On Thompson's Simple Group

David Parrott
University of Adelaide, Adelaide, South Australia, 5001, Australia
Communicated by Walter Feit

Received December 12, 1975

Recently, Thompson [9] constructed a new simple group E of order 2^{15} 。 $3^{10} 5^{3} 7^{2} \circ 13 \circ 19 \circ 31=90,745,943,887,872,000$. In particular, E contains only one conjugacy class of involutions, and if e is an involution in E then $C_{E}(e)$ is a (nonsplit) extension of an extra-special 2-group of order 2^{9} by \mathscr{A}_{9}, the alternating group of degree 9 .

The aim of this paper is to prove the following result.

Theorem. Let G be a finite group which contains an involution z. Let $H=C_{G}(z)$ and suppose that $G \neq H \cdot O(G)$ and H satisfies:
(i) $J=O_{2}(H)$ is extra-special of order 2^{9};
(ii) $H / J \cong \mathscr{A}_{9}$, the alternating group of degree 9. Then G is a simple group with the same order and the same conjugacy classes as Thompson's simple group E.

Corollary (Thompson). If G is a finite group satisfying the assumptions of the theorem then $G \cong E$.
(This follows immediately from Thompson's paper [9].)
'I'he notation in this paper will follow Gorenstein [4]. In addition we will use:

$$
\begin{aligned}
& X * Y: \text { a central product of the groups } X \text { and } Y ; \\
& x \sim_{x} y: x \text { is conjugate to } y \text { in } X ; \\
& Z_{n}: \text { the cyclic group of order } n ; \\
& D_{n}: \text { the dihedral group of order } n ; \\
& Q_{2^{n}}: \text { the (generalized) quaternion group of order } 2^{n} ; \\
& S D_{2^{n}}: \text { the semidihedral group of order } 2^{n} ; \\
& \mathscr{A}_{n}, \Sigma_{n}: \text { the alternating, symmetric groups of degree } n .
\end{aligned}
$$

1. Preliminary Results

Proposition 1 [4, pp. 105, 328]. If x is an involution in the finite group X and $x \notin O_{2}(X)$, then x inverts an elements of odd order in $X^{\#}$.

Proposition 2 [10]. Let $Y=\left\{1, y_{1}, y_{2}, y_{3}\right\}$ be a 4 -group of automorphisms of the finite group X of odd order. Then

$$
|X| \cdot\left|C_{X}(Y)\right|^{2}=\left|C_{X}\left(y_{1}\right)\right| \cdot\left|C_{X}\left(y_{2}\right)\right| \cdot\left|C_{X}\left(y_{3}\right)\right|
$$

Recall that a p-group P is extra-special if $P^{\prime}=Z(P)=\Phi(P)$, and $\left|P^{\prime}\right|=p$.
Proposition 3 [4, Theorem 5.5.2]. An extra-special 2-group J is the central product of $n \geqslant 1$ non-Abelian groups of order 8 . (Thus J has order $2^{2 n+1}$.)
Further,

$$
J \cong D_{8} * D_{8} * \cdots * D_{8} \quad(J \text { of type }+)
$$

or

$$
J \cong D_{8} * \ldots * D_{8} * Q_{8} \quad(J \text { of } \text { type }-) .
$$

In the rest of this section we prove some simple but useful results under the following assumption:

Hypothesis 1. Let G be a finite group, let z be an involution in G, let $H=C_{G}(z)$ and let $J=O_{2}(H)$ be extra-special of order $2^{2 n+1}, n \geqslant 1$.

Let $P \neq 1$ be a p-subgroup of H (p an odd prime), and let t be an involution in $H-\langle z\rangle$ with $t \sim_{G} z$.

Proposition 4. Under Hypothesis 1 , each of $C_{J}(P),[P, J]$ is extraspecial or equal to $\langle z\rangle=Z(J)$.

Proof. This follows immediately from $C_{J}(P) \cdot[P, J]=J[4$, Theorem 5.3.5 $]$ and the three subgroups lemma [4, Theorem 2.2.3].

Proposition 5. Suppose that Hypothesis 1 holds, that $t \in C_{H}(P)$, and that P satisfies:
(*) If $y^{-1} P y \subseteq H$ with $y \in G$, then there exists $h \in H$ such that $y^{-1} P y=$ $h^{-1} P h$.
Then $t \sim_{N(P)} z$, and further if $N_{G}(P)=N_{H}(P) \circ C_{G}(P)$ then $t \sim_{\mathcal{C}(P)} z$.
Proof. Obvious. (Note that if P is a Sylow p-subgroup of H then P satisfies (*).)

Lemma 6. Let H satisfy Hypothesis 1 with $C_{H}(J)=\langle z\rangle$. If $x \in H-J$ and $\left|J: C_{J}(x)\right|=2$ then $x^{2} \notin\langle z\rangle$.

Proof. Suppose $x^{2} \in\langle z\rangle$. By Proposition 1 (applied to $H /\langle z\rangle$) x inverts an element r of odd order in H. Hence r has order $3,[r, J] \cong Q_{8}$, and $\langle x,[r, J]\rangle \cong$ Q_{18} or $S D_{18}$. In any case $C(x) \cap[r, J]=\langle z\rangle$, which contradicts $\left|J: C_{J}(x)\right|=2$.

Proposition 7 (Janko). Suppose Hypothesis 1 holds and in addition $C_{H}(J)=$ $\langle z\rangle$ and $t \in J-\langle z\rangle$. Then $O_{2}\left(C_{H}(t)\right) / C_{J}(t)$ contains a normal elementary Abelian subgroup of order $\geqslant 2^{n-1}$ if J is of type + , and of order $\geqslant 2^{n}$ if J is of type -.

Proof. From Lemma 6 we have $\Omega_{1}(Z(T))=\langle t, z\rangle$, where T is a Sylow 2-subgroup of $C_{H}(t)$. It follows that $N_{G}(\langle t, z\rangle) / C_{H}(t) \cong \Sigma_{3}$. Let T^{*} be a Sylow 2-subgroup of $N_{G}(\langle t, z\rangle)$ which contains T, but $T^{*} \ddagger H$. If $x \in T^{*}-T$ then x normalizes $C_{J}(t)^{x} \cap C_{J}(t)$. Hence $C_{J}(t)^{x} \cap C_{J}(t)$ is elementary Abelian, and so of order $\leqslant 2^{n+1}\left(J\right.$ of type +), $\leqslant 2^{n}$ (J of type -). Thus $C_{J}(t) / C_{J}(t)^{x} \cap C_{J}(t) \cong$ $C_{J}(t)^{x} C_{J}(t) / C_{J}(t)$ is elementary of order $\geqslant 2^{n-1}$ (type +) or $\geqslant 2^{n}$ (type -). The proposition follows as $C_{J}(t) \triangleleft O_{2}\left(C_{H}(t)\right) \triangleleft N_{G^{\prime}}(\langle t, z\rangle)$.

2. Some Properties of $H / J \cong \mathscr{A}_{9}$

In this section we use the bar convention for $H / J=\bar{H}$ and use \leftrightarrow to denote the correspondence of elements in the isomorphism $\bar{H} \cong \mathscr{A}_{9}(H, J, z$ as in the statement of the theorem.)

Let u, v be elements of minimal order in H with $\bar{u} \leftrightarrow(14)(25)(36)(78)$ and $\bar{v} \leftrightarrow(15)(24)$. (Recall that \mathscr{A}_{9} has precisely two classes of involutions.) Thus $C_{H}(\bar{u}) \cong\left(D_{8} * D_{8}\right) \circ \Sigma_{3}$ and $C_{H}(\bar{v}) \cong\left(Z_{2} \times Z_{2} \times \mathscr{A}_{5}\right) \circ Z_{2}$.

Let $B=\langle b\rangle$ be a Sylow 5 -subgroup of H with $\bar{b} \leftrightarrow(12345)$. Thus $C_{H}(\bar{b}) \cong$ $Z_{5} \times \mathscr{A}_{4}$ and $N_{\bar{H}}(\bar{B}) / C_{\bar{H}}(\bar{B}) \cong Z_{4}$.

Let $H_{3}=\left\langle c_{i} \mid i=1,2,3,4\right\rangle$ be a Sylow 3-subgroup of H where $\bar{c}_{1} \leftrightarrow(789)$, $\bar{c}_{2} \leftrightarrow(123)(456), \bar{c}_{3} \leftrightarrow(123)(465)(789)$, and $\bar{c}_{4} \leftrightarrow(147)(268)(359)$. Therefore we have $C_{\bar{H}}\left(\bar{c}_{1}\right) \cong Z_{3} \times \mathscr{A}_{6}, C_{\bar{H}}\left(\bar{c}_{3}\right)=\bar{H}_{3}$ and $C_{\bar{H}}\left(\bar{c}_{2}\right)=\bar{C}\langle\bar{u}\rangle$, where $C=\left\langle c_{1}\right.$, $\left.c_{2}, c_{3}\right\rangle$ is the only elementary Abelian subgroup of order 27 in H_{3}. Further, $N_{\bar{H}}\left(\bar{H}_{3}\right)=\bar{H}_{3}\langle\bar{u}\rangle$ and $\Phi\left(\bar{H}_{3}\right)=\left\langle\bar{c}_{2}, \bar{c}_{3}\right\rangle$. Let $\bar{f}_{i}, i=1,2$ represent the two conjugacy classes of elements of order 9 in \bar{H}, with $f_{i}^{3}=c_{3}, i=1,2$. Note that $C_{\bar{H}}\left(\bar{f}_{i}\right)=\left\langle\tilde{f}_{i}\right\rangle$ and f_{i} is conjugate to each element in $\left\langle f_{i}\right\rangle-\left\langle c_{3}\right\rangle$ in $N_{H}\left(H_{3}\right)$ $i=1,2$.

Finally $A=\langle a\rangle$ will denote a Sylow 7-subgroup of $H, \bar{a} \leftrightarrow$ (1263549). Hence $C_{B}(\bar{a})=\bar{A}$ and $N_{B}(\bar{A})=\bar{A}\left\langle\bar{c}_{2}, \bar{u}\right\rangle$, a Frobenius group of order 42.

