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A B S T R A C T

Retinoic acid-related orphan receptor gamma t (RORgt) is a nuclear receptor, which is selectively
expressed by various lymphocytes. RORgt is critical for the development of secondary and tertiary
lymphoid organs, and for the thymic development of the T cell lineage. RORgt has been extensively
studied as the master transcription factor of IL-17 expression and Th17 cells, which are strongly
associated with various inflammatory and autoimmune conditions. Given its essential role in promoting
pro-inflammatory responses, it is not surprising that the expression of RORgt is tightly controlled. By its
nature as a nuclear receptor, RORgt activity is also regulated in a ligand-dependent manner, which makes
it an attractive drug target. In addition, multiple post-translational mechanisms, including post-
translational modifications, such as acetylation and ubiquitinylation, as well as interactions with various
co-factors, modulate RORgt function. Here we attempt a comprehensive review of the post-translational
regulation of RORgt, an area that holds the potential to transform the way we target the RORgt/IL-17
pathway, by enabling the development of safe and highly selective modulators of RORgt activity.
ã 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nuclear receptors (NRs) constitute a large family of transcrip-
tion factors which regulate gene expression in a ligand-dependent
manner [1]. The NR superfamily includes receptors for steroid
hormones, such as the estrogen receptor (ER) or the glucocorticoid
receptor (GR), receptors for nonsteroidal ligands, such as the
retinoic acid receptor (RAR) or the thyroid hormone receptor (TR),
as well as a number of receptors that bind various products of lipid
metabolism, including fatty acids and prostaglandins [1]. A
number of NRs (17 out of 48 human NRs) are so-called orphan
receptors for which regulatory ligands have not been identified.
Retinoic acid-related orphan receptor gamma (RORg) belongs to
the retinoid acid-related orphan receptor (ROR) subgroup. This
subfamily consists of three members: RORa [2], RORb [3], and
RORg [4], also referred to as NR1F1, NR1F2 and NR1F3 (according
to the Nuclear Receptor Nomenclature Committee) or RORA, RORB
and RORC (according to the Human Gene Nomenclature Commit-
tee) [1,5].

Although RORs were originally named based on their sequence
homology to RARs, more recent evidence suggests that RORa and
RORg preferentially bind oxysterol derivatives but not retinoic acid
[6–10]. Despite the progress in identifying physiological endoge-
nous ligands for RORg [11,12], it is still being referred to as an
orphan receptor.

RORgt [13], an immune cell-specific isoform of RORg, has
attracted much attention as the key transcription factor of Th17
cells, mediating the expression of the pro-inflammatory cytokines
IL-17A and IL–17F in both mouse and human [14]. Th17 cells and
their cytokines have been associated with multiple inflammatory
and autoimmune diseases. The various roles of RORgt in immune
homeostasis and immunopathology have been the subject of
several excellent reviews [14–21]. RORgt, by its nature as a ligand-
dependent transcription factor, has become a prime target for
pharmacological intervention to repress the function of Th17 cells
and their downstream cytokines. In fact, several research groups
have developed potent inverse agonists for RORgt (reviewed in
[22–24]). A detailed understanding of how RORgt function is
regulated has been critical in this process.

Here, we attempt to provide a comprehensive overview of our
current knowledge of the different levels of post-translational
regulation of RORgt activity, including recent progress in
identifying endogenous ligands. We mainly focus on the rapidly
evolving area of post-translational modifications (PTMs), such as
acetylation and ubiquitinylation of RORgt, which might provide
novel opportunities for pharmacological intervention.

2. RORgt expression and function

The RORA, RORB, and RORC genes have been mapped to human
chromosome 15q22.2, 9q21.13, and 1q21.3, respectively. Murine
and human RORg share 88% amino acid sequence homology [25].
Each ROR gene produces several isoforms that are generated
through a combination of alternative promoter usage and exon
splicing (Fig. 1A). These isoforms differ only in their amino-
terminal A/B domain. In humans, four different RORa isoforms,
RORa1-4, have been identified, while only two isoforms, a1 and
a4, are found in mice. The RORB and RORC genes each are
expressed as two different isoforms [26–28]. In RORgt (RORc2,
RORg2) [13], the 24 N-terminal residues of RORg, which are
encoded by the first two exons, are replaced by three alternative
residues encoded by a first exon specific to RORgt (Fig. 1B).

