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Abstract

We consider the Pruess method to solve the Sturm±Liouville eigenvalue problem.

Superconvergence of the method for the relative error of an eigenvalue is examined with

respect to its index. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

The Pruess method has been widely used in numerical computation with
Sturm±Liouville problems because of its good convergence behavior. In many
practical cases, where there is a need to determine the ®rst n (n� 1) eigen-
values (e.g., various earth models in [1,32]), it seems to be better than stan-
dard techniques, such as ®nite di�erence and variational methods. It is known
from the theorems of Keller (see [16]) and Fix±Strang±Vainikko (see
[28,30,31]) that the eigenvalue approximation deteriorates as the index k
increases.
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On the other hand, we know (see [15,17]) that upper bounds for the absolute
and relative sensitivity of eigenvalues for the Sturm±Liouville operator in
normal form (LNF) are independent of k; thus the problem is perfectly posed
for each eigenvalue regardless of its index. Following [11,24] it can be proved
that in the case of LNF the Pruess method is consistent with the (absolute,
relative) spectral continuity of these kinds of operators. When the Sturm±
Liouville equation is in its full form the situation is di�erent. Pruess proved that
under mild conditions on the operator coe�cients the relative error
�kh

k ÿ kk�=kk

�� �� � O hm�1� �, where h denotes the mesh size and m is the degree of
polynomials interpolating coe�cient functions. The relative error is indepen-
dent of k.

In this paper we prove that when the approximation of coe�cients satis®es a
superconvergence condition from [24] (cf. condition (11) in Theorem 6) then
the relative accuracy can be doubled with the dependence of k being of order
m� 1. Numerical results are also provided which show the behavior of error
estimates.

2. Notation and the case of the Liouville normal form

Suppose that

D � fu 2 H 2 a; b� � : au a� � � a0u0 a� � � 0; bu b� � � b0u0 b� � � 0g:

The constants a; a0; b; b0 are assumed to be real with a2 � a02 6� 0, b2 � b02 6� 0,
and the interval a; b� � is ®nite.

For u 2 D, let

Lu � ÿ u00 � qu;
~Lu � ÿ u00 � ~qu;

where the real-valued functions q; ~q are assumed to belong to the piecewise
continuous functions PC a; b� �� �. Now consider the eigenvalue problems for
operators L and ~L:

Lu � ku; u 2 D; �1�
~Lu � ~ku; u 2 D: �2�

It is known that the operators L and ~L are self-adjoint (see [27]), and eigen-
systems (1) and (2) with the separated boundary conditions given, are regular
and have sequences of simple real distinct eigenvalues fkkg1k�1, f~kkg1k�1 such
that

k1 < k2 < k3 < � � � and ~k1 < ~k2 < ~k3 < � � � ;
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and corresponding sequences of orthonormal eigenfunctions ukf g1k�1, ~ukf g1k�1

such that ukk k2 � ~ukk k2 � 1 (see [7,18]). To simplify our discussion it helps to
assume that L is positive de®nite which, in view of the Courant±Fischer±
Poincar�e min±max theorem, is equivalent to having the lowest eigenvalue
k1 > 0. This can be achieved by replacing q x� � by q x� � � k�, where k� is such
that k� � k1 > 0; this just shifts all the eigenvalues up by k� without essentially
changing the problem. Let F denote the bounded symmetric operator Fu �
�~qÿ q�u de®ned for u 2 L2 a; b� �. With this notation we have the following
theorems (see [15,17,25]).

Theorem 1. If ~qÿ qk k1 � supx2 a;b� � ~q x� � ÿ q x� �j j6 e, then ~kk ÿ kk

�� ��6 e for each
k � 1; 2; 3; . . .

Theorem 2. Under the above assumption the following inequality holds for each
k � 1; 2; 3; . . .,

~kk ÿ kk

kk

�����
�����6 q Lÿ1F

ÿ �
; �3�

where q :� � denotes the spectral radius.

Remark 1. The important note here is that the estimation in Theorem 1 is
sharp and the bound with the L2-norm is not valid (see [17]).

Remark 2. From the asymptotics of kk it is evident that the relative error is a
decreasing function of k. So one could expect it would be possible to strengthen
(3), according to the principle of related operators for Riesz operators (see
[23]), to �~kk ÿ kk�=kk

�� ��6 kk Lÿ1F� �j j, k � 1; 2; . . . However this may not be true
in general (see [23] for more details). Similar problems in the ®nite dimensional
space have been recently investigated in [10,13,26].