Remark. 'There is precisely one (proper) maximal subgroup of \bar{H} which contains \bar{H}_{3}, namely, $N_{\bar{H}}(\bar{C})$. (This property of \mathscr{A}_{9} will be needed in Section 3.). Note that $N_{H}(\bar{C}) / \bar{C} \simeq \Sigma_{4}$, and that c_{1}, c_{2}, c_{3} have $6,12,8$ conjugates, respectively, in $N_{H}(C)$.

3. The Fusion of Involutions

For the rest of this paper G will denote a finite group which satisfies the hypothesis of the theorem. In addition the notation introduced in Section 2 will retain its meaning throughout the paper.

By assumption $G \neq H \circ O(G)$, whence Glauberman's theorem [3] yields the following result.
(3.1) There exists an involution $h \in H-\langle z\rangle$ with $h \sim_{G} z$.

Suppose that H is not 2 -constrained, i.e., $C_{H}(J) \neq\langle z\rangle$. Then $C_{H}(J)$ covers $H \mid J$ and $C_{H}(J)=H^{\prime}$, with $H^{\prime} \mid\langle z\rangle \cong \mathscr{A}_{9}$. Let $h \in H-\langle z\rangle$ and $h \sim_{G} z$. As $z \in C_{H}(h)^{\prime} \subseteq H^{\prime}$, it follows that z is conjugate to one of (the involutions) $u, u z$, $v, v z$ by (3.1). Note that $v, v z$ are involutions only if $H^{\prime} \cong Z_{2} \times \mathscr{A}_{9}$. If $z \sim_{G} v$, let S, S^{*} be Sylow 2-subgroups of $C_{H}(v), C_{G}(v)$, respectively, with $\left|S^{*}: S\right|-2$. Choose $x \in S^{*}-S$ and set $Y=\left(J S^{\prime}\right) \cap\left(J S^{\prime}\right)^{x}$. Since $\left|S: S^{\prime}\right|=2^{11}$ and $J \cap S^{\prime}=\langle z\rangle$ we have $|Y| \geqslant 2^{8}$. Thus Y is not Abelian and so x normalizes $\langle z\rangle=Y^{\prime}$, which contradicts $z \sim_{G} v$. The same argument with v replaced by vz shows $z \chi_{G}$ vz.

Now let S denote a Syllow 2-subgroup of $C_{H}(u)$. If $H=J \times Y, Y \cong \mathscr{A}_{9}$, then $Z(S)=\langle u, z\rangle, \quad\left[S^{\prime}, S\right]=\langle u\rangle$. Burnside's lemma [4, Theorem 7.1.1] yields $z \chi_{G} u$. As $\left|S: S^{\prime}\right|=2^{11}$, the same argument as above shows $z \chi_{G} u z$ either. Finally, if $H \cong \hat{\mathscr{A}}_{9}$, the covering group of \mathscr{A}_{9}, then $S \triangleleft C_{H}(u), C_{H}(u)=S \circ P$, where $|P|=3$, and $C_{S}(P)=J \times\langle u\rangle$. From $z \sim_{G} u$ or $z \sim_{G} u z$ it follows that $N_{G}(\langle u, z\rangle) / C_{H}(u) \cong \Sigma_{3}$. However, this forces $C_{S}(P) \triangleleft N_{G}(\langle u, z\rangle)$, which is impossible. We have shown therefore that $C_{H}(J)=\langle z\rangle$. Thus if T is a Sylow 2-subgroup of $H, Z(T)=\langle z\rangle$. Sylow's theorem then yields the final part of the next result.
(3.2) The centralizer H is 2-constrained; namely, $C_{H}(J)=\langle z\rangle$. Also a Sylow 2-subgroup T of H is a Sylow 2 -subgroup of G.

We observe that if $x \in J-\langle z\rangle$ then $C_{I I}(x)$ does not cover H / J. For if $C_{H}(x) / C_{J}(x) \cong \mathscr{A}_{9}$ then $C_{H}(x)$ must act nontrivially on $C_{J}(x) \mid\langle x, z\rangle$ (elementary of order 64) by (3.2). Thus $G L(6,2)$ would have to contain subgroups isomorphic to \mathscr{A}_{9}, which is not the case.

Since $f_{1}{ }^{3}=c_{3}$ and c_{3} acts fixed-point-free on $\left[c_{3}, J\right] /\langle\boldsymbol{z}\rangle$, it follows from Proposition 4 and (3.2) that $\left[c_{3}, J\right] \cong Q_{8} * Q_{8} * Q_{8}$ and $\left|C_{J}\left(c_{3}\right)\right|=8$. If $\left[H_{3}\right.$, $\left.C_{J}\left(c_{3}\right)\right]=1$ then for $x \in C_{J}\left(c_{3}\right)-\langle z\rangle$ we have $C_{H}(x) \subseteq C_{J}(x) \circ N_{H}(C)$ (by the remark at the end of Section 2). It follows that x has at least 280 conjugates in H, which is not possible. Thus $\left[H_{3}, C_{H}\left(c_{3}\right)\right] \neq 1$, whence $C_{J}\left(c_{3}\right) \cong Q_{8}$.
(3.3) We have $J \cong D_{8} * D_{8} * D_{8} * D_{8}\left(\cong Q_{8} * Q_{8} * Q_{8} * Q_{8}\right), C_{J}\left(c_{3}\right) \cong Q_{8}$, and $C_{J}\left(H_{3}\right)=\langle z\rangle$.

Note that $J-\langle\boldsymbol{z}\rangle$ contains 270 involutions and 240 elements of order 4. It
follows immediately from (3.3) and Proposition 4 that $[a, J] \cong D_{8} * D_{8} * D_{8}$ and $C_{J}(a) \cong D_{8}$. Thus as $c_{2} \in N_{H}(\langle a\rangle), C_{J}\left(c_{2}\right) \supseteq C_{J}(a)$, and $C_{J}\left(c_{2}\right) \cap[a, J] \supset\langle z\rangle$ [4, Theorem 5.3.14]. Hence $\left|C_{J}\left(c_{2}\right)\right|=32$. Now $\Phi\left(H_{3}\right)=\left\langle c_{2}, c_{3}\right\rangle$, whence $\left[c_{2}, C_{J}\left(c_{3}\right)\right]=1$. This implies $\left[c_{3}, C_{J}\left(c_{2}\right)\right] \cong Q_{8}$ and $C_{J}\left(c_{2}\right) \cong Q_{8} * Q_{8} \cong\left[c_{2}, J\right]$.
(3.4) We have $C_{J}\left(c_{2}\right) \cong Q_{8} * Q_{8}$ and $C_{J}(a) \cong D_{8}$.

Choose $u \in N_{H}\left(H_{3}\right)$ so that $u^{2} \in C_{J}\left(H_{3}\right)=\langle z\rangle$. Hence $C_{C}(u)=\left\langle c_{2}\right\rangle$ and $[u, C]-\left\langle c_{1}, c_{3}\right\rangle$ so that $\left(c_{2} c_{3}\right)^{u} \cdots c_{2} c_{3}^{-1}$. Now $c_{2} c_{3} \sim_{H} c_{2}$ and $C_{J}\left(c_{3}\right) \subseteq C_{J}\left(c_{2}\right)$, whence $C_{J}\left(c_{2} c_{3}\right) \cap\left[c_{2}, J\right] \cong Q_{8}$. It follows that u interchanges the two quaternion groups in $\left[c_{2}, J\right]$. On the other hand u normalizes $C_{J}\left(c_{3}\right)$ and $\left[c_{3}, C_{J}\left(c_{2}\right)\right]$ so that u must act as an outer automorphism on both quaternion subgroups of $C_{J}\left(c_{2}\right)$ (recall that $\left[H_{3}, C_{J}\left(c_{3}\right)\right] \neq 1$).

Let $C_{J}\left(c_{3}\right)=\left\langle r_{1}, s_{1}\right\rangle,\left[C_{J}\left(c_{2}\right), c_{3}\right]=\left\langle r_{2}, s_{2}\right\rangle, C_{J}\left(c_{2} c_{3}\right) \cap\left[c_{2}, J\right]=\left\langle r_{3}, s_{3}\right\rangle$, and $C_{J}\left(c_{2} c^{-1}\right) \cap\left[c_{2}, J\right]=\left\langle r_{4}, s_{4}\right\rangle$, so that $\left\langle r_{i}, s_{i}\right\rangle \cong Q_{8}, i=1, \ldots, 4$.
(3.5) Choosing the r_{i}, s_{i} suitably we have

$$
r_{i}^{u}=r_{i}^{-1}, \quad s_{i}^{u}=r_{i} s_{i}, \quad i=1,2
$$

and

$$
r_{3}^{u}=r_{4}, \quad s_{3}^{u}=s_{4}
$$

In particular, $C_{J}(u)=\left\langle r_{1} r_{2}, r_{3} r_{4}, s_{3} s_{4}, z\right\rangle$, which is elementary Abelian of order 16. If u is an involution then all (32) involutions in $u J$ are conjugate in $\langle u, J\rangle$, and no element in $u J$ squares to z.

From (3.3) and (3.5) we see that $C_{J}\left(c_{3}\right),\left\langle u, C_{J}\left(c_{2}\right)\right\rangle$ are Sylow 2 -subgroups of $C_{G}\left(c_{3}\right), C_{G}\left(c_{2}\right)$, respectively. Thus $c_{2} \chi_{G} c_{3} \chi_{G} c_{1}$ (recall that $\left.2^{3}| | C_{G}\left(\bar{c}_{1}\right) \mid\right)$. Suppose that $c_{2} \sim_{G} c_{1}$. Then $C_{J}\left(c_{1}\right)=\langle z\rangle$, as $C_{J}\left(c_{1}\right) \supset\langle z\rangle$ implies $\left|C_{J}\left(c_{1}\right)\right|=2^{7}$. Note that all involutions in $C_{J}\left(c_{2}\right)-\langle z\rangle$ are conjugate in $C_{H}\left(c_{2}\right)$ and if t is such an involution, $\left|C(t) \cap C_{H}\left(c_{2}\right)\right|=2^{5} \cdot 3$. Also if u is an involution then all involuvolutions in $C_{H}\left(c_{2}\right)-C_{J}\left(c_{2}\right)$ are conjugate to u and $\left|C(u) \cap C_{H}\left(c_{2}\right)\right|=2^{3} \cdot 3$. On the other hand, $\left|C(z) \cap C_{G}\left(c_{1}\right)\right|=\left|C_{H}\left(c_{1}\right)\right|=2^{4} \cdot 3^{3} \cdot 5$. This is incompatible with the orders of the centralizers listed above. Thus $c_{2} \chi_{G} c_{1}$.
(3.6) The elements c_{1}, c_{2}, c_{3} lie in distinct conjugate classes of G.

