that if P is a Sylow p-subgroup of H then P 
satisfies (*).) 
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LEMMA 6. Let H satisfy Hypothesis 1 with C,(J) = (x). If x E H - J and 
1 J : C,(x)\ = 2 then x2 $ (z). 

Proof. Suppose x2 E (z). By Proposition 1 (applied to H/(z)) x inverts an 
element r of odd order in H. Hence Y has order 3, [Y, fl e Qs , and (x, [Y, A) G 
Qla or SD,, . In any case C(x) n [r, fl = (z>, which contradicts 1 J : C,(x)/ = 2. 

PROPOSITION 7 (Janko). Suppose Hypothesis 1 holds and in addition C,(J) = 
(z) and t E J - (z}. Then O,(C,(t))/C,(t) contains a normal elementary Abelian 
subgroup of order > 2n-1 if J is of type +, and of order 3 2” if J is of type -. 

Proof. From Lemma 6 we have &(2(T)) = (t, z), where T is a Sylow 2-sub- 
group of CH(t). It follows that No((t, z))/CH(t) z Z; . Let T* be a Sylow 2-sub- 
group of N,((t, z)) which contains T, but T* $ H. If x E T* - T then x nor- 
malizes C’,(t)” n CJ(t). Hence CJ(t)” A CJ(t) is elementary Abelian, and so of 
order <2n+r (J of type +), < 2” (J of type -). Thus CJ(t)/CJ(t)” n CJ(t) g 
CJ(t>” CJ(t)/CJ(t) is elementary of order 3 2”-’ (type +) or > 2” (type -). The 
proposition follows as CJ(t) (1 O,(C,(t)) 4 N,((t, z)). 

2. SOME PROPERTIES OF H/J= SI$, 

In this section we use the bar convention for H/J = Ii and use t+ to denote 
the correspondence of elements in the isomorphism H z 5;9,(H, J, z as in the 
statement of the theorem.) 

Let u, n be elements of minimal order in H with E f-t (14)(25)(36)(78) and 
v t) (15)(24). (Recall that &s has precisely two classes of involutions.) Thus 
C,(n) zz (Q, * Ds) 0 4 and C&U) s (2, x 2, x &s) 0 2,. 

Let B = (b) be a Sylow 5-subgroup of H with bt, (12345). Thus C,(b) E 
2, x &a and NR(B)/C& s 2,. 

Let H3 = (cr / i = 1, 2, 3, 4) be a Sylow 3-subgroup of H where or f-) (789), 
E, t) (123)(456), us tt (123)(465)(789), and ?* ++ (147)(268)(359). Therefore we 
have C&E,) g 2s x de, Cg(~s) = Ra and C’&Z~) = C(U), where C = (cr , 
ca , .cs) is the only elementary Abelian subgroup of order 27 in H3 . Further, 
N&lf,) = gs(a) and @(f73) = (c2, ~a>. Let & , i = 1, 2 represent the two 
conjugacy classes of elements of order 9 in R, with fi3 = c3 , i = 1, 2. Note that 
Cd.Lfi) = <.A> and fi is conjugate to each element in ( fi) - (c3) in NH(H3) 
i= 1,2. 

Finally A = (a) will denote a Sylow 7-subgroup of H, %ct (1263549). Hence 
CR(~) = 2 and N&i) = a(~~, G), a Frobenius group of order 42. 

Remark. There is precisely one (proper) maximal subgroup of f7 which 
contains R3 , namely, N&C). (This property of&s will be needed in Section 3.). 
Note that N,(C)/C g &, and that c r , c s , c3 have 6, 12, 8 conjugates, res- 
pectively, in N,(C). 
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3. THE FUSION OF INVOLUTIONS 

For the rest of this paper G will denote a finite group which satisfies the 
hypothesis of the theorem. In addition the notation introduced in Section 2 will 
retain its meaning throughout the paper. 

By assumption G f H 0 O(G), whence Glauberman’s theorem [3] yields the 
following result. 

(3.1) There exists an involution h E H - (z) with h wG z. 

Suppose that H is not 2-constrained, i.e., C,(j) # (z). Then C,(j) covers 
HI J and C,(J) = H’, with H’/(z) z &s. Let h E H - (a) and h mG x. As 
z E CH(h)’ _C H’, it follows that z is conjugate to one of (the involutions) u, uz, 
V, ZIZ by (3.1). Note that 21, z1z are involutions only if H’ z Z, x d9. If a wG v, 
let S, S* be Sylow 2-subgroups of CH(v), C,(V), respectively, with 1 S* : S j = 2. 
Choose x E S* - S and set Y = (Js’) n (JLY)=. Since j S : S’ / = 211 and 
J n S’ = (z) we have / Y j 3 2s. Thus Y is not Abelian and so x normalizes 
(a) = Y’, which contradicts z wC v. The same argument with v replaced by 
vz shows z +o VX. 

Now let S denote a Syllow 2-subgroup of C,(u). If H = J x Y, Y z &a, then 
Z(S) = (u, z), [S’, S] = (u). Burnside’s lemma [4, Theorem 7.1.11 yields 
z +o u. As 1 S : S’ 1 = 211, the same argument as above shows z +o uz either. 
Finally, if H g &i, the covering group of &a, then S 4 CH(u), C&U) = S 0 P, 
where 1 P / = 3, and C,(P) = J x (u). From x wG u or z wG ux it follows that 
No((u, x))/C,(u) z za . However, this forces C,(P) 4 No((u, z)), which is 
impossible. We have shown therefore that C,(J) = (z). Thus if T is a Sylow 
2-subgroup of H, Z(T) = (x). Syl ow’s theorem then yields the final part of the 
next result. 

