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Abstract

Drought assessment is a complex undertaking, requiring monitoring of deficiencies in multiple components of the
hydrologic budget.  Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture,
groundwater and surface water anomalies reflect deficiencies in moisture storage.  In contrast, evapotranspiration 
(ET) anomalies provide unique yet complementary information, reflecting variations in actual water use by crops a 
useful diagnostic of vegetation health.  Here we describe a remotely sensed Evaporative Stress Index (ESI) based on 
anomalies in actual-to-reference ET ratio.  Actual ET is retrieved from thermal remote sensing data using a diagnostic
soil-plant-atmosphere modeling system forced by measurements of morning land-surface temperature (LST) rise
from geostationary satellites.  In comparison with vegetation indices, LST is a relatively fast-response variable, with 
the potential for providing early warning of crop stress reflected in increasing canopy temperatures.  Spatiotemporal
patterns in ESI have been compared with patterns in the U.S. Drought Monitor and in standard precipitation-based 
indices, demonstrating reasonable agreement.  However, because ESI does not use precipitation as an input, it 
provides an independent assessment of evolving drought conditions, and is more portable to data-sparse parts of the
world lacking dense rain-gauge and Doppler radar networks.  Integrating LST information from geostationary and 
polar orbiting systems through data fusion, the ESI has unique potential for sensing moisture stress at field scale, with 
potential benefits to yield estimation and loss compensation efforts.  The ESI is routinely produced over the 
continental U.S. using data from the Geostationary Operational Environmental Satellites, with expansion to North 
and South America underway.  In addition drought and ET monitoring applications are being developed over Africa 
and Europe using land-surface products from the Meteosat Second Generation (MSG) platform.
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1. Introduction 

There is a need for robust information about vegetation health and drought impacts over a broad range 
in spatial scales in support of applications from field management to monitoring for global food security.  
Diagnostic soil-plant-atmosphere models constrained by remote sensing can play a critical role in these 
operational efforts.  The agronomic and micrometeorological information encoded in these models adds 
interpretive value to standard drought indicators, which are based primarily on precipitation anomalies.  
These models provide a means to diagnose actual stress experienced by crops and natural vegetation, 
rather than potential for stress as implied by moisture supply deficits alone.   

A key input to diagnostic models of land-surface water use and energy balance is the land-surface 
temperature (LST), which can be retrieved from satellite or airborne observations collected in the thermal 
infrared (TIR) wavebands.  LST captures elevations in stressed canopy and dry soil temperatures that 
convey useful information regarding surface moisture status to land-surface modeling systems (LSMs).  
Prognostic LSMs based on water balance require a significant amount of additional information (e.g., 
rainfall and moisture inputs from irrigation or groundwater, soil texture, plant rooting depth and stress 
response functions) to obtain similar assessments of moisture status and stress.  Furthermore, LST data 
can be collected over range in scales unattainable by prognostic LSMs, which are principally constrained 
by the resolution of the rainfall data.  An optimal drought and crop monitoring system might combine 
both prognostic and diagnostic elements to provide the most reliable signals, particularly under conditions 
of rapid stress onset. 

Here describe the development and assessment of an Evaporative Stress Index (ESI) at continental 
scales, reflecting anomalies in evapotranspiration (ET) retrieved using thermal band imagery from 
geostationary satellite platforms.  We also outline plans for implementation at field scales using data 
fusion techniques, combining LST data collected at higher spatial resolution from polar orbiting systems 
like Landsat.  These multi-scale assessments of anomalous crop water use have potential utility for 
regional drought and crop condition monitoring as well as for water management and yield estimation. 

2. ET Modeling framework 

2.1. ALEXI/DisALEXI 

The ALEXI/DisALEXI surface energy balance model [1,2] (Fig. 1) was specifically designed to 
minimize the need for ancillary meteorological data while maintaining a physically realistic 
representation of land-atmosphere exchange over a wide range in vegetation cover conditions.  It is one of 
few diagnostic land-surface models designed explicitly to exploit the high temporal resolution afforded by 
geostationary satellites.   

Surface energy balance models estimate ET by partitioning the energy available at the land surface 
(RN  G, where RN is net radiation and G is the soil heat conduction flux, in Wm-2) into turbulent fluxes 
of sensible and latent heating (H and , respectively,Wm-2): 
 

                                                                                                                   (1) 
 

where  is the latent heat of vaporization (J kg-1) and E is ET ( kg s-1 m-2 or mm s-1).  The land-surface 
representation in ALEXI model is based on the series version of the two-source energy balance (TSEB) 
model of Norman et al. [3], which partitions the composite surface radiometric temperature, TRAD, into 
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characteristic soil and canopy temperatures, TSTT and TCTT , based on the local vegetation cover fraction 
apparent at the thermal sensor view angle, f(ff :  

(2)

(Fig. 1), where f( ))
approximation to an aggregation of surface radiance values.  With information about TRADTT , LAI, and

separately, computing system and component fluxes of net radiation (RN=RNCNN +RNSNN ), sensible and latentS
heat (H=HCHH +HSHH and C S), and soil heat (S G).  Importantly, because angular effects are
incorporated into the decomposition of TRADTT , the TSEB can accommodate TIR data acquired at off-ff nadir 
viewing angles by geostationary satellites.