RORs and their isoforms differ in their tissue-specific expres-
sion and regulate distinct physiological processes and target genes
(reviewed in [16,29]). RORa, although expressed in a variety of
tissues, is most abundant in several regions of the brain,
particularly the cerebellum and thalamus [30]. Accordingly,
RORa-deficient mice display ataxia, which is correlated with
severe cerebellar atrophy. In addition, RORa has been implicated in
the regulation of a number of other physiological processes,
including the development of the olfactory bulb, bone formation
and in lipid metabolism [31]. RORb expression is largely restricted
to several regions of the brain, the retina, and pineal glands. RORb-
deficient mice develop retinal degeneration that results in
blindness [32]. All three RORs have been implicated in the
regulation of circadian rhythms [16,29,33,34].

While RORg mRNA has been detected in several tissues
including kidney, liver, lung, muscle, heart, and brain, RORgt
expression is restricted to lymphoid tissues and a number of
lymphoid cell types [4,26]. RORgt-deficient mice lack Peyer’s
patches, cryptopatches and isolated lymphoid follicles in the
intestine as well as peripheral lymph nodes (Fig. 2A). The lack of
these lymphoid structures is explained by the absence of lymphoid
tissue inducer (LTi) cells in RORgt-deficient mice [35,36]. During
lymphoid organ formation, stromal organizer cells express
lymphotoxin-b receptor (LTbR), and LTi cells that seed the
developing lymph node express lymphotoxin-a1b2. The interac-
tion of the two results in an up-regulation of adhesion molecules
and chemokines that facilitate the attraction and retention of
additional haematopoietic cells at the site of developing secondary
lymphoid organs. The expression of RORgt is required for the
differentiation of LTi cells [35–37]. RORgt is also a critical regulator
of thymopoiesis (Fig. 2A). In the absence of RORgt, mice exhibit
severe thymic atrophy [38,39]. Expression of RORgt is induced at
the transition from the double negative (DN) to the double positive
(DP) stage of thymic T cell development. The absence of RORgt
results in a dramatic decrease in the number of CD4+CD8+ DP and
mature single positive (SP) CD4�CD8+ and CD4+CD8� thymocytes.
This is due to significantly increased apoptosis in thymic DP cells
related to a dramatic reduction in the expression of the anti-
apoptotic factor Bcl-xL [38,39]. Indeed, targeted expression of Bcl-
xL under the control of the RORgt promoter in RORgt-deficient
mice rescues DP thymocytes [38,40]. Whether RORgt regulates
Bcl-xL directly or indirectly has yet to be established. Although
RORgt-deficient mice appear initially healthy, by the age of 4
months about 50% of the mice succumb to thymic lymphomas [41].
It is currently not clear if lymphoma formation translates into other
species. So far it has not been observed in a limited number of
patients with RORg/RORgt loss-of-function mutations [42].

Besides its developmental functions in the immune system,
RORgt has attracted considerable interest as the master transcrip-
tion factor of Th17 cells (Fig. 2A) and more broadly of IL-17-
producing cells in general (reviewed in [17,43]). In fact, RORgt
expression marks various innate and adaptive lymphoid subsets
that express the pro-inflammatory cytokines IL-17A and IL-17F,
including Th17 cells, gd T cells, mucosal-associated invariant T
(MAIT) cells, as well as in innate lymphoid type 3 cells (ILC3s)
(Fig. 2B). In RORgt-deficient mice, IL-17 production is greatly
diminished and RORgt/RORa double-deficient mice lack IL-17
production altogether [14,44]. Elevated IL-17 production has been
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associated with inflammatory and autoimmune conditions, such as
rheumatoid arthritis (RA), multiple sclerosis (MS) and psoriasis
(reviewed in [24,45,46]).

3. RORgt—a nuclear receptor

RORgt exhibits the typical structural architecture of all NRs,
consisting of four major functional domains (Fig. 3A): a variable
amino-terminal (A/B) domain containing the ligand-independent
activation function 1 (AF1) helix, a DNA-binding domain (DBD), a
flexible hinge domain, and a C-terminal ligand-binding domain
(LBD) [1,47]. The DBD contains two highly-conserved zinc finger
motifs involved in the recognition of DNA elements. RORs share a
high degree of sequence homology within the DBD [48] and
recognize common ROR response elements (ROREs) with a
consensus sequence (WWCWAGGTCA, W = A or T) [25,49]. The
P-box in the DBD, the loop between the last two cysteins within the
first zinc finger, recognizes the core motif in the major groove of
the DNA [50,51]. Additional residues immediately downstream of
the second zinc finger, referred to as C-terminal extension (CTE),
further determine the DNA binding specificity of RORs by making
contact with the 50-AT-rich segment of the RORE in the adjacent
minor groove of the DNA. The A/B domain also influences the DNA-
binding affinity of RORs, and likely accounts for the distinct binding
specificities of individual ROR variants [27,49,50,52]. Unlike most
NRs, which bind DNA as homodimers or heterodimers, RORs
appear to bind their RORE as monomers [13,25,27,53,54].