(3.2) The centralizer H is 2-constrained; namely, CH(J) = (z). Also a 
Sylow 2-subgroup T of H is a Sylow 2-subgroup of G. 

We observe that if x E J - (z) then C,(x) does not cover H/J. For if 
C&)/C,(x) E &s then C,(x) must act nontrivially on CJ(x)/(x, z) (elementary 
of order 64) by (3.2). Thus GL(6, 2) would have to contain subgroups isomorphic 
to &s, which is not the case. 

Since fi3 = ca and cg acts fixed-point-free on [cs , /l/(z), it follows from 
Proposition 4 and (3.2) that [ca , J] g Qs * Qs * Qs and 1 C,(c,)i = 8. If [Ha, 
C,(c,)] = 1 then for x E C,(c,) - ( z we have C,(x) c C,(x) 0 NH(C) (by the ) 
remark at the end of Section 2). It follows that x has at least 280 conjugates in 
H, which is not possible. Thus [H3 , C,(c,)] f 1, whence CJ(c,) z Q8 . 

(3.3) We have Jr D, * D, *~,*~,(~QS~*Q~*QS*QS>,CJ(~,)~QS, 
and C,(H,) = (2). 

Note that J - (zj contains 270 involutions and 240 elements of order 4. It 
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follows immediately from (3.3) and Proposition 4 that [a, J] s D, * D, c D8 
and C,(a) g D, . Thus as cs E N&(a)), C,(c,) I C.,(a), and C&J n [a, J] 1 (2) 
[4, Theorem 53.141. Hence 1 C,(c,)I = 32. Now @(Ha) = (cs , ca), whence 
[ca , C,(c,)] = 1. This implies [c, , C.&J] = Q3 and C&> z Q3 * Q3 s h , 11. 

(3.4) We have C,(c,) E Qs ;I: Qs and C,(a) g D, . 

Choose u cNH(H3) so that u2 E C,(H,) = (z). Hence Cc(u) = (cz) and 
[u, C] = (cr , cs) so that (cec# = c&l. Now cats -H cs and C,(c,) C C,(c,), 
whence C,(c,& n [cZ , J] E Qs . It follows that u interchanges the two quaternion 
groups in [ca , J]. On the other hand u normalizes C,(c,) and [ca , C,(c,)] so that 
u must act as an outer automorphism on both quaternion subgroups of C,(c,) 
(recall that [ZYa , CJ(c3)] # 1). 

Let C,(c,) = (yl , sd, [C&J, ~1 = <rz y GA CJW n k2 j Jl = (y3 , d, and 
C,(c,c-l) n [cz , I] = (r4 , s&, so that (yi , si) s Qs , i = I,..., 4. 

(3.5) Choosing the yi, si suitably we have 

r.” = y,l, t siu = yisi 7 z-=1,2 

and 

Y3U = Y, ) s3u = s, . 

In particular, C,(u) = (r1r2 , r,r, , s3s4 , z), which is elementary Abelian of 
order 16. If u is an involution then all (32) involutions in uJ are conjugate in 
(u, J), and no element in u J squares to z. 

From (3.3) and (3.5) we see that C,(cs), (u, C,(c,)) are Sylow 2-subgroups of 
Co(cs), Co(cJ, respectively. Thus ce +o cs +o cr (recall that 23 1 j CR(~&). 
Suppose that c2 wG c, . Then C,(c,) = (z), as C,(c,) 3 (z) implies 1 C,(cr)l = 2’. 
Note that all involutions in CJ(cz) - (z) are conjugate in C,(c,) and if t is such 
an involution, I C(t) n C,(c,)I = 25 . 3. Also if u is an involution then all involu- 
volutions in C,(c.J - C,(c,) are conjugate to u and / C(U) n C,(cJ = 23 . 3. On 
the other hand, / C(z) n Co(cJJ = I C,(cJ = 24 . 33 . 5. This is incompatible 
with the orders of the centralizers listed above. Thus ca +o cr . 

(3.6) The elements c r , ca , c, lie in distinct conjugate classes of G. 

We next argue, by way of contradiction, that C,(cr) = (z). From Proposition 
4, C~(E;) g Z, x &s, and C,(cJ # (z), it follows that C,(cr) g Qs * Qs jr Qs , 
[cr , J] g Qs . Further, as we may assume [6, ci] = 1, C(b) n C,(c,) E D, and 

C.,(b) FZ Q, * Qs . 
Suppose t E C,(c,) and t -G z. Then z - t in CG(cl) by Proposition 5 and 

(3.6). However, this is impossible by Proposition 7, as [C,(c,), CH(c,)] # 1 and 
C,(cJ/C,(c,) g Z, x &, . If j is an involution in J then we claimj is conjugate 
to an involution in C,(c,). For if not, as c2 E (c;lczc3, c~c~c;~), c;lczc3 NH 
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-1 
w!2c3 wH cr , and 1 CJ(c;‘c.& n CJ(cl~Z~;l)I = 25, we have 3 { 1 C,(j)i. Thus 
j has 2 . 34 = 162 conjugates in H and 1 C,(j)/C,(j)] = 26 . 5 . 7, which is 
impossible. We conclude that z +o j for any j E J - (z). 