Fig. 1 Schematic diagram representing the coupled ALEXI (a) and DisALEXI (b) modeling scheme, highlighting fluxes of sensible
heat (H( ) from the soil and HH c s T), and regulated by transport resistancesTT
Ra (aerodynamic), RxR (bulk leaf boundary layer) and Rs (soil surface boundary layer).  DisALEXI uses the air temperature diagnosed
by ALEXI near the blending height (TATT ) to disaggregate 3 to10-km ALEXI fluxes, given vegetation cover (f(( Ciff (q i)) and directional
surface radiometric temperature (TRADiTT (qi )) information derived from high-resolution remote-sensing imagery at look angles qi. TATT is
iteratively adjusted to ensure that DisALEXI HiHH reaggregates on average to the ALEXI-derived H at the coarse ALEXI pixel scale.

The TSEB has a built-in mechanism for detecting thermal signatures of stress in the soil and canopy. 
An initial iteration assumes the canopy transpiration ( C) is occurring a potential (nonC -moisture limited)
rate, while the soil evaporation rate ( S) is computed as a residual to the system energy budget.  If theS
vegetation is stressed and transpiring at significantly less than the potential rate, C will be 
overestimated and the residual S will become negative.  Condensation onto the soil is unlikely midday 
on clear days, and therefore S<0 is considered a signature of system stress.  Under such circumstances,S
the C is iteratively down-regulated until S~0 (expected under dry conditions).  SS

For regional-scale applications of the TSEB, the air temperature boundary condition, TAT in Fig. 1, must 
be specified at the spatial resolution of the geostationary thermal data (typically 3-10 km).  Due to
localized land-atmosphere feedback, this cannot be accomplished with adequate accuracy using standard
synoptic measurements, with typical spacing in the US of 100 km.  To overcome this limitation, the
TSEB has been coupled with an atmospheric boundary layer (ABL) model, thereby simulating land-
atmosphere feedback internally.  In the ALEXI model, the TSEB is applied at two times during the
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morning ABL growth phase (between sunrise and local noon), using TIR data obtained from a
geostationary platform.  Energy closure over this interval is provided by a simple slab model of ABL
development [4], which relates the rise in air temperature in the mixed layer to the time-integrated influx 
of sensible heat from the land surface.  As a result of this configuration, ALEXI uses only time-
differential temperature signals, thereby minimizing flux errors due to absolute sensor calibration and
atmospheric and emissivity corrections [5].  The primary radiometric signal is the morning surface
temperature rise, while the ABL model component uses only the general slope (lapse rate) of the
atmospheric temperature profile [1].

For resolutions requiring higher spatial resolution than that provided by geostationary satellites, the
coarse-scale flux estimates from ALEXI can be spatially disaggregated to micrometeorological scales
resolving the flux sensor footprint (typically ~100 m) using the DisALEXI technique [6-8]. DisALEXI is 
a nested modeling approach that uses air temperature diagnosed by ALEXI along with high resolution
LAI and LST data from polar orbiting satellites to estimate fluxes at finer scales.  The ALEXI air 
temperature boundary is iteratively refined to conserve H at the ALEXI pixel scale (see Fig. 1).

2.2. Data fusion

Thermal satellite systems are typically characterized by either high spatial resolution (i.e., <100 m)
and low temporal resolution (> 16 day revisit e.g., Landsat) or low spatial resolution (1-10 km) and high 
temporal resolution (15 minutes to 1 day e.g., geostationary, MODIS, AVHRR).  To effectively track 
vegetation stress at the field-scale requires monitoring at ~100 m resolution and daily timesteps.  This
requires either a prognostic modeling approach, or fusion of output generated using multiple diagnostic
sensors with differing spatiotemporal characteristics.  The ideal solution may be a combination of these
approaches, for example using data assimilation techniques.