We next argue, by way of contradiction, that $C_{J}\left(c_{1}\right)=\langle z\rangle$. From Proposition 4, $C_{\bar{H}}\left(\bar{c}_{1}\right) \cong Z_{3} \times \mathscr{A}_{6}$, and $C_{J}\left(c_{1}\right) \nsucc\langle\boldsymbol{z}\rangle$, it follows that $C_{J}\left(c_{1}\right) \cong Q_{8} * Q_{8} * Q_{8}$, $\left[c_{1}, J\right] \cong Q_{8}$. Further, as we may assume $\left[b, c_{1}\right]=1, C(b) \cap C_{J}\left(c_{1}\right) \cong D_{8}$ and $C_{J}(b) \cong D_{8} * Q_{8}$.

Suppose $t \in C_{J}\left(c_{1}\right)$ and $t \sim_{G} z$. Then $z \sim t$ in $C_{G}\left(c_{1}\right)$ by Proposition 5 and (3.6). However, this is impossible by Proposition 7, as $\left[C_{J}\left(c_{1}\right), C_{H}\left(c_{1}\right)\right] \neq 1$ and $C_{H}\left(c_{1}\right) / C_{J}\left(c_{1}\right) \cong Z_{3} \times \mathscr{A}_{6}$. If j is an involution in J then we claim j is conjugate to an involution in $C_{J}\left(c_{1}\right)$. For if not, as $c_{2} \in\left\langle c_{1}^{-1} c_{2} c_{3}, c_{1} c_{2} c_{3}^{-1}\right\rangle, c_{1}^{-1} c_{2} c_{3} \sim_{H}$
$c_{1} c_{2} c_{3}^{-1} \sim_{H} c_{1}$, and $\left|C_{J}\left(c_{3}^{-1} c_{2} c_{3}\right) \cap C_{J}\left(c_{1} c_{2} c_{3}^{-1}\right)\right|=2^{5}$, we have $3 \nmid\left|C_{H}(j)\right|$. Thus j has $2 \cdot 3^{4}=162$ conjugates in H and $\left|C_{H}(j) / C_{J}(j)\right|=2^{6} \cdot 5 \cdot 7$, which is impossible. We conclude that $\boldsymbol{z} \not \chi_{G} j$ for any $j \in J-\langle z\rangle$.

Suppose next that $z \sim_{G} u$. It follows from Proposition 5 and (3.6) that $u \sim z$ in $C_{G}\left(c_{2}\right)$. Now $\left\langle u, r_{1} r_{2}, z\right\rangle$ is a Sylow 2-subgroup of $C_{H}\left(c_{2}\right) \cap C(u)$ whence there exists a 2-group $Y \subseteq C(u) \cap C_{G}\left(c_{2}\right)$ with $\left|Y:\left\langle u, r_{1} r_{2}, z\right\rangle\right|=2$. However, $\left\{r_{1} r_{2}, r_{1} r_{2} z\right\} \triangleleft Y$ (as these are the only involutions in $\left\langle u, r_{1} r_{2}, z\right\rangle$ not conjugate to z in G) whence $\langle z\rangle \triangleleft Y$, a contradiction. This shows $z \nsim u j$ for any involution $u j \in u J$ (see (3.5)).

Finally we suppose $z \sim_{G} v$. Let T_{1} be a Sylow 2-subgroup of $C_{H}(v)$, let T_{2} be a 2-subgroup of $C_{G}(v)$ with $\left|T_{2}: T_{1}\right|=2$, and let $x \in T_{2}-T_{1}$. By Proposition 1 we may assume that v inverts b. Clearly $O_{5^{\prime}}\left(C_{B}(b)\right)\left(\cong \mathscr{A}_{4}\right)$ acts trivially on $[b, J]\left(\cong D_{8} * Q_{8}\right)$ whence $O_{5^{\prime}}\left(C_{\bar{H}}(\bar{b})\right)$ acts nontrivially on $C_{J}(b)$. This implies $\left[v, C_{J}(b)\right] \subseteq\langle z\rangle$ and therefore $C(v) \cap C_{J}(b) \supset Q^{*}$, where $Q^{*} \cong Q_{8}$. As $z \chi_{G} j$ for any $j \in J-\langle z\rangle$ it follows that $\left(Q^{*}\right)^{x} \cap C_{J}(v)=1$, which contradicts the structure of $T_{1} / C_{J}(v)$. This completes the proof that $C_{J}\left(c_{1}\right)=\langle z\rangle$. It follows immediately (as we may assume $\left[c_{1}, b\right]=1$) that $C_{J}(b)=\langle z\rangle$ also.
(3.7) We have $C_{J}\left(c_{1}\right)=C_{J}(b)=\langle z\rangle$.

The above results yield that any involution $t \in J-\langle z\rangle$ has at least $2 \cdot 3^{35}=$ 270 conjugates in H. Thus all involutions in $J-z$ are conjugate in H and from the structure of \mathscr{A}_{0} we have $C_{H}(t) / C_{J}(t) \cong\left(Z_{2} \times Z_{2} \times Z_{2}\right) \cdot \operatorname{PSL}(2,7)$.
(3.8) All involutions in $J-\langle z\rangle$ are conjugate in H.

For any $s \in J$, s of order four, (3.7) yields that s has $30 \cdot n$ conjugates $(n \geqslant 1$). Thus $3\left|\left|C_{H}(s)\right|\right.$ and it then follows that we may assume $s \in C_{J}\left(c_{2}\right)$. Let $u_{1} \in$ $N_{H}\left(\left\langle c_{2}\right\rangle\right)-C_{H}\left(c_{2}\right), u_{1} \sim_{H} u$, and $\bar{u}_{1} \leftrightarrow(14)(26)(35)(78)$. From (3.5) we see that u_{1} interchanges the two quarternion subgroups in $C_{J}\left(c_{2}\right)$, whence all elements of order four in $C_{J}\left(c_{2}\right)$ are conjugate in $N_{H}\left(\left\langle c_{2}\right\rangle\right)$. All elements of order four in J are therefore conjugate in H and $\left|C_{H}(s) / C_{J}(s)\right|=2^{3} \circ 3^{3} \circ 7$. The structure of \mathscr{A}_{9} yields that $C_{H}(s) / C_{J}(s) \cong \operatorname{Aut}(P S L(2,8))$.
(3.9) All elements of order four in J are conjugate in H. If s is an element of order four in J then $C_{H}(s) / C_{J}(s) \cong \operatorname{Aut}(\operatorname{PSL}(2,8))$.

If v is an involution then we may assume $v \in N_{H}(B)$ (Proposition 1). If $v J$ does not contain involutions, choose $v \in N_{H}(B)$, so that $v^{2} \in\langle z\rangle$ in either case. It follows that v has 16 fixed points on $J /\langle z\rangle$, whence $\left|C_{J}(v)\right| \leqslant 32$. For $j \in J$, $(v j)^{2} \in\langle z\rangle$ implies $[v, j] \in\langle z\rangle$, whence $v J$ has at most two classes of elements with square in $\langle z\rangle$. Hence we have $b^{\prime}, c_{1}{ }^{\prime} \in C_{H}(v), b^{\prime} \sim_{H} b, c_{1}{ }^{\prime} \sim_{H} c_{1}$, which implies (by (3.7)) that $C_{J}(v)$ is elementary of order 32 and $v \nsim v z$ in $\langle J, v\rangle$.
(3.10) By choosing $v \in N_{H}(B)$ we have $v^{2} \in\langle z\rangle$ and $C_{J}(v)$ is elementary of
order 32. Further if v is an involution then $v J$ contains no elements of order four with square z.

Suppose that $z \sim_{G} t=r_{1} r_{2}$. Then $z \sim t$ in $C_{G}\left(c_{2}\right)$ by (3.6) and Proposition 5. Let $S=\left\langle C_{J}\left(c_{2}\right), u\right\rangle$, a Sylow 2-subgroup of $C_{G}\left(c_{2}\right)$. As $C_{S}(t) \cap J \cong Z_{2} \times D_{8}$, it follows (using (3.8)) that $z \sim u$ in $C_{G}\left(c_{2}\right)$ also. Conversely, suppose $z \sim_{G} u$. As above $z \sim u$ in $C_{G}\left(c_{2}\right)$ and as $C_{S}(u)=\langle u, z, t\rangle$ we have $z \sim t$ in $C_{G}\left(c_{2}\right)$. (We use (3.5) and the fact that $\{t, t z\}$ can not be a characteristic subset of $C_{S}(u)$.) In either case our arguments show that $C_{G}\left(C_{2}\right)$ contains one class of involutions.

Suppose $z \sim_{G} t \sim_{G} u$ and let u_{1} be an involution in $N_{H}\left(\left\langle c_{2}\right\rangle\right)-C_{H}\left(c_{2}\right)$, $\bar{u}_{1} \leftrightarrow(14)(26)(35)(78)$. As above (in the proof of (3.9)) u_{1} interchanges the two quaternion subgroups $\left\langle r_{1}, s_{1}\right\rangle,\left\langle r_{2}, s_{2}\right\rangle$ of $C_{J}\left(c_{2}\right)$. Without loss, let $r_{1}^{u_{1}}=r_{2}$, whence $\left(r_{1} u_{1}\right)^{2}=r_{1} r_{2}=t$. Hence there exists $y \in\left\langle S, u_{1}\right\rangle-S$ with $y^{2}=z$. It follows from $u_{1} \sim_{H} u$ and (3.5) that $y \in u u_{1} C_{J}\left(c_{2}\right), \quad \overline{u u_{1}} \leftrightarrow(23)(56)$. As $u u_{1} J \sim_{H} v J$ and because of (3.10) we see that $v J$ does not contain involutions. Thus $z \sim_{G} t \sim_{G} u$ implies G contains one class of involutions.