Suppose next that z ho u. It follows from Proposition 5 and (3.6) that u - z in 
C&J. Now (u, ~lrz , z) is a Sylow 2-subgroup of CH(ca) n C(U) whence there 
exists a 2-group Y C C(U) n Co(c,) with / Y : (u, rira , .z)l = 2. However, 

{ ~rra , riraz} 4 Y (as these are the only involutions in (u, r1r2 , z) not conjugate 
to z in G) whence (z) 4 Y, a contradiction. This shows z + uj for any involu- 
tion uj E u J (see (3.5)). 

Finally we suppose z ho ~1. Let Tl be a Sylow 2-subgroup of CH(u), let Ta be 
a 2-subgroup of Co(v) with I T, : Tl 1 = 2, and let x E T2 - Tl . By Proposition 1 
we may assume that cu inverts b. Clearly O,(C&))(r z@~) acts trivially on 
[b, J](z D, * Q8) whence @(CR(~)) ac s t nontrivially on C,(b). This implies 
[z), C,(b)] C (z) and therefore C(w) n C,(b) 3 Q*, where Q* g Qs . As z +o j 
for any j E J - (z) it follows that (Q*)5 n C,(v) = I, which contradicts the 
structure of T,/C,(o). Th is completes the proof that C,(c,) = (z>. It follows 
immediately (as we may assume [ci , b] = 1) that C,(b) = (z) also. 

(3.7) We have C,(c,) = C,(b) = (x). 

The above results yield that any involution t E J - (z) has at least 2 335 = 
270 conjugates in H. Thus all involutions in J - z are conjugate in Hand from 
the structure of &a we have CH(t)/CJ(t) E (2, x 2, x 2,) * PSL(2,7). 

(3.8) All involutions in J - (x) are conjugate in H. 

For any s E J, s of order four, (3.7) yields that s has 30 . 12 conjugates (n > 1). 
Thus 3 1 I CH(S)/ and it then follows that we may assume s E C,(c,). Let u1 E 
N&(ca)) - CH(ca), ui wH u, and tii t) (14)(26)(35)(78). From (3.5) we see that 
ui interchanges the two quarternion subgroups in C,,(cJ, whence all elements 
of order four in C,(c,) are conjugate in NH((ca)). All elements of order four in 
J are therefore conjugate in Hand I C,(s)/C,(s)\ = 23 0 33 0 7. The structure of 
dsyields that CH(s)/CJ(s) g Aut(PSL(2, 8)). 

(3.9) All elements of order four in J are conjugate in H. If s is an element 
of order four in J then C&s)/C,(s) s Aut(PSL(2, 8)). 

If v is an involution then we may assume v E N,(B) (Proposition 1). If ZI J does 
not contain involutions, choose w E N,(B), so that w2 E (z) in either case. It 
follows that w has 16 fixed points on J/(z), whence 1 C,(w)] < 32. For j E J, 
(wj)s E (z> implies [v, j] E (z), w h ence v J has at most two classes of elements 
with square in (z). Hence we have b’, cr’ E C,(a), b’ mH b, cl’ mH c1 , which 
implies (by (3.7)) that C,(o) is elementary of order 32 and ZI + wx in (J, z’). 

(3.10) By choosing v E N,(B) we have v2 t (z) and C,(U) is elementary of 
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order 32. Further if ZJ is an involution then VJ contains no elements of order four 
with square a. 

Suppose that x wG t = rrrs . Then z N t in CG(cZ) by (3.6) and Proposition 5. 
Let S = (CJ(ca), u), a Sylow 2-subgroup of CG(cJ. As C,(t) r\ J g 2, x D8, 
it follows (using (3.8)) that .a N u in CG(cZ) also. Conversely, suppose x wG u. 
As above x N u in Co(ca) and as C,(U) = (u, a, t) we have z - t in Co(cJ. 
(We use (3.5) and the fact that {t, tz} can not be a characteristic subset of C,(u).) 
In either case our arguments show that Cc(cz) contains one class of involutions. 

suppose x NG t NG u and let ur be an involution in NH((cz)) - CH(ca), 
c1 f-f (14)(26)(35)(78). As above (in the proof of (3.9)) ui interchanges the two 
quaternion subgroups (rr , 1 , s ) (r2, sg) of CJ(cz). Without loss, let rp = r2 , 
whence (rizQ = r1r2 = t. Hence there exists y E (S, UJ - S with y2 = a. 
It follows from u1 mH u and (3.5) that y E uu1CJ(c2), zr t+ (23)(56). As 
uu,J -H VJ and because of (3.10) we see that v J does not contain involutions. 
Thus 2 NC t WC u implies G contains one class of involutions. 

Suppose now that z wG v, and take b’, ci’ E C,(V) as above. Then we must have 
CH(cl’) = (c,‘) x (a) x Y, where Y z dG. Now as before, z -v in CG(c1’). 
Hence, as T, = C(V) n CH(cl’) g Z, x D, , we have Z’,,’ = (vz) and v,z +G a. 
Set (z, v, v’> = O,(C,(b’)) and note that as v is an involution, (x, v, v’) is ele- 
mentary (of order 8). Thus C,(v)) = CJ(v), whence V = (v, v’, C,(v)) is element- 
ary of order 2’. As v +H vz, C,(v) J/J = CR(V) and j C’,(V): CH((~, v’))] = 2 
with C,((v, v’))/U z ds. Further NH(V) = J . C,(v)(cl), where (c;)(z, 
o, v’) = O,(C,(b’)) s 2, x d4, which implies that both v and vz have 48 
conjugates in NH( I’). Also all involutions in C,(v) - (z) are conjugate in NH(V). 
Recall that t 7LG z +c u under the assumption .a NC v. This implies I/’ contains 
precisely 49 involutions conjugate to z in G. 