Fig. 2 Comparison of Landsat-only  (red dashed lines) and fused Landsat-MODIS  (solid red lines) reconstructions of a) daily  ET 
and b) cumulative ET with flux observations (blue dots/line) in a soybean field (site 161) from the SMACEX02 field campaign in
central Iowa [9].   Also shown are reference ET (gray lines), and retrieved values on Landsat overpass dates (red boxes). 
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Cammalleri et al. [9] describe a methodology for combining ALEXI/DisALEXI ET retrievals from 
geostationary satellites (yielding diurnal information at 10 km), MODIS (daily snapshot assessments at 1 
km) and Landsat (providing field scale spatial structure at roughly monthly timesteps).  The method uses 
the Spatial and Temporal Adaptive Reflectance Fusion Model [STARFM: 10].  Cammalleri et al. 
demonstrated that, on average, the fused retrievals provide better agreement with flux tower data than 
does a typical Landsat-only temporal interpolation scheme, conserving actual-to-reference ET between 
clear-sky overpasses [e.g., 8].  The main benefit of incorporating the MODIS scale data is realized when a 
rainfall event occurs between Landsat overpasses, and when the cover fraction is relatively low with a 
significant contribution to ET from soil evaporation, as demonstrated in Fig. 2.   

3. Evaporative Stress Index 

Spatial and temporal variations in instantaneous ET at the continental scale are primarily due to 
variability in moisture availability (antecedent precipitation), radiative forcing (cloud cover, sun angle), 
vegetation amount, and local atmospheric conditions such as air temperature, wind speed and vapor 
pressure deficit.  Potential ET describes the evaporation rate expected when soil moisture is non-limiting, 
ideally capturing response to all other forcing variables.  To isolate effects due to spatially varying soil 
moisture availability, a simple Evaporative Stress Index (ESI) has been developed, describing the 
departure of model flux estimates of ET from a reference ET rate expected under non-moisture limiting 
conditions [11,12]. The ESI is computed as standardized temporal anomalies in the ratio of actual to 
reference ET (AET/refET), and shows good correspondence with standard drought metrics and with 
patterns of antecedent precipitation, but at significantly higher spatial resolution due to limited reliance on 
ground observations. This ratio has a value close to 1 when there is ample moisture/no stress, and a value 
of 0 when ET has been cut off due to stress-induced stomatal closure and/or complete drying of the soil 
surface.  It therefore serves as a valuable proxy indicator for available soil moisture [13-16].  Where there 
is vegetation, the proxy reflects information over the full rootzone, while it reflects surface moisture 
conditions (nominally the top 5 cm of soil profile) in areas of very sparse vegetation.   

Anderson et al. [17] tested a variety of widely used scaling fluxes in the formulation of the ESI, and 
found best comparison with precipitation-based metrics and SM anomalies when using the Noah LSM 
using reference ET using the FAO-96 Penman-Monteith formulation [18].  The ESI is routinely generated 
over the continental US (CONUS) at 10-km resolution during the growing season, using ALEXI clear-sky 
ET retrieved shortly before local noon (http://hrsl.arsusda.gov/drought/).  Temporal composites are 
generated for 2, 4, 8 and 12-week windows moving at weekly time steps, then anomalies from long-term 
baseline conditions (currently 2000-2011) for each window are computed, normalized by the standard 
deviation over the baseline period.  The ESI therefore represents sigma values above (wetter) and below 
(drier) normal conditions in the specified ET ratio for every point in the monitoring domain. 

Using high-resolution daily ET datastreams generated using Landsat-MODIS data fusion, as described 
above, the possibility exists to extend the ESI evaluation down to field scales.  This will allow more 
spatially detailed evaluation of the drought resilience/susceptibility of different crops, grown under 
different climatic and edaphic conditions. 

4. Applications 

4.1. Continental scales 

Anderson et al. [11,12,17] compared ESI over CONUS with spatiotemporal patterns in other standard 
drought indices based on precipitation data including the Palmer Drought Severity Index [PDSI: 19], 
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Standardized Precipitation Index [SPI: 20,21], and ensemble ET and soil moisture percentile products 
generated with the prognostic North American Land Data Assimilation System (NLDAS) LSM modeling 
suite [22,23].  In general, good correspondence is observed between anomalies derived from precipitation 
and ET retrievals, and with patterns in the U.S. Drought Monitor [USDM: 24].  Of these indices, ESI 
shows best agreement with the NLDAS soil moisture products.   Differences in behavior between ALEXI 
and NLDAS ET are most notable in the Mississippi River basin, where ALEXI predicts significantly 
lower variability in evaporative flux than do the prognostic LSMs.  This would be expected due to 
localized enhancements in soil moisture from the shallow water table and active irrigation present within 
the basin.  The TIR inputs to ALEXI capture the effects of non-precipitation related moisture inputs 
without the need for ancillary information about water table or irrigation intensity  a benefit for global 
applications where such information is not reliably available. 

The ESI shows particular capacity for capturing rapid onset drought events, sometimes referred to as 
 [25].  Although drought is often thought of as a slowly developing climate phenomenon 

that can take several months or even years to reach its maximum intensity, drought onset can be very 
rapid if extreme atmospheric anomalies persist for several weeks.  Vegetation health can deteriorate very 
quickly if moderate precipitation deficits are accompanied by an intense heat wave, strong winds, and 
sunny skies, as the enhanced ET quickly depletes root zone moisture [26]. The ALEXI energy balance 
scheme incorporates these important driving variables in its evaluation of ET. Furthermore, LST is a 
relatively rapid response variable, which reflects increases in soil and canopy temperatures as soil 
moisture deficits and vegetation stress develop, and in some cases prior to measurable reductions in 
shortwave vegetation indices [27].    