Suppose now that $z \sim_{G} v$, and take $b^{\prime}, c_{1}^{\prime} \in C_{H}(v)$ as above. Then we must have $C_{H}\left(c_{1}{ }^{\prime}\right)=\left\langle c_{1}{ }^{\prime}\right\rangle \times\langle z\rangle \times Y$, where $Y \cong \mathscr{A}_{6}$. Now as before, $z \sim v$ in $C_{G}\left(c_{1}{ }^{\prime}\right)$. Hence, as $T_{0}=C(v) \cap C_{H}\left(c_{1}{ }^{\prime}\right) \cong Z_{2} \times D_{8}$, we have $T_{0}{ }^{\prime}=\langle v z\rangle$ and $v z \not \chi_{G} z$. Set $\left\langle z, v, v^{\prime}\right\rangle=O_{2}\left(C_{H}\left(b^{\prime}\right)\right)$ and note that as v is an involution, $\left\langle z, v, v^{\prime}\right\rangle$ is elementary (of order 8). Thus $C_{J}\left(v^{\prime}\right)=C_{J}(v)$, whence $V=\left\langle v, v^{\prime}, C_{J}(v)\right\rangle$ is elementary of order 2^{7}. As $v \chi_{H} v z, C_{H}(v) J / J=C_{F}(\bar{v})$ and $\left|C_{H}(v): C_{H}\left(\left\langle v, v^{\prime}\right\rangle\right)\right|=2$ with $C_{H}\left(\left\langle v, v^{\prime}\right\rangle\right) / V \cong \mathscr{A}_{5}$. Further $N_{H}(V)=J \cdot C_{H}(v)\left\langle c_{1}^{\prime \prime}\right\rangle$, where $\left\langle c_{1}^{\prime \prime}\right\rangle\langle z$, $\left.v, v^{\prime}\right\rangle=O_{5^{\prime}}\left(C_{H}\left(b^{\prime}\right)\right) \cong Z_{2} \times \mathscr{A}_{4}$, which implies that both v and $v \approx$ have 48 conjugates in $N_{H}\left(V^{\prime}\right)$. Also all involutions in $C_{J}(v)-\langle z\rangle$ are conjugate in $N_{H}(V)$. Recall that $t \chi_{G} z \chi_{G} u$ under the assumption $z \sim_{G} v$. This implies V contains precisely 49 involutions conjugate to z in G.

Let T_{1}, T_{2} be Sylow 2-subgroups of $C_{H}(v), C_{H}\left(\left\langle v, v^{\prime}\right\rangle\right)$, respectively, with $T_{1}: T_{2} \mid=2$; let T_{1}^{*} be a 2-subgroup of $C_{G}(v)$ with $\left|T_{1} *: T_{1}\right|=2$; and let $x \in T_{1}{ }^{*}-T_{1}$. If $V^{x} \neq V$ then $V^{x} \subseteq T_{2}$ and V^{x} covers $T_{2} / C_{J}(v)$. However, this implies that V^{x} contains 25 involutions conjugate to z in G, a contradiction. IIence $V^{x}=V$ and $N_{G}(V) \supset N_{H}(V)$. Clearly $\left(C_{J}(v)-\langle z\rangle\right) \propto N_{G}(V)$, so vz has 79 conjugates in $N_{G}(V)$, obviously a contradiction. We have shown therefore that $z \nsim v$ and (as we could replace v by $v z$ above) that z is not conjugate to any involution in $v J$. By (3.1), (3.5), (3.8) either $z \sim_{G} t$ or $z \sim_{G} u$. We have therefore completely determined the fusion of involutions in G.
(3.11) The group G contains only one conjugacy class of involutions; more precisely, $z \sim_{G} t \sim_{G} u$ and the coset $v J$ does not contain involutions.

We complete this section with three results which follow from the proof of (3.11).
(3.12) We have $C_{G}\left(c_{2}\right) /\left\langle c_{2}\right\rangle \cong G_{2}(3)$.

Proof. From (3.3), (3.5), (3.7), $C_{H}\left(c_{2}\right) /\left\langle c_{2}\right\rangle$ is isomorphic to the centralizer of
an involution in $G_{2}(3)$. Further, as $z \sim u$ in $C_{G}\left(c_{2}\right), C_{G}\left(c_{2}\right)$ contains no subgroup of index two. The result of Janko [7] yields $C_{G}\left(c_{2}\right) \mid\left\langle c_{2}\right\rangle \cong G_{2}(3)$, as required.
(3.13) We have $C_{G}(a)=\langle a\rangle \times L$, where $L \cong \operatorname{PSL}(2,7)$.

Proof. Let $\left\langle a_{1}\right\rangle$ be a Sylow 7-subgroup of $C_{G}\left(c_{2}\right)$. Then $N_{G}\left(\left\langle c_{2}\right\rangle\right) \cap C_{G}\left(a_{1}\right) \cong$ $Z_{7} \times \Sigma_{3}$, which implies $a_{1} \sim_{G} a$ (by (3.11)), and $\left\langle c_{2}\right\rangle$ is a Sylow 3-subgroup of $C_{G}(a)$. Since $C_{H}(a) \cong Z_{7} \times D_{8},(3.11)$, Proposition 5, and the GorensteinWalter result [5] yield $C_{G}(a)=\langle a\rangle \times L$, where $L \cong \operatorname{PSL}(2,7)$.
(3.14) There is an elementary Abelian subgroup F of order $32, F \subseteq J$ with $N_{G}(F) / F \cong G L(5,2)$. In particular, $31 \| G \mid$.

Proof. Let t be an involution in $C_{J}(a)$ and let S be a Sylow 2-subgroup of $C_{H}(t)$. Then $Z(S)=\langle t, z\rangle$ which implies that $N_{G}(\langle t, z\rangle) / C_{H}(t) \simeq \Sigma_{3}$ (using (3.11)). It follows that $N_{G}(\langle t, z\rangle) / O_{2}\left(C_{H}(t)\right) \cong \Sigma_{3} \times \operatorname{PSL}(2,7)$ (see the proof of (3.8)), where $O_{2}\left(C_{H}(t)\right) / C_{J}(t) \cong Z_{2} \times Z_{2} \times Z_{2}$. As $\langle t, z\rangle \subset O_{2}\left(C_{H}(t)\right)^{\prime} C$ $C_{J}(t)$ it follows that $F=O_{2}\left(C_{H}(t)\right)^{\prime}$ is elementary Abelian of order 32. Let $\left\langle c_{0}, c_{2}\right\rangle$ be a Sylow 3-subgroup of $N(A) \cap N_{G}(\langle t, z\rangle)$ with $\left\langle c_{0}\right\rangle \subseteq C_{G}(a)$. Then $F=\langle t, z\rangle \times C_{F}\left(c_{0}\right)$ and if $\left\langle t_{1}\right\rangle=C_{F}\left(\left\langle c_{0}, c_{2}\right\rangle\right), t_{1}$ has 28 conjugates in $N_{G}(\langle t, z\rangle)$. It follows from (3.11) and the structure of H that $F \subseteq O_{2}\left(C_{G}\left(t_{1}\right)\right.$), whence $N_{G}(F) \supset N_{G}(\langle t, z\rangle)$. Thus z has 31 conjugates in $N_{G}(F)$ and $\left|N_{G}(F)\right| \mid$ $2^{15} \cdot 3^{2} \cdot 7 \cdot 31$. From $C_{G}(F)=F$ and the fact that $G L(5,2)$ is simple we get $N_{G}(F) / F \cong G L(5,2)$.

4. The 3-Structure of G

Throughout this section S will denote a Sylow 2-subgroup of $N_{H}(C)$ with $u \in S$. From (3.11) it follows that $S \cap O_{3, \mathbf{3}^{\prime}}\left(N_{H}(C)\right)$ is a quaternion group and so $S \cong S D_{16}\left(\right.$ as u is an involution). In particular $u \sim_{S} u z$ and $N_{H}(C) / C \cong G L(2,3)$.
(4.1) If $K=O_{3}\left(C_{G}(C)\right)$ then $K=C \times D$, where $D=[z, K]$ is elementary Abelian of order 9 . In addition $N_{G}(C)=K \cdot N_{H}(C), N_{G}(C) / K \cong$ $N_{G}(D) / C_{G}(D) \cong G L(2,3)$.

Proof. As C char H_{3} and $3^{7}| | G \mid$ (by (3.12)), $N_{G}(C) \Phi H$. Clearly $\langle z\rangle$ is a Sylow 2-subgroup of $C_{G}(C)$ so H covers $N_{G}(C) / C_{G}(C)$ and $C_{G}(C)$ has a normal 2-complement. From the structure of $G_{2}(3)$ (see [7]), $\left|C_{G}(C) \cap C_{G}\left(c_{2}\right)\right| \mid 3^{5} \cdot 2$. This forces $\left|C_{G}(C)\right|=3^{5} \cdot 2$ and $C_{G}(C)=K \cdot\langle z\rangle$, where $K=O_{3}\left(C_{G}(C)\right)$. The result follows as K is Abelian (because C is a minimal normal subgroup of $\left.N_{G}(C)\right)$.
(4.2) We have $R=O_{3}\left(C_{G}\left(c_{1}\right)\right)$ is elementary of order 3^{5} and $C_{G}\left(c_{1}\right) / R \cong$ $S L(2,9)$.