Let Ti , T, be Sylow 2-subgroups of CH(v), CH((v, v’)), respectively, with 
1 T1 : T, / = 2; let T,* be a 2-subgroup of CC(V) with ( T,*: Tl / = 2; and let 
XE T,* -T, . If V” # V then V% C T, and I’% covers T,/C,(v). However, this 
implies that Vz contains 25 involutions conjugate to z in G, a contradiction. 
Hence b’X = I/’ and NG( v) 3 NH( I’). Clearly (C,(V) - <a)) 4 No(v), so vz has 
79 conjugates in No(v), b o viously a contradiction. We have shown therefore that 
z + v and (as we could replace v by DZ above) that z is not conjugate to any 
involution in v J. By (3.1), (3.5), (3.8) either z -G t or a NC u. We have therefore 
completely determined the fusion of involutions in G. 

(3.11) The group G contains only one conjugacy class of involutions; 
more precisely, x wc t No u and the coset v J does not contain involutions. 

We complete this section with three results which follow from the proof of 
(3.11). 

(3.12) We have CG(CJ/(C& s G,(3). 

Proof. From (3.3), (3.5), (3.7), C,(C,)/(C~) is isomorphic to the centralizer of 
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an involution in G,(3). Further, as x w u in Co(cs), Co(cs) contains no subgroup 
of index two. The result of Janko [7] yields Co(cs)/(ca) s G,(3), as required. 

(3.13) We have C,(a) = (a) x L, where L s PSL(2, 7). 

Proof. Let (ai) be a Sylow ‘I-subgroup of C,(c,). Then N,((c,>) n CG(al) g 
2, x Es, which implies a, wG a (by (3.11)), and (ca) is a Sylow 3-subgroup of 
Co(u). Since C,(u) g 2, x D, , (3.1 l), Proposition 5, and the Gorenstein- 
Walter result [5] yield Co(a) = (a> x L, where L s PSL(2, 7). 

(3.14) There is an elementary Abelian subgroup F of order 32, F _C J with 
lVG(F)/F s GL(5, 2). In particular, 31 1 / G 1. 

Proof. Let t be an involution in C,(u) and let S be a Sylow 2-subgroup of 
C&t). Then Z(S) = (t, z) which implies that No((t, z))/CB(t) z Zs 
(using (3.11)). It follows that NG((t, x))/O,(C,(t)) s Z, x PSL(2, 7) (see the 
proof of (3.8)), w h ere O,(C,(t))/C,(t) r 2, x 2, x 2, . As (t, z) C O,(C,(t))’ C 
CJ(t) it follows that F = O,(C,(t))’ is elementary Abelian of order 32. Let 
(ca , ca) be a Sylow 3-subgroup of N(A) n N,((t, z)) with (c,,) _C CG(u). Then 
F = (t, z) x C,(c,) and if (tl> = C,((c a , c,)), t, has 28 conjugates in N,((t, 2)). 
It follows from (3.11) and the structure of H that F C O,(C,(t,)), whence 
N,(F)3 N,((t, z}). Thus z has 31 conjugates in N,(F) and ’ No( 1 
2l5 . 32 . 7 . 31. From C,(F) = F and the fact that GL(5, 2) is simple we get 
N,(F)/F gg GL(5, 2). 

4. THE ~-STRUCTURE OF G 

Throughout this section S will denote a Sylow 2-subgroup of NH(C) with 
u E S. From (3.11) it follows that S n O,,,(N,(C)) is a quaternion group and so 
S G SD,, (as u is an involution). In particular u ms uz and NH(C)/C s GL(2,3). 

(4.1) If K = O&C,(C)) then K = C x D, where D = [z, K] is ele- 
mentary Abelian of order 9. In addition NG(C) = K . N,(C), N,(C)/K r 
N,(D)/C,(D) = GL(2,3). 

Proof. As C char H3 and 37 1 1 G 1 (by (3.12)), No(C) $ H. Clearly (z) is a 
Sylow 2-subgroup of C,(C) so H covers Nc(C)/C,(C) and C,(C) has a normal 
2-complement. From the structure of G,(3) (see [7]), 1 Co(C) n Cc;(c2)l / 35 . 2. 
This forces 1 C,(C)1 = 35 . 2 and Co(C) = K . (z), where K = O,(C,(C)). 
The result follows as K is Abelian (because C is a minimal normal subgroup of 

NdCN. 

(4.2) We have R = O,(CG(c,)) is elementary of order 35 and C,(c,)/R gg 
SL(2, 9). 
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Pyoof. From (3.11) we see that CH(cl)/(c~) g SL(2,9), so a Sylow 2-subgroup 
of CG(cl) is isomorphic to Q1s . A result of Brauer and Suzuki [I] yields that 

G(G) = O(W,)) . C&J. BY (4.1) we have O(C,(c,))1 (cr). Now S C 

NH(<G)) and u ws uz, so Proposition 2 and the action of C,(c,) on O(Co(cr)) 
yield O(Co(cl)) = O,(C,(c,)) = R with / R 1 = 35. Let C, = R . C, a Sylow 
3-subgroup of C,(c,). If R is non-Abelian then (c,) = Z(R) = Z(C,), whence C, 
is a Sylow 3-subgroup of G. This contradicts (3.12) and (3.6). Thus R is Abelian 
and so elementary Abelian (R = (cl) x [z, RI). 

(4.3) Each d E D# is conjugate to c, in G. Both O(N&(d))) = O,(N,((d))) 
and M = C,(D) = O,(N,(D)) h ave order 3g, and N,((d))/O(N,((d))) g 
GL(2,3). Also, a Sylow 3-subgroup Ga = M(c& of Co(d) is a Sylow 3-subgroup 
of G, with Z(G,) = (d) and iVo(Ga) = Ga(u, .z>. 