The LBD, apart from its obvious role in ligand engagement, is
critical for nuclear localization and, in other nuclear receptors,
dimerization. It also contains the activation function 2 (AF2, also
known as Helix 12) region responsible for providing an interface to
recruit co-activator and co-repressor proteins. The LBD adopts a
conserved three-layered fold of �12 a-helices (H1-H12), with two
or three b-strands forming a shorter sheet structure (Fig. 3B) [47].
H12 contains the AF2 consensus motif FFXE/DFF (where F is a
hydrophobic amino acid and X is any amino acid), and is 100%
conserved among RORs. In addition to the 12 prototypical helices,
LBDs of RORs contain three additional helices, H2�, H3�, and H11�
[6,55]. The LBD of RORg shares 48% and 46% sequence identity with
those of RORa and RORb, respectively [10]. A ligand-binding
pocket resides inside the LBD, and forms part of its hydrophobic
core (Fig. 3B). The structure of the RORg LBD bound to the putative
ligand 25-hydroxycholesterol (25-OHC) and the steroid receptor
coactivator-2 (SRC-2) peptide has been determined [10]. The AF2
helix is stabilized via a hydrogen bond network between His479
and Tyr502, along with Gln487 and Ser507. The 25-hydroxyl group
of 25-OHC makes a water-mediated hydrogen bond to Tyr502. This
conformation of AF2/H12 forms a surface groove with helices H3,
H4 and H5 into which the co-activator motif binds [10]. Hydrogen
bonds from RORg residues Lys336 and Glu504 to the co-activator
further stabilize its binding and form the “charge clamp” [56]. At
the other end of the ligand-binding pocket, near the C-terminus of
helix 3 and helices 5 and 7, the 3b-hydroxyl group of 25-OHC
makes a direct hydrogen-bonding interaction with Gln286 and a
water-mediated hydrogen bond to Arg364. Similar to the paradigm
in other NR structures, the interaction with the agonist ligand
stabilizes AF2 in an active conformation that enables the
recruitment of the co-activator [57–62].
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4. Post-translational regulation of RORgt

4.1. Co-activators and co-repressors

NRs, including RORs, recruit co-regulators in order to modulate
chromatin and either activate or repress target gene expression.
These activities have been linked to interactions with general
classes of co-activators or co-repressors (Fig. 4A). As discussed
above, in the presence of an agonist, H12 forms a “charge clamp” in
which a conserved glutamate in the AF2 helix and a conserved
lysine in H3 make contact with the ends of a conserved helical
LXXLL motif present in one or more components of most co-
activator complexes (Fig. 4B). The leucine residues of the LXXLL
helix pack into a specific hydrophobic pocket at the base of the
charge clamp that stabilizes the interactions [57–63].

Binding of an inverse agonist, on the other hand, results in
destabilization of the active conformation and in the disruption of
the shape of the co-activator binding groove (Fig. 4B). Co-
repressors interact with this conformation through an elongated
helix with a LXX I/H IXXX I/L sequence. This extended helix can
occupy the same hydrophobic pocket contacted by LXXLL motifs
due to displacement of the AF2 helix [64–66]. Some co-repressors,
such as RIP140 (receptor interaction protein 140) [67], contain
LXXLL motifs and are recruited to agonist-bound receptors but
function as repressors.

Co-activator complexes facilitate transcription by mediating
epigenetic changes, such as the acetylation of histones to open
chromatin (CBP and p/CAF complexes) and the repositioning of
nucleosomes to increase accessibility (SWI/SNF complex); they
also recruit core components of the transcriptional machinery
(TRAP/DRIP/ARC complex). In contrast, co-repressors limit chro-
matin accessibility and recruit histone deacetylases (e.g. HDAC3)
[58,68–71] (Fig. 4C). Several co-activators, including NCOA1 (SRC-
1), NCOA2 (TIF2 or GRIP1), PGC-1a, p300, and CBP; as well as co-
repressors NCOR1, NCOR2, RIP140, and NIX1 have been identified
in co-complexes with ROR proteins [29,40,72–82]. At least in the
case of RORa it was suggested that RORs can recruit different co-
activator complexes in a target gene-specific manner [73].
Although RORgt has been shown to recruit steroid receptor co-
activators (SRCs) [40], and in fact, peptides from SRC-1 or SRC-2 are
routinely used in binding assays to screen for inverse agonists of
RORgt, the specific co-factor landscape for RORgt as it is relevant to
thymopoiesis or Th17 differentiation has not been well character-
ized to date.