Proof. From (3.11) we see that $C_{H}\left(c_{1}\right)\left\langle\left\langle c_{1}\right\rangle \cong S L(2,9)\right.$, so a Sylow 2-subgroup of $C_{G}\left(c_{1}\right)$ is isomorphic to Q_{16}. A result of Brauer and Suzuki [1] yields that $C_{G}\left(c_{1}\right)=O\left(C_{G}\left(c_{1}\right)\right) \cdot C_{H}\left(c_{1}\right)$. By (4.1) we have $O\left(C_{G}\left(c_{1}\right)\right) \supset\left\langle c_{1}\right\rangle$. Now $S \subseteq$ $N_{H}\left(\left\langle c_{1}\right\rangle\right)$ and $u \sim_{S} u z$, so Proposition 2 and the action of $C_{H}\left(c_{1}\right)$ on $O\left(C_{G}\left(c_{1}\right)\right)$ yield $O\left(C_{G}\left(c_{1}\right)\right)=O_{3}\left(C_{G}\left(c_{1}\right)\right)=R$ with $|R|=3^{5}$. Let $C_{1}=R \cdot C$, a Sylow 3-subgroup of $C_{G}\left(c_{1}\right)$. If R is non-Abelian then $\left\langle c_{1}\right\rangle=Z(R)=Z\left(C_{1}\right)$, whence C_{1} is a Sylow 3-subgroup of G. This contradicts (3.12) and (3.6). Thus R is Abelian and so elementary Abelian $\left(R=\left\langle c_{1}\right\rangle \times[z, R]\right)$.
(4.3) Each $d \in D^{\#}$ is conjugate to c_{3} in G. Both $O\left(N_{G}(\langle d\rangle)\right)=O_{3}\left(N_{G}(\langle d\rangle)\right)$ and $M=C_{G}(D)=O_{3}\left(N_{G}(D)\right)$ have order 3^{9}, and $N_{G}(\langle d\rangle) / O\left(N_{G}(\langle d\rangle)\right) \cong$ $G L(2,3)$. Also, a Sylow 3-subgroup $G_{3}=M\left\langle c_{4}\right\rangle$ of $C_{G}(d)$ is a Sylow 3-subgroup of G, with $Z\left(G_{3}\right)=\langle d\rangle$ and $N_{G}\left(G_{3}\right)=G_{3}\langle u, z\rangle$.

Proof. As above, $C_{1}=C \cdot R$ is not a Sylow 3-subgroup of G. Now $N\left(C_{1}\right) \cap$ $N_{G}\left(\left\langle c_{1}\right\rangle\right)=C_{1} \cdot S, Z\left(C_{1}\right)=\left\langle c_{1}\right\rangle \times D$, and $c_{1}, d, c_{1} d$ have 2, 8, 16 conjugates in $C_{1} S$ (where $d \in D^{\#}$). Thus $\left|N_{G}\left(C_{1}\right): C_{1} S\right|=9$ and $N_{G}\left(C_{1}\right)=O_{3}\left(N_{G}\left(C_{1}\right)\right) \cdot S$. Let $M=O_{3}\left(N_{G}\left(C_{1}\right)\right)$ so that $D=Z(M)$. Also, let $D=\langle d\rangle \times\left\langle d_{1}\right\rangle$, where $\langle d\rangle=C_{D}(u)$ and $\left\langle d_{1}\right\rangle=C_{D}(u z)$. Clearly $d \sim c_{3}$, as $2 \cdot 3^{9} \| C_{G}(d) \mid$ (see (4.2) and (3.12)).

Since $\left\langle r_{1}, s_{1}\right\rangle \cong Q_{8}$ is a Sylow 2-subgroup of $C_{G}\left(c_{3}\right)$ the Brauer-Suzuki result [1] yields $C_{G}\left(c_{3}\right)=O\left(C_{G}\left(c_{3}\right)\right) \cdot C_{H}\left(c_{3}\right)$. Thus $N_{G}\left(\left\langle c_{3}\right\rangle\right) / O_{3}\left(N_{G}\left(\left\langle c_{3}\right\rangle\right)\right) \cong G L(2,3)$. Proposition 2 applied to $\langle u, z\rangle$ acting on $C_{G}(d)$ and the structure of H yield that $O\left(C_{G}(d)\right)=O_{3}\left(C_{G}(d)\right)$ has order 3^{9}. It follows that $C_{G}(D)=M$. Without loss choose $c_{4} \in C_{G}(d)$ so that $G_{3}=M\left\langle c_{4}\right\rangle$ is a Sylow 3-subgroup of $N_{G}(D) \cap$ $C_{G}(d)$ and $\langle d\rangle=Z\left(G_{3}\right)\left(\right.$ see (4.1)). It follows immediately that G_{3} is a Sylow 3-subgroup of G.

In order to determine the conjugacy classes of 3-elements of G, we study $N_{G}(D)$ and $N_{G}(\langle d\rangle)$ in some detail. Note that $N_{G}(D)=M S\left\langle c_{4}\right\rangle$, where $\left\langle C, c_{4}\right\rangle=$ H_{3} and $S\left\langle c_{4}\right\rangle \cong G L(2,3)$. Let $C_{i}=C_{M}\left(c_{i}\right), i=2,3$ and recall $C_{1}=C \cdot R(\subseteq M)$ is a Sylow 3 -subgroup of $C_{G}\left(c_{1}\right)$ (so $C_{1}=C_{M}\left(c_{1}\right)$ also). We begin by studying $N_{G}(D)$ and list some properties of this suhgroup:
(i) $K \triangleleft N_{G}(D)$ and if $x \in C_{1}-K$ then $x^{m} \in R-K$ for some $m \in M$. Further, $R^{\#}$ only contains elements conjugate to c_{1}, c_{3} in G.
(Note that for $c \in C-\left\langle c_{1}\right\rangle, C_{R}(c)=\left\langle c_{1}\right\rangle \times D=Z\left(C_{1}\right)$; this follows from the action of $C_{H}\left(c_{1}\right)$ on R. In $N_{G}\left(\left\langle c_{1}\right\rangle\right), c_{1}, d, c_{1} d$ have $2,80,160$ conjugates, respectively, whence $N_{G}(R)=N_{G}\left(\left\langle c_{1}\right\rangle\right)$ by (4.3). As $c_{1} d \sim_{C} c_{1}$, and $d \sim_{G} c_{3}, R$ contains 162 conjugates of c_{1} and 80 conjugates of c_{3}. Obviously $R \not \varkappa_{G} K$, and from above, $R \cap R^{m}=\left\langle c_{1}\right\rangle \times D$ (for $m \in M-C_{1}$) whence C_{1} is the disjoint union of K and (nine) M-conjugates of $R-(K \cap R)$. Thus $K \triangleleft M$, whence $K \triangleleft N_{G}(D)$ as $N_{G}(C)$ covers $N_{G}(D) / C_{G}(D)$; see (4.1).)
(ii) $M \mid K$ is elementary Abelian (of order 81), $\left|C_{i}\right|=3^{7}$, and $Z\left(C_{i}\right)=$ $\left\langle c_{i}, D\right\rangle, i=1,2,3$.
(As z acts fixed-point-free on $M / K, M / K$ is Abelian; as $M / K=C_{M}(u)$. $K / K \times C_{M}(u z) K / K, M / K$ is elementary Abelian (note that $C_{M}(u) \sim_{G} H_{3}$ and $\left.C_{K}(u)=\left\langle c_{2}, d\right\rangle=C_{M}(u)^{\prime}\right)$. From (4.3) we have $\left|M: C_{i}\right| \geqslant 9$ for each i. Since $Z_{2}(M) \cap K \triangleleft N_{G}(D), K \subseteq Z_{2}(M)$, whence $\left|M: C_{i}\right|=9$ as required. In particular c_{1}, c_{2}, c_{3} have $54,108,72$ conjugates (respectively) in $N_{G}(D)$, and C_{2} is a Sylow 3-subgroup of $C_{G}\left(c_{2}\right)$. Finally, $Z\left(C_{1}\right)=\left\langle c_{1}, D\right\rangle$ by (4.3), $Z\left(C_{2}\right)=$ $\left\langle c_{2}, D\right\rangle$ follows from the structure of $G_{2}(3)$, and $Z\left(C_{3}\right)=\left\langle c_{3}, D\right\rangle$ as c_{4} normalizes $C \cap Z\left(C_{3}\right)$.)
(iii) $\left|C_{3} \cap C_{2}: K\right|=3$ and $C_{M / K}\left(c_{4}\right)=C_{3} / K$.
(First note that for $m \in M, C_{K}(m) \supset D$. If $m \in M,\left[m, c_{4}\right] \in K$ then c_{4} normalizes $C_{C}(m)$ whence $c_{3} \in C_{C}(m)$. Thus $C_{3} / K=C_{M / K}\left(c_{4}\right)$ as both have order 9. As we chose $c_{4} \in C_{G}(d),\left[\left\langle c_{4}\right\rangle, D\right]=\langle d\rangle$, whence $\left[\left\langle c_{4}\right\rangle, K\right]=\left\langle d, c_{2}, c_{3}\right\rangle$. By the result just proved $\left[\left\langle c_{4}\right\rangle, K\right] \triangleleft C_{3}$, so $C_{2} \cap C_{3} \supset K$. The result follows immediately from (ii).)

We now introduce some more notation. Let $C_{3}=\left\langle c_{31}, c_{32}, K\right\rangle, C_{1}=$ $\left\langle c_{11}, c_{12}, K\right\rangle$ (recall $C_{3} \cap C_{1}=K$) and (as above) $\left[\left\langle c_{4}\right\rangle, D\right]=\langle d\rangle$ so that $\left[\left\langle c_{2}\right\rangle, C_{3}\right]=\langle d\rangle$ also. As $\langle u, z\rangle$ normalizes each C_{i} choose $C_{M}(u)=\left\langle d, c_{2}\right.$, $\left.c_{31}, c_{11}\right\rangle, C_{M}(u z)=\left\langle d_{1}, c_{2}, c_{32}, c_{12}\right\rangle$, and we may suppose u inverts c_{32}, c_{12} and $u z$ inverts c_{31}, c_{11}. Since $\left[C_{3},\left\langle c_{2}\right\rangle\right]=\langle d\rangle=C_{D}(u),\left[c_{32}, c_{2}\right]=$ $\left[c_{32}, c_{2}\right]^{u}=\left[c_{32}^{-1}, c_{2}\right]=\left[c_{32}, c_{2}\right]^{-1}$, whence $\left[c_{32}, c_{2}\right]=1$; i.e., $C_{3} \cap C_{2}=$ $\left\langle c_{32}, K\right\rangle$. As $u \sim_{N(D)} u z$, we may choose $c_{32} \sim_{N(D)} c_{11} c_{31}^{-1}$. It is now straightforward to determine the conjugacy classes of M / K in $N_{G}(D) / K$.
(iv) The following are representatives for the conjugacy classes of M / K in $N_{G}(D) / K: c_{32} K$ (8 conjugates); $c_{31} K$ (8 conjugates); $c_{31} c_{32} K$ (16 conjugates); $c_{11} K$ (24 conjugates); $c_{11} c_{31} K$ (24 conjugates); K.