Proof. As above, C, = C . R is not a Sylow 3-subgroup of G. Now N(C,) n 
N,((c,)) = C, . S, Z(C,) = (c,) x D, and c, , d, cr d have 2, 8, 16 conjugates 
in C,S (where d E D#). Thus j No(C,): C,S j = 9 and No(Cr) = Os(No(C,)) . S. 
Let M = O,(N,(C,)) so that D = Z(M). Also, let D = (d) x (d,), where 
(d) = C,(u) and (dl) = C,(uz). Clearly d - ca , as 2 . 3g 1 / C,(d)1 (see (4.2) and 
(3.12)). 

Since (rr , sl) s Qs is a Sylow 2-subgroup of Co(ca) the Brauer-Suzuki result 

[I] yields C&J = O(C,(c,)) . C&c,). Thus ~~(<~~>)/O~(~~((c~i)) = G-W!, 3). 
Proposition 2 applied to (u, z) acting on C,(d) and the structure of H yield 
that O(C,(d)) = O,(C,(d)) h as order 3s. It follows that C,(D) = M. Without 
loss choose c, E C,(d) so that Ga = M(c,) is a Sylow 3-subgroup of N,(D) n 
C,(d) and (d) = Z(G,)(see (4.1)). It follows immediately that G3 is a Sylow 
3-subgroup of G. 

In order to determine the conjugacy classes of 3-elements of G, we study 

NO) and N&GO) in some detail. Note that N,(D) = MS<@, where (C, ca) = 
H, and S(c,) E GL(2,3). Let Ci = C,&cJ, i = 2,3 and recall C, = C . R&M) 
is a Sylow 3-subgroup of Co(cr) (so C, = C,(cr) also). We begin by studying 
N,(D) and list some properties of this subgroup: 

(i) KdiV,(D) and if xEC’-K then xmER-Kfor some mGM. 
Further, R# only contains elements conjugate to c1 , ca in G. 

(Note that for c E C - (c,), C,(c) = <cJ x D = Z(C,); this follows from 
the action of C,(q) on R. In Nc((cr)), cr , d, cr d have 2, 80, 160 conjugates, 
respectively, whence N,(R) = No((cJ) by (4.3). As c1 d -o cr , and d wG cQ , R 
contains 162 conjugates of c, and 80 conjugates of ca . Obviously R +c K, and 
from above, R n R” = (cJ x D (for m E M - C,) whence C, is the disjoint 
union of K and (nine) M-conjugates of R - (K n R). Thus K Q M, whence 
K 4 NC(D) as No(C) covers N,(D)/C,(D); see (4.1).) 

(ii) M/K is elementary Abelian (of order 81), 1 Ci 1 = 35, and Z(Ci) = 
<ci , D), i = 1, 2, 3. 
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(As z acts fixed-point-free on M/K, M/K is Abelian; as M/K = C,(u) . 
K/K x C&us) K/K, M/K is elementary Abelian (note that C,(u) -o Ha and 
C,(u) = (cs , d) = CM(u)‘). From (4.3) we have j M: Ci / > 9 for each i. Since 
Z,(M) f~ K 4 N,(D), F C Z,(M), whence 1 M : Ci j = 9 as required. In 
particular cr , c2 , s c have 54, 108, 72 conjugates (respectively) in No(D), and C, 
is a Sylow 3-subgroup of Co(cJ. Finally, Z(C,) = (ci , 0) by (4.3) Z(C,) = 
(c2 , 0) follows from the structure of G,(3), and Z(C,) = (cs , D) as c,, nor- 
malizes C n Z(C,).) 

(iii) j C’s n C, : K j = 3 and C,,,(c,) = C,/K. 

(First note that for m E M, C,(m) 3 D. If m E M, [m, c4] E K then cq normalizes 
C,-(m) whence ca E C,(m). Thus C,/K = C,,,(c,) as both have order 9. As we 
chose cq E Co(d), [(cq), D] = (d), whence [(c~), K] = (d, ca , ca). By the result 
just proved [(cq), K] Q C, , so C, n C, 3 K. The result follows immediately 
from (ii).) 

We now introduce some more notation. Let C’, = (csr , car, K), C, = 

<Cl1 P Cl2 7 K) (recall C, n C, = K) and (as above) [(cd), D] = (d) so that 
[(~a), C,] = (d) also. As (u, x) normalizes each Ci choose C,(u) = (d, c2 , 
c31, cll), cM(uz) = cdl 9 c2 > c32 7 12 Y c ) and we may suppose u inverts c32, 
cl2 and uz inverts c3r, cl1 . Since [C,, <c2>l = Cd) = CD(~), [c32, c21 = 

u = [c$, c2] = [c32 , c2]-l, whence [c32 , c2] = 1; i.e., C, n C, = 
t;2’,:). As u -N(D) us, we may choose c32 -iv(D) ciic$. It is now straight- 
forward to determine the conjugacy classes of M/K in N,(D)/K. 

(iv) The following are representatives for the conjugacy classes of M/K in 
N,(D)/K: c32K (8 conjugates); c3rK (8 conjugates); c,c~~K (16 conjugates); 
cllK (24 conjugates); c~~c~~K (24 conjugates); K. 

We now consider the structure of No((d)) and ( un or f t unately) introduce still 
more notation. Let N = N,((d)), 0 = O,(N), G3 = M(cJ so that G3 is a 
Sylow 3-subgroup of N and let U Z (u, Z) be a Sylow 2-subgroup of N. Note 
that U z SD,, and Z(U) = (u). 