When using the most prevalent of existing methods for approximating the
solution of (1), i.e. conforming ®nite element [6,8,14,21,22,33] or ®nite di�er-
ences [12,29], we reduce the problem (1) to a ®nite-dimensional algebraic ei-
genvalue problem; for a numerical treatment of a generalized symmetric matrix
eigenproblem we refer the reader to [20]. Unfortunately resulting errors (ab-
solute, relative) are not uniformly bounded with respect to k. To be more
precise we can state the following two theorems.

Theorem 3 [16]. There exists a positive constant C independent of k and h such
that for the centered difference scheme (CDS)

kh
k

�� ÿ kk

��6Ck2
kh2; k � 1; . . . ;N ;

where N is the dimension of the algebraic eigenvalue problem.
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Theorem 4 [28,30,31]. If Sh is a finite element space of degree d ÿ 1, then there
is a constant C such that the approximate eigenvalues are bounded for small h by

kk 6 kh
k 6 kk � Ckd

k h2 dÿ1� �:

The constant C does not depend on k and the above estimates are the best pos-
sible.

As a direct consequence we see for the CDS and FEM with hat functions
that these two methods are of the order of O k2

kh2
ÿ �

and calculating k10 gives us
104 worse approximation than k1. Yet the upper bounds for operators in LNF
are independent of k . This anomaly, called the phenomenon of finite element
eigenvalues in the book of Fix and Strang [28], is a consequence of the fact that
the eigenfunctions become more oscillatory as the eigenvalue kk increases.
Since each ®nite dimensional algebraic method relies on a ®xed-order piecewise
polynomial (or just Taylor's series) approximation of the eigenfunction, it is to
be expected that approximation of the Rayleigh quotient, and hence the ac-
curacy of eigenvalues will deteriorate as k increases.

Remark 3. There is a technique of asymptotic correction AAdHP introduced
by Paine in 1979 in which kh

k is replaced by ~kh
k�: kh

k � eh
k , where eh

k is the (known)
exact error for the case q � 0, k � 1; . . . ;N . One proves that when q 2 C2 there
exists an a, independent of h, such that kh

k ÿ kk

�� �� � O kh2� �, 16 k6 aN , a < 1.
So this kind of correction is not uniformly valid for all eigenvalues but greatly
improves the accuracy of eigenvalues computed by ®nite di�erence schemes or
®nite element methods at negligible extra cost. For a fuller treatment we refer
the reader to [2±5,19].

3. The Pruess method

This section is concerned with approximating the eigenvalues of the regular
Sturm±Liouville problem in the full form

ÿ�pu0�0 � qu � kru; p > 0; r > 0; x 2 a; b� �; �4�

with separable linear homogeneous boundary conditions given in D. About the
real-valued coe�cient functions we assume that p 2 C1 a; b� �� �, q; r 2 C a; b� �� �.
An alternative approach is based on approximating the di�erential equation
itself and on ®nding approximate eigenfunctions uh

k � uh
k x� � in an in®nite di-

mensional subspace of H 1. Speci®cally we replace p, q and r in (4) by the ap-
proximations pp, qp and rp respectively and solve the approximating problem
exactly. Let us neglect, for the time being, the di�culties associated with
solving the perturbed equation and look at some feature of such an approach.

328 P. Kosowski / Linear Algebra and its Applications 309 (2000) 325±337



Potentially, for a given regular approximation, we can obtain an in®nite se-
quence of eigenvalues. It is not clear, however, what e�ect these perturbations
of the coe�cients will have on the eigenvalues (for the LNF form we can use
Theorems 1 and 2), nor is it obvious that it will be easier to solve than the
original problem. Pruess has shown (see [24]) that for piecewise mth order
polynomial interpolation of the coe�cient on a grid with maximum stepsize h,

kh
k

�� ÿ kk

��6C kkj jhm�1; h < h0: �5�
An enhanced convergence result, given in the same paper, states that if pp, qp,
rp interpolate to p, q and r at the Gaussian points of each mesh interval then (5)
improves to

kh
k

�� ÿ kk

��6O h2m�2
ÿ �

; as h! 0:

Unfortunately this estimation does not provide information about the deteri-
oration of the absolute error when k increases. Paine and de Hoog [11] stated
without proof that

kh
k

�� ÿ kk

��6 ka
k

�� ��h2m�2; h < h0 k� �; �6�
where

a � max 1

�
� 1

2
m; 3

�
:

