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1. INTRODUCTION 

Consider a set E of q distinct symbols which we call the alphabet. The 
elements of I+ will be called words of length n. Hamming distance d in 
I+ is defined by 

A subset C of 33” is called a perfect e-code if the spheres 

S&) : = {z EPWx, _c) Ge}, 
where c runs through C, form a partition of En. We define the distance 
d(z:, C) of g to the code C by 

d(x, C) : = min {d(z:, _C)lG E Q> 

and we denote by Ct the set 

Ci:={g~Pnld(g, C)=i}, (i=O, 1, . . . . e). 

Observe that if C is a perfect e-code then the sets Cf, i = 0, 1, . . . , e, form 
a partition of the space I?. 

In 1957 S. P. Lloyd (cf. [7]) proved a strong necessary condition for 
the existence of a binary (i.e. q=2) perfect e-code. This theorem was 
generalized to the case where q is a prime power by F. J. Mac Williams 
(cf. [S]) and recast by A. M. Gleason (cf. Van Lint [S]). Recently P. Del- 
sarte [a], H. W. Lenstra [5] and L. A. Bassalygo [I] proved that the 
theorem, which is always referred to as Lloyd’s Theorem, holds for all q. 
Other generalizations were given by N. L. Biggs [2] and by D. H. Smith 
[lo]. Although the proofs are not extremely difficult they usually involve 
a lot of algebraic background. In this paper we shall give a simple proof 
of Lloyd’s Theorem which requires no further knowledge than the deli- 
nitions given in this introduction and the concepts of eigenvector and 
eigenvalue of a square matrix (cf. [2]). 
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A stronger version of lemma 3.2, on which our proof is actually based, 
has been used in graph theory for the investigation of the existence of 
partitions of the vertex set of a graph, which have some properties like 
those of the partition CO, 4, . . ., C, (see, for example, [3]). On the other 
hand, coding theory problems can be formulated in terms of graphs (cf. 
[9]) but it is not necessary, especially not in the context of this paper. 

In section 2 we shall give some lemmas on matrices and do the cal- 
culations necessary for our proof. In section 3 we state Lloyd’s Theorem 
and give the elementary proof of this theorem. 

i. LEMMAS ON MATRICES 

(2.1) DEFINITION: The square matrix Ak of size qk is defined as follows. 
Number the rows and columns by the q-ary system from 0 to qk - 1. The 
entry .&(i, j) is 1 if the representations of i and j differ in exactly one 
digit, otherwise &(i, j) = 0. 

Observe that we can identify the q-ary representation of the integers 
0 to qk- 1 with the elements of Bk, where E = {0, 1, . . . . q- 11. In this 
terminology Ak(i, j) = 1 if the elements corresponding to i and j have 
Hamming distance 1. 

From the definition of Ak it is clear that 

(2.2) &+I= Iq x (Al, - I,p) + Jq x $c, 

where as usual I, denotes the identity matrix of size m, J, the all one 
matrix of size m and x indicates the Kronecker product. 

(2.3) LEMMA : The matrix & has the eigenvalues 

with multiplicities 

-k+jq (j=O, 1, . ..) k) 

0 ; (q - l)k-I. 

PROOF : The proof is by induction. For k = 1 we have Al = Jp-Ip and 
then the assertion is well known. Now let the columnvector 8 be eigen- 
vector of AK belonging to the eigenvalue 1. Then by (2.2) we have 

(2.4) &+1(X*, XT ) . ..) zp)T=(A+q-l)(@, XT, *a*, XTy 

(where on both sides gr is repeated q times). If (cl, . . . . c~)~ is eigenvector 
of Jq with eigenvalue 0 (which eigenvalue has multiplicity q- 1) then 

(2.5) &+l(C1~T, C@ZT, . . ., CqgT)T = (A - l)(CITT, . . ., CpZT) 
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because 2 CI = 0. The induction step now follows from (2.4) and (2.5) and 
well-known properties of binomial coefficients. 0 

The technically most difficult part of our proof is determining the 
eigenvalues of certain tridiagonal matrices occuring in the next section, 
To keep the notation compact we use the following definition. 