From the structure of C,(c,) and c3 -G d it follows that s2,(Co(u)) = (c2, d) 
and C,(U) is non-Abelian of order 27. Clearly U normalizes (c2 , d) and as 
C,(c,) covers G,/O, ) Co(c,)/ = 3’. Now C,,,,(m) C 0, whence C,(c,) = 

cc32 ? K) = C, n C, . 
Since (Cam, K) 4 G3 we have (ca2, K) 4 N. It follows that D,, = (c2, 

~3, D> = z((c3 > K)) 4 N, hence (c3, D} Q N as well. Finally, c3 -N dr 
yields / Co(c,)l = 3*, C,(C,) = (C, , c,), and C, = Co((c,, D)) 4 N also. 

Clearly N,(K) = N,(D) so all (8) nontrivial cosets of D, in (Cam , K) are 
conjugate in N; i.e., the coset c,,K only contains elements of order three con- 
jugate to cr , c2 , c, in G. 

It also follows easily that [C, , 0] C D,, and (O/D,,)’ = (c3ij D, . Hence 
c3l D23 I c1 '23 f cylcl D,, have 2, 8, 16 conjugates, respectively, in N. (Note that 
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~31~1 D23 -N C31C32 D, -N C31C3aQD23 .) We now show that all elements in 
c3r D,, are conjugate in G3 . From the structure of C,(u) = (car , err , ca , d) we 
have [CM(u), (c3J] = Cc2 , 4. Further, as [c31 , cl1 E D, Cc31 , cllu = [c31 , 4-l 
implies [c3r , cr] = dl say. Finally, as C,’ Q N, C,’ r> D, which implies C,’ = 
<c3, D> or k 31 , c3.J E (c3 , D) - D. A similar argument shows that all elements 
in c3rcl D,, are conjugate in G3 . 

From the above remarks it follows that each element in the cosets c3rK, 
c3rc3sK is conjugate in G either to c3r or c3rc1 . If we choose fr so that 
[fr , C,(c,)] = 1, then clearly c3r N cfr . Further 1 CN(c3J = 36 * 23, (c3r cl)3 = 
d*‘, 1 ~N(c31cl)l = 36, and csl +G c3s1 . 

By assumption c,rc,;’ wN(o) c3s and (c,, , c2, d) NC C so c31c11 -Ffz (note 
that c3rcr1 E G, - 0). We show now that [(c3&, M] = K. As above, [CM(u), 
<~~~cdl = <c2, d) and k11c31 , cr] E D - (d). Since R has 9 conjugates in M, 
cl2 has 81 conjugates in M. Now [(cl&, K] = D, [cl1 , clz] = 1, [cl2 , c3J E 

<c2 ,4), and [<c12>, Ml C D,, . Thus [cQ1 , cl21 E 4, - Cc2 , D>, whence 

[ c3rcu , era] E D,, - (ca , 0). Finally [c3rcn , cd E c:’ D,, which proves 
[(c31clA Ml = K. Th us all elements of c~~c,K are conjugate to c3rc,, in M, 
and j CN(c31cll)~ = 2 * 34. 

From (i) above, c,,K only contains elements of order three conjugate to one 
oft c r , 2 , c, in G. Hence we have determined that if m E M# then m is conjugate 
inGtooneofc,,c,,c3,f,,f,,c3,c,. 

It remains to consider G3 - M. In No(G3) = G,(u, z), c4(M n 0), 
c,,(M n 0), c,c4(M n 0) have 2, 2, 4 conjugates, respectively. As all nontrivial 
cosets of C, in M are conjugate to c,,C, it is only necessary to consider 
c11c4(M n 0). From the structure of G3(u, z)/ D, it follows that c4c,(M n 0) 
consists of three conjugacy classes of cosets modulo D,, with representatives 
C4Cll D 33 , '4'11'32 D, , C4CllCit D23 -N (c4w3P D33 . Further, as 
[(c4j , M] $ C,,&c,), (c4c&) D,, has order 9, E = 0, 1, -1. It is easily seen 
that CN(c4wj2) C Cc31 , K) and that CK(c4c&,) = (d). An easy computation 
yields that for each E E (0, -&l}, [c c c’ 4 11 32, csll E (c,~, D> - D whence (c4&d3 E 
c&Q D23 , LX, /I E {&l}; i.e., (c~c&~)~ -o c3rc1 . Thus C,(c,c,,c;,) = 
(c4cucj2) of order 27, E E {0, &I}. 

(4.4) Let fi E cG(c3), i = 3, 4, 5 with f3 NG c31c1, f4 NG cpcll , f5 kG 
C4CllC31 Y and f3” = cs , f43 = fb3 = f3 . Then the group G contains precisely 
three classes of elements of order 3 with representatives cr , c2 , c3 ; three classes 
of elements of order 9 with representatives fr , f. , fs ; and three classes of ele- 
ments of order 27 with representatives f4 , f5 ,f;‘. Further, / Cc(fi)( = 23 . 36, 
2 . 34, 36, 33, 33 for i = 1, 2, 3, 4, 5, respectively. 

Remark. Recall that C, = (c 32 , c,,c~~, K) is a Sylow 3-subgroup of CG(CJ 

and [C, , K] C D. A simple computation yields [c3a , c3rc$] E (cr , c, , 0); 
i.e., c2 # C,‘. Hence Gaschutz’ theorem [6, S.I.17.41 yields C,(c,) g 2, x G,(3), 
a result not needed in this paper. 