We now consider the structure of $N_{G}(\langle d\rangle)$ and (unfortunately) introduce still more notation. Let $N=N_{G}(\langle d\rangle), O=O_{3}(N), G_{3}=M\left\langle c_{4}\right\rangle$ so that G_{3} is a Sylow 3-subgroup of N and let $U \supseteq\langle u, z\rangle$ be a Sylow 2-subgroup of N. Note that $U \cong S D_{16}$ and $Z(U)=\langle u\rangle$.

From the structure of $C_{H}\left(c_{3}\right)$ and $c_{3} \sim_{G} d$ it follows that $\Omega_{1}\left(C_{O}(u)\right)=\left\langle c_{2}, d\right\rangle$ and $C_{O}(u)$ is non-Abelian of order 27. Clearly U normalizes $\left\langle c_{2}, d\right\rangle$ and as $C_{N}\left(c_{2}\right)$ covers $G_{3} / O,\left|C_{o}\left(c_{2}\right)\right|=3^{6}$. Now $C_{M}(u z) \subseteq O$, whence $C_{o}\left(c_{2}\right)=$ $\left\langle c_{32}, K\right\rangle=C_{3} \cap C_{2}$.

Since $\left\langle c_{32}, K\right\rangle \triangleleft G_{3}$ we have $\left\langle c_{32}, K\right\rangle \triangleleft N$. It follows that $D_{23}=\left\langle c_{2}\right.$, $\left.c_{3}, D\right\rangle=Z\left(\left\langle c_{3}, K\right\rangle\right) \triangleleft N$, hence $\left\langle c_{3}, D\right\rangle\left\langle N\right.$ as well. Finally, $c_{3} \sim_{N} d_{1}$ yields $\left|C_{o}\left(c_{3}\right)\right|=3^{8}, C_{o}\left(c_{3}\right)=\left\langle C_{3}, c_{4}\right\rangle$, and $C_{3}=C_{O}\left(\left\langle c_{3}, D\right\rangle\right) \triangleleft N$ also.

Clearly $N_{G}(K)=N_{G}(D)$ so all (8) nontrivial cosets of D_{23} in $\left\langle c_{32}, K\right\rangle$ are conjugate in N; i.e., the coset $c_{32} K$ only contains elements of order three conjugate to c_{1}, c_{2}, c_{3} in G.

It also follows easily that $\left[C_{3}, O\right] \subseteq D_{23}$ and $\left(O / D_{23}\right)^{\prime}=\left\langle c_{31}\right\rangle D_{23}$. Hence $c_{31} D_{23}, c_{1} D_{23}, c_{31} c_{1} D_{23}$ have 2, 8, 16 conjugates, respectively, in N. (Note that
$c_{31} c_{1} D_{23} \sim_{N} c_{31} c_{32} D_{23} \sim_{N} c_{31} c_{32} c_{1} D_{23}$.) We now show that all elements in $c_{31} D_{23}$ are conjugate in G_{3}. From the structure of $C_{M}(u)=\left\langle c_{31}, c_{11}, c_{2}, d\right\rangle$ we have $\left[C_{M}(u),\left\langle c_{31}\right\rangle\right]=\left\langle c_{2}, d\right\rangle$. Further, as $\left[c_{31}, c_{1}\right] \in D,\left[c_{31}, c_{1}\right]^{u}=\left[c_{31}, c_{1}\right]^{-1}$ implies $\left[c_{31}, c_{1}\right]=d_{1}$ say. Finally, as $C_{3}{ }^{\prime} \triangleleft N, C_{3}{ }^{\prime} \supset D$, which implies $C_{3}{ }^{\prime}=$ $\left\langle c_{3}, D\right\rangle$ or $\left[c_{31}, c_{32}\right] \in\left\langle c_{3}, D\right\rangle-D$. A similar argument shows that all elements in $c_{31} c_{1} D_{23}$ are conjugate in G_{3}.
From the above remarks it follows that each element in the cosets $c_{31} K$, $c_{31} c_{32} K$ is conjugate in G either to c_{31} or $c_{31} c_{1}$. If we choose f_{1} so that $\left[f_{1}, C_{J}\left(c_{3}\right)\right]=1$, then clearly $c_{31} \sim_{G} f_{1}$. Further $\left|C_{N}\left(c_{31}\right)\right|=3^{6} \cdot 2^{3},\left(c_{31} c_{1}\right)^{3}=$ $d^{ \pm 1},\left|C_{N}\left(c_{31} c_{1}\right)\right|=3^{6}$, and $c_{31} \not \chi_{G} c_{31} c_{1}$.
By assumption $c_{31} c_{11}^{-1} \sim_{N(D)} c_{32}$ and $\left\langle c_{32}, c_{2}, d\right\rangle \sim_{G} C$ so $c_{31} c_{11} \sim_{G} f_{2}$ (note that $\left.c_{31} c_{11} \in G_{3}-O\right)$. We show now that $\left[\left\langle c_{31} c_{11}\right\rangle, M\right]=K$. As above, $\left[C_{M}(u)\right.$, $\left.\left\langle c_{31} c_{11}\right\rangle\right]=\left\langle c_{2}, d\right\rangle$ and $\left[c_{11} c_{31}, c_{1}\right] \in D-\langle d\rangle$. Since R has 9 conjugates in M, c_{12} has 81 conjugates in M. Now $\left[\left\langle c_{12}\right\rangle, K\right]=D,\left[c_{11}, c_{12}\right]=1,\left[c_{12}, c_{32}\right] \in$ $\left\langle c_{2}, d_{1}\right\rangle$, and $\left[\left\langle c_{12}\right\rangle, M\right] \subset D_{23}$. Thus $\left[c_{31}, c_{12}\right] \in D_{23}-\left\langle c_{2}, D\right\rangle$, whence $\left[c_{31} c_{11}, c_{12}\right] \in D_{23}-\left\langle c_{2}, D\right\rangle$. Finally $\left[c_{31} c_{11}, c_{32}\right] \in c_{1}^{ \pm 1} D_{23}$ which proves $\left[\left\langle c_{31} c_{11}\right\rangle, M\right]=K$. Thus all elements of $c_{31} c_{11} K$ are conjugate to $c_{31} c_{11}$ in M, and $\left|C_{N}\left(c_{31} c_{11}\right)\right|=2 \cdot 3^{4}$.
From (i) above, $c_{11} K$ only contains elements of order three conjugate to one of c_{1}, c_{2}, c_{3} in G. Hence we have determined that if $m \in M^{*}$ then m is conjugate in G to one of $c_{1}, c_{2}, c_{3}, f_{1}, f_{2}, c_{31} c_{1}$.
It remains to consider $G_{3}-M$. In $N_{G}\left(G_{3}\right)=G_{3}\langle u, z\rangle, \quad c_{4}(M \cap O)$, $c_{11}(M \cap O), c_{11} c_{4}(M \cap O)$ have 2, 2, 4 conjugates, respectively. As all nontrivial cosets of C_{3} in M are conjugate to $c_{12} C_{3}$ it is only necessary to consider $c_{11} c_{4}(M \cap O)$. From the structure of $G_{3}\langle u, z\rangle / D_{23}$ it follows that $c_{4} c_{11}(M \cap O)$ consists of three conjugacy classes of cosets modulo D_{23} with representatives $c_{4} c_{11} D_{23}, c_{4} c_{11} c_{32} D_{23}, c_{4} c_{11} c_{32}^{-1} D_{23} \sim_{N}\left(c_{4} c_{11} c_{32}\right)^{-1} D_{23}$. Further, as $\left[\left\langle c_{4}\right\rangle, M\right] \nsubseteq C_{M / K}\left(c_{4}\right),\left(c_{4} c_{11} c_{32}^{\epsilon}\right) D_{23}$ has order $9, \epsilon=0,1,-1$. It is easily seen that $C_{N}\left(c_{4} c_{11} c_{32}^{\epsilon}\right) \subseteq\left\langle c_{31}, K\right\rangle$ and that $C_{K}\left(c_{4} c_{11} c_{32}^{\epsilon}\right)=\langle d\rangle$. An easy computation yields that for each $\epsilon \in\{0, \pm 1\}$, $\left[c_{4} c_{11} c_{32}^{\epsilon}, c_{31}\right] \in\left\langle c_{21}, D\right\rangle-D$ whence $\left(c_{4} c_{11} \epsilon_{31}\right)^{3} \in$ $c_{31}^{\alpha} c_{1}^{\beta} D_{23}, \alpha, \beta \in\{ \pm 1\} ;$ i.e., $\left(c_{4} c_{11} c_{32} \xi^{3} \sim_{G} c_{31} c_{1}\right.$. Thus $C_{6}\left(c_{4} c_{11} c_{32}^{\epsilon}\right)=$ $\left\langle c_{4} c_{11} c_{32}^{\epsilon}\right\rangle$ of order $27, \epsilon \in\{0, \pm 1\}$.
(4.4) Let $f_{i} \in C_{G}\left(c_{3}\right), i=3,4,5$ with $f_{3} \sim_{G} c_{31} c_{1}, f_{4} \sim_{G} c_{4} c_{11}, f_{5} \sim_{G}$ $c_{4} c_{11} c_{31}$, and $f_{3}{ }^{3}=c_{3}, f_{4}{ }^{3}=f_{5}{ }^{3}=f_{3}$. Then the group G contains precisely three classes of elements of order 3 with representatives c_{1}, c_{2}, c_{3}; three classes of elements of order 9 with representatives f_{1}, f_{2}, f_{3}; and three classes of elements of order 27 with representatives f_{4}, f_{5}, f_{5}^{-1}. Further, $\left|C_{G}\left(f_{i}\right)\right|=2^{3} \cdot 3^{6}$, $2 \cdot 3^{4}, 3^{6}, 3^{3}, 3^{3}$ for $i=1,2,3,4,5$, respectively.