For the problems in Liouville normal form it is known that for k, which is
not a multiple of the mesh size N the midpoint Pruess method is of order
kh

k ÿ kk

�� �� � O h2� �; on the other hand for k ' lN (l � 1; . . . ; N=2pÿ 1d e) then
there are the O h� � peaks (for more details see Theorem 3.1 in [11]). For the
case of the problem in full form the situation presents a more delicate
problem and for the piecewise constant midpoint (PWCM) approximation
bound (6) gives

kh
k

�� ÿ kk

��6Ck3
kh2:

On the other hand the ®rst simple bound (5) gives

kh
k

�� ÿ kk

��6Ckkh;

so the bound (6) must be pessimistic for large k. In this paper we would like to
give a sketch of a proof of the de Hoog±Paine estimation (6) of the absolute
error for the approximation, which satis®es the superconvergence condition.
Yet another approach allows us to strengthen the bound (6) for the lowest
degree of approximation. The proof is adapted from [24] so we follow its
notations: P is the set of all partitions of a; b� � having the form p �

a � x1 < x2 < � � � < xN�1 � bf g, for any p 2 P, let h � max16 n6N xn�1 ÿ xn� �
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and Pm is the space of all polynomials of degree at most m. Since there is some
inconvenience with the domain of the di�erential Sturm±Liouville operator
when the function p � p x� � has jump discontinuities we will use a weak vari-
ational formulation.

Let

V �

H 1 a; b� �; when a0 6� 0; b0 6� 0;

u 2 H 1 a; b� � : u b� � � 0f g; when a0 6� 0; b0 � 0;

u 2 H 1 a; b� � : u a� � � 0f g; when a0 � 0; b0 6� 0;

H 1
0 a; b� �; when a0 � 0; b0 � 0:

8>>>><>>>>:
The variational problem of (4) is to ®nd a number k and u 6� 0 in V such that

a u; v� � � k u; v� � 8v2V; �7�
where

a u; v� � � ÿ a#p a� �u a� �v a� � � b#p b� �u b� �v b� � �
Z b

a
pu0v0
ÿ � quv

�
dx;

u; v� � �
Z b

a
ruv dx;

where a# � 0, if a0 � 0, else a# � a=a0; similarly b# � 0, when b0 � 0 and
b# � b=b0 in the other case.

De®nition 1. For p, q, r 2 Cm�1 a; b� �� �, by the mth degree approximate problem
(Pruess method) we mean that of ®nding kh

k , uh 6� 0 in V such that

ap uh; v
ÿ � � kh uh; v

ÿ �
p
8v2V; �8�

where the bilinear form ap :; :� � is de®ned as follows

ap u; v� � � ÿa#p a� �u a� �v a� � � b#p b� �u b� �v b� � �
Z b

a
ppu0v0
ÿ � qpuv

�
dx;

and the scalar product

u; v� �p �
Z b

a
rpuv dx:

The functions pp, qp, rp are de®ned by the following rule:
· let Q be a continuous linear projection from C ÿ1; 1� �� � into Pm. For each

®xed partition p 2 P consisting of the intervals xn; xn�1� �, n � 1; 2; . . . ;N ,
we de®ne pp x� �, qp x� �, rp x� �, on the union of these intervals, by formulas

pp x� � � Q p x t� �� �� �; qp x� � � Q q x t� �� �� �; rp x� � � Q r x t� �� �� �;
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where for x 2 xn; xn�1� � : x � x t� � � 1
2

xn�1 ÿ xn� � t � 1� � � xn, for suitable
t 2 ÿ1; 1� �.

This de®nition is more suitable in our settings, since the space V remains the
same for variational eigenvalue formulation for forms a :; :� � and ap :; :� �, thus
we can use min±max theorems simultaneously. Moreover, as V � L2 a; b� � is
continuously, densely and compactly embedded and forms a :; :� �, ap :; :� � are
symmetric, bounded, H 1-coercive, the problems (5) and (6) have countably
many eigenvalues k, kh 2 R which may only have an accumulation point at1.
From the spline analysis we see that for su�ciently small h < h0 this will be a
regular approximation of the Sturm±Liouville equation, i.e. pp > 0, rp > 0 on
a; b� �. Hence the approximate eigenvalues kh

k are simple, real and distinct. Thus
considering qp as a small perturbation of the potential q, we immediately have
from Lemma 1 in [24] and Theorem 1

kh
k

�� ÿ kk

��6Chm�1 8k; �9�
provided that Eq. (4) is in the Liouville normal form and q 2 Cm�1 a; b� �� �. Due
to uniform estimation of the absolute error we can say that this kind of ap-
proximation is consistent with the spectral continuity of the Sturm±Liouville
operator. When the problem (4) is in the full form we state the following (see
[24]).