481/46/z-7 
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5. THE CONJUGACY CLASSES OF ~-ELEMENTS OF G 

Let rr = (2, 3, 5, 7, 13) and let rr’ denote the complementary set of primes. 
Set C,(b) = B x (ai , ~2XcA NH(B) = <w> Cdb) with (~1~ , v2> s Qs and 

w2 E C(cJ n N,(B). Thus w2 is of order four and without loss we choose w2 = u 
and viM = v;i, vzw = z~~lu~ (note that N@)/(B, o) z ZJ. Hence as ~i wH ZJ;~ 
and WJ wH VJ we see that VJ contains precisely one class of elements of order 
four with square z(in H). 

(5.1) The group G contains two classes of elements of order four with 
representatives ri , ~(1 Co(v)I = 2g . 3 . 5) and t wo classes of elements of order 
eight with representatives usi , w where (usJ2 = ri , w2 = v, and 1 CG(~rl)/ = 
2’ . 3, 1 C,(w)\ = 25 . 3. 

Proof. The statement about the elements of order four follows from Section 3 
and the remarks above. As C&,)/C,(r,) s Aut(PSL(2, 8)) if h2 = ri and h E H 
then h is conjugate to an element in us,C,(r,). It is straightforward to verify 
(see (3.5)) that us,C,(r,) contains only one class of elements of order 8 with 
square ri in (~1s~ , CJ(r,)) and that 1 C,(us,)/ = 27 . 3. 

It remains to consider WC,(V) ( using the notation above). As w E N,(B) - 
C,(B), C,(ru) is elementary of order 8 and WC,(O) contains two classes of elements 
with square TJ in (w, C,(v)>. These classes have representatives w, wz. However, 
as wvl = wx and z1i E C,(V) (vi E C,(b)) we have that there is one class of 
elements of order 8 with square v and also 1 C,(w)] = 25 .3([ CR(W)I = 23 .3). 

(5.2) We have NG(B) = O,(Co(b)) . N,(B) and O,(Co(b)) is either non- 
Abelian of order 53 and of exponent 5 or equal to B. In any case O,(Co(b)) is a 
Sylow 5-subgroup of G and G contains one class of elements of order 5. 

Proof. If C,(b) _C H there is nothing to prove, so suppose Co(b) $ H. The 
Brauer-Suzuki theorem [I] yields C,(b) = O(C&)) . C,(b) and as Co(b) n 
CG(cl) C H, O(C,(b)) is a (2, 3}‘-group. Hence Proposition 2 applied to the 
4-group (UV~ , x) acting on O(C,(b)) yields that O(Co(b)) is of order 53 (note 
that z)zli -N(B) T+ 

Set C(VV,) n O(C,(b)) = (b,)(~,(b)). If O(C,(b)) is non-Abelian then b, 
has 120 conjugates in No(B) and we are done. It remains to show O(Co(6)) is not 
Abelian. If O(C,(b)) is Ab 1 e ian, b, b, , bb, have 4, 24, 96 conjugates, respectively, 
in No(B). It follows that No(B) = iV(O(Co(b))), which implies O(C,(b)) is a 
Sylow 5-subgroup of G. This contradicts Burnside’s lemma [4, Theorem 7.1.11, 
however, as b wG b, . Thus O(C&)) is non-Abelian as required. 

(5.3) A Sylow 7-subgroup of G has order 72 and G has either one class of 
elements of order 7 with representative a or two classes of elements of order 7 
with representatives a, u2, where / CG(u2)J = 72. 

Proof. Recall from (3.13) that CG(a) = (a) x L, whereL z PSL(2, 7). Let 
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(al) be a Sylow 7-subgroup ofL with u E N((a,)) n N&4). Then 3 1 ) Co(ar)\ so 
a mG a, and u inverts a, . Let A, = (a, a,), a Sylow ‘I-subgroup of No(A). 
We see that N(A,) n Nc(A)/A, s 2, x 2, x 2, and a, a, , au,, aa;’ have 
6, 6, 18, 18 conjugates, respectively, in No(A) n N&r)- As a -G al , 7 f 
1 N&l,): A, j, whence A, is a Sylow 7-subgroup of G. By Burnside’s lemma 
[4, Theorem 7.1. l] a N a, in NG(A1), which leads to two cases: 

a mG au, and all elements of A,* are conjugate in NG(AI); i.e., 
/ NG$!): A, 1 = 2*. 3 2 and G has one class of elements of order 7. 

@) a +o au,, so a, au, have 12, 36 conjugates, respectively, in NG(A1); 
i.e., 1 NG(A1)I = 22 . 32 . 72 and G has two classes of elements of order 7 with 
representatives u, u2 = au, . 

It remains to show that in case (/3), Cc(+) = A, . By Burnside’s transfer 
theorem [4, Theorem 7.4.31 Co(u,)/(u,> h as a normal 7-complement X/(u2>. 
However, (u, a)(~ D,,) acts on X/(u,) and both u, a must act fixed-point-free. 
Thus X = (u2) as required. 

(5.4) If (1) is a Sylow 13-subgroup of CG(cJ then (1) is a Sylow 13-sub- 
group of G. Further, N,((Z)) C N,((c,)) so that No(<Z))/(c,) is a Frobenius 
group of order 13 . 12 (and clearly No((Z)) covers No(<c2))/C~(c2)). 