Remark. Recall that $C_{2}=\left\langle c_{32}, c_{31} c_{11}^{1}, K\right\rangle$ is a Sylow 3 -subgroup of $C_{6}\left(c_{2}\right)$ and $\left[C_{2}, K\right] \subseteq D$. A simple computation yields $\left[c_{32}, c_{31} c_{11}^{-1}\right] \in\left\langle c_{1}, c_{3}, D\right\rangle$; i.e., $c_{2} \notin C_{2}^{\prime}$. Hence Gaschutz' theorem [6, S.I.17.4] yields $C_{6}\left(c_{2}\right) \cong Z_{3} \times G_{2}(3)$, a result not needed in this paper.

5. The Conjugacy Classes of π-Elements of G

Let $\pi=\{2,3,5,7,13\}$ and let π^{\prime} denote the complementary set of primes.
Set $C_{H}(b)=B \times\left\langle v_{1}, v_{2}\right\rangle\left\langle c_{1}\right\rangle, N_{H}(B)=\langle w\rangle C_{H}(b)$ with $\left\langle v_{1}, v_{2}\right\rangle \cong Q_{8}$ and $w^{2} \in C\left(c_{1}\right) \cap N_{H}(B)$. Thus w^{2} is of order four and without loss we choose $w^{2}=v$ and $v_{1}{ }^{w}=v_{1}^{-1}, v_{2}{ }^{w}=v_{1} v_{2}$ (note that $N_{H}(B) /\langle B, v\rangle \cong \Sigma_{4}$). Hence as $v_{1} \sim_{H} v_{1}^{-1}$ and $v_{1} J \sim_{H} v J$ we see that $v J$ contains precisely one class of elements of order four with square $z($ in $H)$.
(5.1) The group G contains two classes of elements of order four with representatives $r_{1}, v\left(\left|C_{G}(v)\right|=2^{9} \cdot 3 \cdot 5\right)$ and two classes of elements of order eight with representatives $u s_{1}, w$ where $\left(u s_{1}\right)^{2}=r_{1}, w^{2}=v$, and $\left|C_{G}\left(u r_{1}\right)\right|=$ $2^{2} \cdot 3,\left|C_{G}(w)\right|=2^{5} \cdot 3$.

Proof. The statement about the elements of order four follows from Section 3 and the remarks above. As $C_{H}\left(r_{1}\right) / C_{J}\left(r_{1}\right) \cong \operatorname{Aut}(\operatorname{PSL}(2,8))$, if $h^{2}=r_{1}$ and $h \in H$ then h is conjugate to an element in $u s_{1} C_{J}\left(r_{1}\right)$. It is straightforward to verify (see (3.5)) that $u s_{1} C_{J}\left(r_{1}\right)$ contains only one class of elements of order 8 with square r_{1} in $\left\langle u s_{1}, C_{J}\left(r_{1}\right)\right\rangle$ and that $\left|C_{H}\left(u s_{1}\right)\right|=2^{7} \cdot 3$.

It remains to consider $w C_{J}(v)$ (using the notation above). As $w \in N_{H}(B)-$ $C_{H}(B), C_{J}(w)$ is elementary of order 8 and $w C_{J}(v)$ contains two classes of elements with square v in $\left\langle w, C_{J}(v)\right\rangle$. These classes have representatives $w, w z$. However, as $w^{v_{1}}=w z$ and $v_{1} \in C_{H}(v)\left(v_{1} \in C_{H}(b)\right)$ we have that there is one class of elements of order 8 with square v and also $\left|C_{H}(w)\right|=2^{5} \cdot 3\left(\left|C_{B}(\bar{w})\right|=2^{3} \cdot 3\right)$.
(5.2) We have $N_{G}(B)=O_{5}\left(C_{G}(b)\right) \cdot N_{H}(B)$ and $O_{5}\left(C_{G}(b)\right)$ is either nonAbelian of order 5^{3} and of exponent 5 or equal to B. In any case $O_{5}\left(C_{G}(b)\right)$ is a Sylow 5-subgroup of G and G contains one class of elements of order 5 .

Proof. If $C_{C}(b) \subseteq H$ there is nothing to prove, so suppose $C_{G}(b) \nsubseteq H$. The Brauer-Suzuki theorem [1] yields $C_{G}(b)=O\left(C_{G}(b)\right) \cdot C_{H}(b)$ and as $C_{G}(b) \cap$ $C_{G}\left(c_{1}\right) \subseteq H, O\left(C_{G}(b)\right)$ is a $\{2,3\}^{\prime}$-group. Hence Proposition 2 applied to the 4-group $\left\langle v v_{1}, z\right\rangle$ acting on $O\left(C_{G}(b)\right)$ yields that $O\left(C_{G}(b)\right)$ is of order 5^{3} (note that $\left.v v_{1} \sim_{N(B)} v v_{1} z\right)$.

Set $C\left(v v_{1}\right) \cap O\left(C_{G}(b)\right)=\left\langle b_{1}\right\rangle\left(\sim_{G}\langle b\rangle\right)$. If $O\left(C_{G}(b)\right)$ is non-Abelian then b_{1} has 120 conjugates in $N_{G}(B)$ and we are done. It remains to show $O\left(C_{G}(b)\right)$ is not Abelian. If $O\left(C_{G}(b)\right)$ is Abelian, $b, b_{1}, b b_{1}$ have 4, 24, 96 conjugates, respectively, in $N_{G}(B)$. It follows that $N_{G}(B)=N\left(O\left(C_{G}(b)\right)\right)$, which implies $O\left(C_{G}(b)\right)$ is a Sylow 5-subgroup of G. This contradicts Burnside's lemma [4, Theorem 7.1.1], however, as $b \sim_{G} b_{1}$. Thus $O\left(C_{G}(b)\right)$ is non-Abelian as required.
(5.3) A Sylow 7 -subgroup of G has order 7^{2} and G has either one class of elements of order 7 with representative a or two classes of elements of order 7 with representatives a, a_{2}, where $\left|C_{G}\left(a_{2}\right)\right|=7^{2}$.

Proof. Recall from (3.13) that $C_{G}(a)=\langle a\rangle \times L$, where $L \cong P S L(2,7)$. Let
$\left\langle a_{1}\right\rangle$ be a Sylow 7 -subgroup of L with $u \in N\left(\left\langle a_{1}\right\rangle\right) \cap N_{G}(A)$. Then $3\left|\left|C_{G}\left(a_{1}\right)\right|\right.$ so $a \sim_{G} a_{1}$ and u inverts a_{1}. Let $A_{1}=\left\langle a, a_{1}\right\rangle$, a Sylow 7-subgroup of $N_{G}(A)$. We see that $N\left(A_{1}\right) \cap N_{\sigma}(A) / A_{1} \cong Z_{2} \times Z_{3} \times Z_{3}$ and $a, a_{1}, a a_{1}, a a_{1}^{-1}$ have $6,6,18,18$ conjugates, respectively, in $N_{G}(A) \cap N_{G}\left(A_{1}\right)$. As $a \sim_{G} a_{1}, 7 \nmid$ $\left|N_{G}\left(A_{1}\right): A_{1}\right|$, whence A_{1} is a Sylow 7 -subgroup of G. By Burnside's lemma [4, Theorem 7.1.1] $a \sim a_{1}$ in $N_{G}\left(A_{1}\right)$, which leads to two cases:
(x) $a \sim_{G} a a_{1}$ and all elements of $A_{1} \#$ are conjugate in $N_{G}\left(A_{1}\right)$; i.e., $\left|N_{G}\left(A_{1}\right): A_{1}\right|=2^{4} \cdot 3^{2}$ and G has one class of elements of order 7.
(B) $a \chi_{G} a a_{1}$, so a, $a a_{1}$ have 12,36 conjugates, respectively, in $N_{G}\left(A_{1}\right)$; i.e., $\left|N_{G}\left(A_{1}\right)\right|=2^{2} \cdot 3^{2} \cdot 7^{2}$ and G has two classes of elements of order 7 with representatives $a, a_{2}=a a_{1}$.

It remains to show that in case $(\beta), C_{G}\left(a_{2}\right)=A_{1}$. By Burnside's transfer theorem [4, Theorem 7.4.3] $C_{G}\left(a_{2}\right) \mid\left\langle a_{2}\right\rangle$ has a normal 7-complement $X \mid\left\langle a_{2}\right\rangle$. However, $\langle u, a\rangle\left(\cong D_{14}\right)$ acts on $X /\left\langle a_{2}\right\rangle$ and both u, a must act fixed-point-free. Thus $X=\left\langle a_{2}\right\rangle$ as required.
(5.4) If $\langle l\rangle$ is a Sylow 13-subgroup of $C_{G}\left(c_{2}\right)$ then $\langle l\rangle$ is a Sylow 13-subgroup of G. Further, $N_{G}(\langle l\rangle) \subseteq N_{G}\left(\left\langle c_{2}\right\rangle\right)$ so that $N_{G}(\langle l\rangle) /\left\langle c_{2}\right\rangle$ is a Frobenius group of order $13 \cdot 12$ (and clearly $N_{G}(\langle l\rangle)$ covers $N_{G}\left(\left\langle c_{2}\right\rangle\right) / C_{G}\left(c_{2}\right)$).

Proof. It follows from the structure of $G_{2}(3)$ and the Frattini argument that $N\langle l\rangle \cap N_{G}\left(\left\langle c_{2}\right\rangle\right) \mid\left\langle c_{2}\right\rangle$ is a Frobenius group of order 13•12. The structure of H now yields that a Sylow 3-subgroup Y of $N(\langle l\rangle) \cap N_{G}\left(\left\langle c_{2}\right\rangle\right)$) is elementary (of order 9). Burnside's transfer theorem [4, Theorem 7.4.3] yields that $C_{G}(l)$ has a normal 3-complement X. As X is Y-invariant, X is a π-group and so X is a 13-group, by our previous results.