Theorem 5. If p, q, r 2 Cm�1, then for mth degree approximate problems we have
that 9C>0 8p: h<h0

kh
k ÿ kk

kk

���� ����6Chm�1 8k: �10�

It is known that for the same degree of approximation the rates of con-
vergence for the approximate eigenvalues can be doubled by a propitious
choice of projections (for example Q can be the map which takes f 2 C ÿ1; 1� �� �
into the mth degree polynomial, which interpolates f on the set of zeroes of the
�m� 1�st degree Legendre polynomial). Now we are in position to state the
®rst theorem about superconvergence.

Theorem 6. If p, q, r 2 C2m�2 and the projection Q satisfies

9M>08f2C2m�2 ÿ1;1� �� �

Z 1

ÿ1

ti 1�
������ ÿ Q�f dt

������6M f 2m�2ÿi� �

 


1;

i � 0; 1; . . . ;m;

�11�
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then for the Pruess method we have

kh
k ÿ kk

kk

���� ����6Ckmax m�1; 5f gh2m�2; h < h0 k� �; �12�

for each k � 1; 2; . . .
The proof will be divided into two lemmas. For ®xed p 2 P, let

A � 0 1
p

qÿ kkr 0

� �
; Ap �

0 1
pp

qp ÿ kh
krp 0

 !
;

and by V we denote unique solution of V 0 � AV , V a� � � I ; notice that
V � V x� � is nonsingular on a; b� �. Then we can recall the following lemma (see
[24]):

Lemma 1. If p, q, r 2 Cm�1 a; b� �� �, then for sufficiently small h � h k� �, for
the respective uh

k from mth degree approximate problem we have the repre-
sentation

uk

pu0k

� �
x� � ÿ uh

k

pp uh
k

ÿ �0 !
x� �

� V x� �R x
a V ÿ1 t� � Ap ÿ A� � t� � uh

k

pp uh
k

ÿ �0 !
t� � dt: �13�

Moreover

uk



 ÿ uh
k




1 � O kkhm�1

ÿ � 8k:

Lemma 2 deals with the observation that the forms D v� � � v; v� �,
N v� � � a v; v� � will be no longer approximated uniformly over V but only
locally to the eigenfunction with a decreasing accuracy as k !1.

Lemma 2. If p, q, r 2 C2m�2 a; b� �� � and the projection Q satisfies condition (11),
then there exists a constant K > 0 independent of k such that for p 2 P, when
v � uk or v � uh

k

D v� �j ÿ Dp v� �j6Kkm�1=2
k h2m�2; �14�

N v� �j ÿ Np v� �j6Kkm�3=2
k h2m�2: �15�

Proof. The basic idea of the proof is to expand w � v2 in a Taylor series about
zn � 1

2
xn � xn�1� �. We assume that p 6� pp, q 6� qp, r 6� rp, other wise the in-

equalities are trivial. So we have
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Z xn�1

xn

r� ÿ rp�w dx

�
Xm

j�0

w j� � zn� �
j!

� �Z xn�1

xn

x� ÿ zn�j r� ÿ rp� x� � dx

� 1

m� 1� �!
Z xn�1

xn

x� ÿ zn�m�1 r� ÿ rp� x� �w m�1� � n n� �
x

� �
dx;

where n n� �
x 2 xn; xn�1� �. By the change of variable it follows thatZ xn�1

xn

x�
������ ÿ zn�j r� ÿ rp� x� � dx

������6M
h
2

� �2m�3

r 2m�2ÿj� �

 


1:

In additionZ xn�1

xn

x�
������ ÿ zn�m�1 r� ÿ rp� x� �w m�1� � n n� �

x

� �
dx

������6C w m�1� �

 


1h2m�3;

hence

D v� �j ÿ Dp v� �j6C2

XN

k�1

Xm�1

j�0

w j� �

 


1

j!
h2m�3;

where the constant C2 is independent of h and kk. Moreover it follows from the
proof of error characterization (13) and from Eq. (4) as well as the di�erential
equation corresponding to (8) that for v � uk or uh

k the norms w j� �

 


1 are

bounded independent of h. By the Leibnitz formula and ®nite asymptotic ex-
pansions of eigenvalues (see [9]),

D v� �j ÿ Dp v� �j6C3 h2m�2
Xm�1

j�0

kj 2=
k

j!
6K km�1=2

k h2m�2:

A similar bound for N v� � ÿ Np v� �j j can be established from an analogous ar-
gument. �

It is now a simple matter to prove Theorem 6 by the general reasoning given
in the proof of Lemma 3 in [24], observing that for j 6� k we have
�uk; uh

j �2p � O�k2
kh2m�2� for su�ciently small h.