Proof. It follows from the structure of G,(3) and the Frattini argument that 

W) n ~&c~Mc,) is a Frobenius group of order 13 . 12. The structure of H 
now yields that a Sylow 3-subgroup Y of N((Z)) n NG((c2))) is elementary (of 
order 9). Burnside’s transfer theorem [4, Theorem 7.4.31 yields that C,(Z) has a 
normal 3-complement X. As X is Y-invariant, X is a r-group and so X is a 
13-group, by our previous results. 

Let N,((Z)) = X . Y . V, w h ere Y . V is a Hall (2, 3)-subgroup of N,(<Z)) 
(of order 22 . 32). Without loss we may assume Y . V 2 C,(c2) and further, 
Y C C. Then V = (v’), Y = (c2 , cr’), where [o’, cr’] = 1, ZJ’ mH v, and 
Cl’ “fg Cl . Hence (c~c~‘)~ = c;‘cr’ and so c2c1’ wH ca . It follows immediately 
from (4.2) and (4.3) that X = (I). This completes the proof of (5.4). 

We conclude this section by listing the classes of r-elements of G. First, set 
1 G / = g and let g, denote the u-part of g for any set of primes o. We have 
showed that there are two possibilities for g,, : 

Case I. g, = 215 0 310 0 53 0 72 0 13. 

CuseII. g, =2150310~5~72~13. 

6. THE ORDER AND &-CLASSES OF G 

From the class equation for G and the table of classes of r-elements of G we 
obtain a congruence for g,’ in each of the four cases of Section 5: 



402 

Let 

DAVID PARROTT 

‘g,' = 589 = 190 31(g,) in Case I(a), 

g,’ = 6,288,482, 304, 589(g,) in Case I(&, 

g,, = 1, 232, 542, 546, 309 (gv) in Case II(a), 

8-p = 4, 376, 783, 698, 309(g,) in Case II@). 

0 = {p E v’ j G contains a strongly real element of order p}. 

TABLE I 

Conjugacy Classes of T-Elements of G 

1x1 / CC(x)1 x IX1 i cG(d 

6 

6 

6 

12 

12 

12 

12 

18 

18 

24 

24 

24 

24 

36 

36 

36 

215 . 34 . 5 . 7 

211 33 . 7 

29 .3 . 5 

27 3 

2j. 3 

24 . 33 . 5 
26 . 31 

23 . 34 
25 . 3” 

25 . 3-z 

22 33 

23 . 3 

23 * 32 

2 * 32 

23 . 3 

23 . 3 

2” . 3 

23 . 3 

22 . 32 

22 32 
2s . 32 

2” 3 . 72 

23 3 . 53 

2” . 3 .5 

zb 10 23 .3 5 

vb 20 22 . 5 

zbc, 30 2.3.5 

(zbq-’ 30 2.3.5 

za 14 2” . 7 

28 2” . 7 

3 24 . 37 . 5 

3 2”. 37 . 7 . 13 

3 23 . 31” 

9 23 . 3” 

9 2 . 34 

9 30 

27 33 

27 33 

27 33 

15 2.3.5 

15 2.3.5 

21 3.7 

39 3 . 13 

39 3 . 13 

13 3.13 

7” 

(Case I) 

(Case II) 

Case (/3) only 
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(6.1) There exist disjoint subsets uL, us ,..., u, of u and subgroups P, 
of G such that 

(9 u=alVa2V~~~uu,. 

(ii) Pi is an Abelian Hall u,-subgroup of G and a T.I. set. 

(iii) Pi = Co(x) for all x E Pi*. 

(iv) iV,(P,) is a Frobenius group with complement of even order. 

Proof. See Lyons [8]. 
It follows from (6.1) that G contains precisely hi = j Pi 1 - l/l N,(P,): Pi 1 

classes of a,-elements. By a result of Brauer and Fowler [2, (29.7)]g/l H I2 < 
30 + Cr=, hi , as G has at most 30 classes of real a-elements (see Section 5). Thus 
g,, < (I H [2/g,)(30 + Cysl hi), from which it follows that 

g,, < 57(30+glhi) in CaseI, 

g,, < 1401(30 + g1 &) in CaseII. 

(9 

Now hi < j Pi [/2, ([ Pi (, j P, [) = 1 for i # k, / P, j ... j P,, 1 1 g,’ , and each 
) Pi / is a n’-number. These facts and Eq. (*) yield n < 2 in Case I and n < 4 in 
Case II. 

Suppose g,, > g, , so that by (*) u is nonempty. Clearly we may assume h, 
is the largest of the hi . Then our assumption and (*) yield X, > ) H ) _=3 j C,(x)~ 
for any nonidentity r-element x (in both cases). 

From (6.1) it follows that there exists a set of /\r exceptional characters xi 
which coincide on conjugacy classes not meeting PI* (see [2]). In particular the 
xi are rational valued on r-element of G. Hence the orthogonality relations and 
the fact that /\r > ( Co(x)/ for any nontrivial r-element x of G yield x2(x) = 0. 
Thus g, I x,(l) and so g > g,,2 . h, , or hrg,, < g,, . Combining this with (*) 
yields A,(g, - 2.57) < 57.30 in Case I, and X,(g, - 4.1401) < 1401.30 in Case 
II. Both inequalities are clearly impossible, so we conclude g,, < g, , whence 
Case I(a) holds (for example by (3.14)). 

(6.2) TheorderofGis21503100530720 13019031. 

Finally the rr’-classes of G are determined immediately by Sylow’s theorem. 

(6.3) The Sylow 19-normalizer is a Frobenius group of order 18.19 and the 
Sylow 31-normalizer is a Frobenius group of order 15.31. The group G contains 
one class of elements of order 19 and two (nonreal) classes of elements 
of order 31. 
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