Let $N_{G}(\langle l\rangle)=X \cdot Y \cdot V$, where $Y \cdot V$ is a Hall $\{2,3\}$-subgroup of $N_{G}(\langle l\rangle)$ (of order $2^{2} \cdot 3^{2}$). Without loss we may assume $Y \cdot V \subseteq C_{H}\left(c_{2}\right)$ and further, $Y \subseteq C$. Then $V=\left\langle v^{\prime}\right\rangle, Y=\left\langle c_{2}, c_{1}{ }^{\prime}\right\rangle$, where $\left[v^{\prime}, c_{1}{ }^{\prime}\right]=1, v^{\prime} \sim_{H} v$, and $c_{1}{ }^{\prime} \sim_{H} c_{1}$. Hence $\left(c_{2} c_{1}{ }^{\prime}\right)^{v^{\prime}}=c_{2}^{-1} c_{1}{ }^{\prime}$ and so $c_{2} c_{1}{ }^{\prime} \sim_{H} c_{3}$. It follows immediately from (4.2) and (4.3) that $X=\langle l\rangle$. This completes the proof of (5.4).

We conclude this section by listing the classes of π-elements of G. First, set $|\boldsymbol{G}|=g$ and let g_{σ} denote the σ-part of g for any set of primes σ. We have showed that there are two possibilitics for g_{π} :

Case I. $g_{\pi}=2^{15} \circ 3^{10} \circ 5^{3} \circ 7^{2} \circ 13$.
Case II. $\quad g_{\pi}=2^{15} \circ 3^{10} \circ 5 \circ 7^{2} \circ 13$.

6. The Order and π^{\prime}-Classes of \boldsymbol{G}

From the class equation for G and the table of classes of π-elements of G we obtain a congruence for $g_{\pi}{ }^{\prime}$ in each of the four cases of Section 5:

$$
\begin{array}{ll}
g_{\pi^{\prime}} \equiv 589=19 \circ 31\left(g_{\pi}\right) & \text { in Case } \mathrm{I}(\alpha), \\
g_{\pi^{\prime}} \equiv 6,288,482,304,589\left(g_{\pi}\right) & \text { in Case } \mathrm{I}(\beta), \\
g_{\pi^{\prime}} \equiv 1,232,542,546,309\left(g_{\pi}\right) & \text { in Case } \mathrm{II}(\alpha), \\
g_{\pi^{\prime}}=4,376,783,698,309\left(g_{\pi}\right) & \text { in Case } I \mathrm{I}(\beta) .
\end{array}
$$

Let

$$
\sigma=\left\{p \in \pi^{\prime} \mid G \text { contains a strongly real element of order } p\right\} .
$$

TABLE I
Conjugacy Classes of π-Elements of G

x	$\|x\|$	$\left\|C_{G}(x)\right\|$	x	$\|x\|$	$\left\|C_{G}(x)\right\|$
z	2	$2^{15} \cdot 3^{4} \cdot 5 \cdot 7$	$z b$	10	$2^{3} \cdot 3 \cdot 5$
r_{1}	4	$2^{11} \cdot 3^{3} \cdot 7$	vb	20	$2^{2} \cdot 5$
v	4	$2^{9} \cdot 3 \cdot 5$	$z b c_{1}$	30	2.3.5
$u s_{1}$	8	$2^{7} \cdot 3$	$\left(z b c_{1}\right)^{-1}$	30	2.3.5
w	8	$2^{5} \cdot 3$	za	14	$2^{3} \cdot 7$
$z c_{1}$	6	$2^{4} \cdot 3^{3} \cdot 5$	$r_{1} a$	28	$2^{2 \cdot 7}$
$z c_{2}$	6	$2^{6} \cdot 3^{3}$	c_{1}	3	$2^{4} \cdot 3^{7} \cdot 5$
$z c_{3}$	6	$2^{3} \cdot 3^{4}$	c_{2}	3	$2^{6} \cdot 3^{7} \cdot 7 \cdot 13$
$r_{1} c_{2}$	12	$2^{5} \cdot 3^{2}$	c_{3}	3	$2^{3} \cdot 3^{111}$
$\left(r_{1} c_{2}\right)^{-1}$	12	$2^{5} \cdot 3^{2}$	f_{1}	9	$2^{3} \cdot 3^{6}$
$r_{1} c_{3}$	12	$2^{2} \cdot 3^{3}$	f_{2}	9	$2 \cdot 3^{4}$
$v c_{1}$	12	$2^{3} \cdot 3$	f_{3}	9	3^{6}
$z f_{1}$	18	$2^{3} \cdot 3^{2}$	f_{4}	27	3^{3}
$z f_{2}$	18	2.3 ${ }^{2}$	f_{5}	27	3^{3}
$u_{1} c_{2}$	24	$2^{3} \cdot 3$	f_{5}^{-1}	27	3^{3}
$\left(u s_{1} c_{2}\right)^{-1}$	24	$2^{3} \cdot 3$	$c_{1} b$	15	$2 \cdot 3 \cdot 5$
$w c_{1}$	24	$2^{3} \cdot 3$	$\left(c_{1} b\right)^{-1}$	15	2-3.5
$\left(w c_{1}\right)^{-1}$	24	$2^{3} \cdot 3$	$c_{2} a_{1}$	21	$3 \cdot 7$
$r_{1} f_{1}$	36	$2^{2} \cdot 3^{2}$	$c_{2} l$	39	$3 \cdot 13$
$s_{1} f_{1}$	36	$2^{2} \cdot 3^{2}$	$\left(c_{2} l\right)^{-1}$	39	3-13
$\left(s_{1} f_{1}\right)^{-1}$	36	$2^{2} \cdot 3^{2}$	l	13	3-13
a	7	$2^{3} \cdot 3 \cdot 7^{2}$			
b	5	$2^{3} \cdot 3 \cdot 5^{3}$	(Case I)		
		$2^{3} \cdot 3 \cdot 5$	(Case II)		
a_{1}	7	7^{2}	Case (β)		

(6.1) There exist disjoint subsets $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ of σ and subgroups P_{i} of G such that
(i) $\sigma=\sigma_{1} \cup \sigma_{2} \cup \cdots \cup \sigma_{n}$.
(ii) P_{i} is an Abelian Hall σ_{i}-subgroup of G and a T.I. set.
(iii) $P_{i}=C_{G}(x)$ for all $x \in P_{i}{ }^{\#}$.
(iv) $N_{G}\left(P_{i}\right)$ is a Frobenius group with complement of even order.

Proof. See Lyons [8].
It follows from (6.1) that G contains precisely $\lambda_{i}=\left|P_{i}\right|-1 /\left|N_{G}\left(P_{i}\right): P_{i}\right|$ classes of σ_{i}-elements. By a result of Brauer and Fowler [2, (29.7)] $g /|H|^{2} \leqslant$ $30+\sum_{i=1}^{n} \lambda_{i}$, as G has at most 30 classes of real π-elements (see Section 5). Thus $g_{\pi^{\prime}} \leqslant\left(\left.|H|\right|^{2} / g_{\pi}\right)\left(30+\sum_{i=1}^{n} \lambda_{i}\right)$, from which it follows that

$$
\begin{align*}
& g_{\pi^{\prime}}<57\left(30+\sum_{i=1}^{n} \lambda_{i}\right) \quad \text { in Case I, } \tag{*}\\
& g_{\pi^{\prime}}<1401\left(30+\sum_{i=1}^{n} \lambda_{i}\right) \quad \text { in Case II. }
\end{align*}
$$

Now $\lambda_{i} \leqslant\left|P_{i}\right| \mid 2,\left(\left|P_{i}\right|,\left|P_{k}\right|\right)=1$ for $i \neq k,\left|P_{1}\right| \cdots\left|P_{n}\right| \mid g_{\pi^{\prime}}$, and each $\left|P_{i}\right|$ is a π^{\prime}-number. These facts and Eq. (*) yield $n \leqslant 2$ in Case I and $n \leqslant 4$ in Case II.

Suppose $g_{\pi^{\prime}}>g_{\pi}$, so that by $\left(^{*}\right) \sigma$ is nonempty. Clearly we may assume λ_{1} is the largest of the λ_{i}. Then our assumption and $\left(^{*}\right)$ yield $\lambda_{1}>|H| \geqslant\left|C_{G}(x)\right|$ for any nonidentity π-element x (in both cases).

From (6.1) it follows that there exists a set of λ_{1} exceptional characters χ_{i} which coincide on conjugacy classes not meeting $P_{1}{ }^{\# 1}$ (see [2]). In particular the χ_{i} are rational valued on π-element of G. Hence the orthogonality relations and the fact that $\lambda_{1} \geqslant\left|C_{G}(x)\right|$ for any nontrivial π-element x of G yield $\chi_{i}(x)=0$. 'Ihus $g_{\pi} \mid \chi_{i}(\mathrm{I})$ and so $g \geqslant g_{\pi}{ }^{2} \cdot \lambda_{1}$, or $\lambda_{1} g_{\pi}<g_{\pi^{\prime}}$. Combining this with (${ }^{*}$) yields $\lambda_{1}\left(g_{\pi}-2.57\right)<57.30$ in Case I, and $\lambda_{1}\left(g_{\pi}-4.1401\right)<1401.30$ in Case II. Both inequalities are clearly impossible, so we conclude $g_{\pi^{\prime}}<g_{\pi}$, whence Case $I(\alpha)$ holds (for example by (3.14)).
(6.2) The order of G is $2^{15} \circ 3^{10} \circ 5^{3} \circ 7^{2} \circ 13 \circ 19 \circ 31$.

Finally the π^{\prime}-classes of G are determined immediately by Sylow's theorem.
(6.3) The Sylow 19 -normalizer is a Frobenius group of order 18.19 and the Sylow 31-normalizer is a Frobenius group of order 15.31. The group G contains one class of elements of order 19 and two (nonreal) classes of elements of order 31 .

References

1. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a generalized quaternion group, Proc. Nat. Acad. Sci. 45 (1959), 1757-1759.
2. W. Feit, "Characters of Finite Groups," Benjamin, New York, 1967.
3. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
4. D. Gorenstein, "Finite Groups," Harper and Row, New York, 1968.
5. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math. 6 (1962), 553-593.
6. B. Huppert, "Endliche Gruppen," Vol. I, Springer-Verlag, Berlin/Heidelberg/ New York, 1967.
7. Z. Janko, A characterization of the simple group $G_{2}(3)$, J. Algebra 12 (1969), 360-371.
8. R. Lyons, Evidence for a new finite simple group, J. Algebra 20 (1972), 540-569.
9. J. G. Thompson, to appear.
10. H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Z. 73 (1960), 146-158.