Fig. 3 Monthly maps of USDM drought class, ESI, and VegDRI (left 3 columns).  Right columns show change in USDM class and 
ESI between monthly reports, expressed as normalized anomalies. 
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The early warning potential of the ESI was demonstrated during the flash drought event that occurred
over the central US during 2012, driven by precipitation deficits coupled with a high temperature
anomaly.  Figure 3 compares evolution of drought classifications recorded in the USDM over the growing
season with patterns in the ESI and the Vegetation Drought Response Index [VegDRI: 28], which 
represents drought signals reflected in anomalies in the Normalized Difference Vegetation Index (NDVI).  
Changes in USDM class and ESI values over monthly intervals are also shown.   The ESI shows signals
of stress in what was to become the core of the drought impacted area in May, while significant response
in the USDM and VegDRI in this region did not become apparent until July.  The differential response 
between ESI and USDM is also demonstrated in the change indicators mapped in Fig 3. Routine
generation of ESI change products could benefit USDM classifications by allowing earlier identification 
of emerging areas of drought development.

4.2. Field scales

Over heterogeneous landscapes, the 10-km pixels in the CONUS ESI product will often reflect
integrated response of multiple land-cover types at different phenological stages particularly in 
agricultural regions (see Fig. 4).   To facilitate crop condition monitoring and yield estimation, it will be
important to disaggregate apparent stress signals down to scales of individual farm fields.  At present,
only Landsat provides routine, global TIR imagery at this crucial spatial scale (Fig. 4).  Fusion of 
geostationary/MODIS/Landsat ET datastreams may provide valuable temporal information about 
developing vegetation stress conditions on a field-by-field basis. Timing (i.e. occurrence during the
growing season) and duration of moisture deficits determine effects on crop health and consequently the
yield, since crop susceptibility to drought varies over the growing season.  Even short periods of intense
water stress can lead to significant yield loss and reduced grain quality if they occur during sensitive 
stages in crop development such as emergence, pollination, and grain filling [e.g., 29,30-34].

Fig. 4 Example of disaggregation of geostationary satellite-derived ESI using MODIS and Landsat TIR data.
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Studies are underway to analyze correlations between spatiotemporal stress information conveyed by 
the 10-km ESI with monthly county-level crop condition and at-harvest yield datasets collected by the 
National Agricultural Statistics Service (NASS).   We would expect these correlations to improve at 
spatial resolutions where response of individual crop types can be isolated.  Reliable precipitation data at 
these spatial scales are particularly difficult to obtain, underscoring the value of diagnostic TIR-based 
monitoring techniques.   In other work, we are assessing means to integrate daily AET/refET datastreams 
from ALEXI/DisALEXI with crop modelling systems like the  decision support system for 
agrotechnology transfer [DSSAT: 35], either through daily reinitialization of model soil moisture 
variables or through data assimilation techniques.  An integrated DSSAT-ESI system would facilitate 
gridded implementation of crop models in regions with limited availability of soils and precipitation data. 

5. Conclusions  

A multi-sensor, multi-scale approach to mapping ET and moisture stress using thermal remote sensing 
data from both geostationary and polar-orbiting satellite platforms has been described.  Global 
implementation of the ALEXI modeling system requires collation and cross-calibration of imagery from 
multiple geostationary platforms operated by many different countries.  Fortunately, archives of global 
geostationary data are now being constructed to support global monitoring applications.  Two projects 
supporting this effort include the International Satellite Cloud Climatology Project (ISCCP) B1 data 
rescue project [36] instigated by NOAA, and the Geoland2 project under the European GMES (Global 
Monitoring for Environment and Security) initiative [37].   

For field-scale monitoring, we are limited by the availability and temporal frequency of global high-
resolution (100 m) TIR imaging systems.  The Landsat Data Continuity Mission (LDCM, or Landsat 8) 
was successfully launched on 11 February 2013.  Landsat 8 will provide high-quality TIR and shortwave 
data globally with a 16-day revisit, supplementing datasets currently collected by Landsat 7, which have 
provided incomplete scene coverage due to a scan-line corrector failure since 2003.  However, LDCM has 
a design life of 5 years, and currently there is no funding in place in the U.S. for construction and launch 
of a follow-on mission.  International cooperation in developing a constellation of similar TIR imaging 
missions would help to avoid gaps in global TIR coverage and water use estimates at the critical field 
spatial scale, and to significantly improve temporal sampling. 
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