(2.6) DEFINITION : The matrix Qe= &,(a, b, S) is the tridiagonal matrix 
given by 

&,(a, b, 8) : = 

a b 0 0 0 
1 a+($-1) b-s 0 ----- 0 

Furthermore we define 

Pe = P,(a, b, s) : = 

00----0e 1 

The determinants of these matrices are denoted by ae, resp. Fe. De- 
veloping by the last row we find from (2.6) 

(2.7) 

By adding all columns to the last one we find, developing by the last row 

(2.8) C& = (a + es)@-1 - e(a + b)p+l. 

Developing Pe by the last row yields 

Now apply (2.9) with e+ 1 instead of e, combine with (2.9) and eliminate 
the e-terms using (2.8). This yields 

(2.10) Fe+1 = (a + es - e - l)pe - e(b - es)p,-1. 

The recurrence relation (2.10) relates the determinants to well known 
polynomials which v,e now introduce. 
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(2.11) DEFINITION: The Krawtchuk polynomial Kk is defined by 

Kk(n,u):= i (-l)j(q--1)"~J 
i=o (;) (y) . 

We shall call the polynomial ye defined by 

ye(n, X):=&(n-1, z-l) 

Lloyd’s polynomial of degree e. 
Using well known recurrence relations for Krawtchouk polynomials (cf. 

e.g. [a], (4.11)) we find for the Lloyd polynomials 

(2.12) (e+ l)yb+l(n, 4 = 
={e+(q-l)(n-e)- qx+ l)y&, 4 -(q- l)(n--e)~~--l(n, 4. 

(2.13) LEMMA: Let s:=q-1. Then we have 

~&y - ns, n4 4 = ( - l)ee !ye(n, y) 

PROOF: For e= 1 and e= 2 it is easy to check the assertion using the 
definitions. By substitution of the appropriate values of a and b in (2.10) 
and using (2.12) we see that the polynomials on both sides in (2.13) satisfy 
the same recurrence relation. This proves the lemma. cl 

3. LLOYD'S THEOREM 
We first state the theorem. 

(3.1) THEOREM: If a perfect e-code of length n over an alphabet of q 
symbols exists, then ye(n, Z) has e distinct integral zeros among 1, 2, . . . . n. 

The fact that the zeros are distinct is a well known property of Krawt- 
chouk polynomials. The interesting fact is that they are integers. The 
proof of (3.1) is a simple consequence of the following practically trivial 
lemma. 

(3.2) LEMMA: Let A be a matrix of size m by m which has the form 

A= A21 A22 . . . A2k 
--_---.-___ 

where Aij has size ina by ml (; = 1, 2, . . . , ?c ; j = 1, 2, . . . , k). Suppose that 
for each i and j the matrix Atj has constant row sums with sum bu. Let 
the matrix B have entries bt,. Then each eigenvalue of B is also an eigen- 
value of A. 

PROOF: Let & =2~:, where it:= (xi, 52, . . ., ~k)r. Define _Y by 

??=(Xl, xl, . . . . xl, x2, x2, .-., x2, . . . . xk, Xk, ---2 xk) 
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where each x6 is repeated rnc times. By definition of B it is obvious that 

We now prove Lloyd’s Theorem. Assume that C is a perfect e-code 
of length n over an alphabet P of q symbols, for which we can take 
P={O, 1, . ..) q- l}. Now consider the matrix A, as defined in (2.1) where 
again we identify row and column numbers with elements of I?. We 
reorder the rows and columns of A, as follows. First take the rows and 
columns with a number corresponding to an element of C, then successively 
those with numbers corresponding to elements of Ct (i= 1, 2, . . . . e). Since 
C is a perfect code the matrix A, now has the form of lemma 3.2 with 

/O ns 0 0 --me-- -0 ’ 
1 q-2 (n-1)s o- ----- - - - 0 

0 --------- 0 

m-e , 

where s : =q- 1. We now apply lemma 3.2. The eigenvalues of A, were 
determined in lemma 2.3. In det (B-xl,+l) we substitute x = ns - yq 
which leads to the problem of determining Pe(qy -ns, ns, s). Then Lloyd’s 
Theorem follows from lemma 2.13. 0 
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