The bound in the next theorem is a bit sharper for the smallest degree of
Pruess method, e.g., for the PWCM approximation.

Theorem 7. Under the assumption of the previous theorem the following in-
equality holds, for each k � 1; 2; . . .
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kh
k ÿ kk

kk

���� ����6Ch2m�2 max 1; km�1
ÿ �

; h < h0: �16�

Proof. Our proof starts with the error characterization

kk ÿ kh
k �

Z b

a
p�

�
ÿ pp�u0kuh0

k dx�
Z b

a
qp� ÿ q�ukuh

k

� kk

Z b

a
rp� ÿ r�ukuh

k dx
� Z b

a
rpukuh

k dx;
�

which can be easily established from integration by parts and is valid for
general boundary conditions given in D. A small change of proof of Lemma 2,
by taking w � ukuh

k , completes the proof. �

Remark 4. From a practical viewpoint we are mostly interested in the case
when m � 0 (cf. Section 4) as well as the correct dependence of (absolute,
relative) errors of k. Therefore, in this case the method of proof of Theorem 7
seems to be better adapted to our theory. On the other hand, the estimation
(12) in Theorem 6 is a revised version of the Paine±de Hoog inequality, which is
consistent with (16) for m P 4. The rate of superconvergence was ®rst given by
Pruess in [24].

One question still unanswered is what kind of assumption on the coe�cient
functions should be imposed to keep the relative error of eigenvalues bounded
independently of k, when the approximation of coe�cients satis®es a super-
convergence condition (11), i.e. when the following estimation holds

kh
k ÿ kk

kk

���� ����6Ch2m�2;

for each k � 1; 2; . . .. Our numerical results indicate that for a certain class of
problems �e.g., when pr � K �const�� and piecewise constant approximation
the relative error is in fact O h2� � although there appears to be no clear structure
in the error.

4. Computational results

To provide numerical con®rmation of the preceding results we present an
example. For m > 0 we can see that the above bounds present a considerable
improvement over the bounds obtained when ®nite di�erence and variational
schemes are employed. However, in order to solve (8) it is necessary to obtain
the fundamental solutions on each subinterval. If m > 0 however there does
not in general exist a closed form for these fundamental solutions which is
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Fig. 1.

computationally convenient. Of course, a series solution could be developed,
but this means that we are approximating the fundamental solutions by means
of a piecewise polynomial and this is exactly the thing we are trying to avoid. It
is when m � 0 that computationally tractable schemes can be constructed by
means of sin :� � and sinh :� �; for m � 1 we can also try to use Airy functions
Ai :� �, Bi :� �. In our numerical example we have chosen m � 0, the most widely
used case. The projection will be given by Qf� � t� � � f 0� �.

Example 1. Consider equation ÿ x2 � u0� �0 � ku subject to Dirichlet's BC
u 1� � � u ep� � � 0. For this Sturm±Liouville operator the eigenvalues are known
kk � k2 � 0:25, whereas kh

k we computed by the Pruess method with projection
given above and mesh index N � 220. We are interested in the behavior of
�kh

k ÿ kk�=kk
�����
kk
p�� ��, which is given for ®rst 40 eigenvalues. We obtained rate of

O h2� � convergence without any growth when eigenvalue kk increases. Note that
the dependence of the considered error on k remains almost constant for
k P 10. See Fig. 1.

5. Conclusion

To sum up, we have indicated that the upper bounds of (absolute, relative)
error of eigenvalues for operators in LNF are independent of k. Yet for vir-
tually all discretizations the large eigenvalues of the approximation diverge
(relatively) from the true Sturm±Liouville eigenvalues. It is also known that in
the ®nite dimensional space setting (e.g., Standard Finite Di�erence or Finite
Element eigenvalue approximations) for small eigenvalue high relative accu-
racy is far more demanding. It was then natural to discuss the relative accuracy
in the case of the Pruess method. Theorem 7 provides a sharpened estimation
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of the relative error of eigenvalues for the most important cases of approxi-
mation when m � 0; 1.

Despite the serious disadvantage of using ®nite dimensional approximations
some aspects seem to be of independent interest. One of them, raised by
Professor Beresford Parlett is, when is it fruitful to make a connection between
tridiagonal eigenproblems and Sturm±Liouville eigenproblems? This could
shed some new light on a converse of Theorem 3.
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