4.2. Endogenous and synthetic ligands—RORgt as a drug target

In contrast to many other NRs, ectopic expression of RORgt is
sufficient to induce transcriptional activity in various mammalian
cell types, even without concomitant addition of exogenous
agonists. This result initially seemed to suggest that RORgt was
constitutively active in a ligand unbound state. However, RORgt
completely fails to induce transcription when ectopically
expressed in Drosophila cells, which are auxotrophic for poly-



Fig. 3. Structure of RORgt.
(A) Crystal structure of an “intact” nuclear receptor heterodimer bound to duplex DNA. The RXRa protein (accession code: 3DZY) is depicted as a surface representation and
the PPARg protein is shown as a ribbon diagram. Structural domains of both proteins are colored according to the sequence diagram (note that the A/B domain was largely
disordered in the structure). Colors: A/B in cyan, DBD in dark red, hinge in magenta, LBD in royal blue, H12 (AF2) in gold.
(B) Crystal structure of RORg/RORgt ligand binding domain. In the top left panel, the molecular surface of the RORg/RORgt monomeric LBD (accession code: 3L0L) reveals the
grooves into which Helix 12 (gold, surface omitted) and the co-activator peptide (green) interact. The top right panel shows the crystal structure of the RORg/RORgt LBD
monomer, colors as in the sequence diagram, a helices and b sheets are numbered according to convention. The ligand, 25-hydroxycholesterol is shown with sand colored
carbon atoms. Bottom panel: Binding of agonist ligands, like 25-hydroxycholesterol (sand carbons), into the binding site of RORg/RORgt stabilizes the conformation of Helix
12 by hydrogen bonding to tyrosine 502 or stabilizing a hydrogen bond between that side chain and that of histidine 479. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article).
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unsaturated fatty acids, retinoids, and sterols, when these cells are
grown in serum-free media. Transcriptional activity can be
restored by supplementing serum to the culture [10,12,83]. These
findings strongly suggest that an endogenous ligand, which is
ubiquitously present in mammalian cells, is indeed required for
transcriptional activity.

4.2.1. Endogenous ligands
Attempts to directly detect the endogenous lipid ligand bound

to RORg have not been successful to date [12]. Cholesterol and
cholesterol derivatives had been shown to bind RORa [6,8–10,55].
Indeed cholesterol and a number of its naturally occurring
derivatives could restore RORg activity when Drosophila cells
grown in lipid-free chemically defined medium were supple-
mented with them. Cholesterol itself as well as 20a-hydroxycho-
lesterol (20a-OHC), 22R-hydroxycholesterol (22R-OHC), 22S-
hydroxycholesterol (22S-OHC) and 25-hydroxycholesterol (25-
OHC) increased the recruitment of co-activator peptides in a dose-
dependent manner [10]. Of note, cholesterol derivatives were up to
10-fold more potent than cholesterol itself. A separate screen of
naturally occurring oxysterols identified 7b,27-OHC as a RORgt
ligand. Addition of 7b,27-OHC to mouse Th17 cultures increased
the number of IL-17A producing cells [84].

In order to identify endogenous ligands for RORg, Santori et al.
transfected mammalian cells with a RORg reporter and probed
multiple metabolic pathways either by the addition of 387
common metabolites or by co-transfection with 78 basal metabolic
enzymes found in mammalian cells. Only enzymes of the
cholesterol biosynthetic pathway were found to modulate RORg
activity (Fig. 5A). In addition, RORg activity is lost in a squalene
synthase-deficient cell line which cannot synthetize sterol lipids
[12]. Combining over-expression, RNAi, and genetic deletion of
metabolic enzymes, the authors arrive at the conclusion that RORg
ligands are cholesterol biosynthetic intermediates downstream of
lanosterol and upstream of zymosterol. For instance, overexpres-
sion of CYP51, the enzyme that catalyzes the removal of the 14-
methyl group after the formation of the canonical sterol nucleus,
thus transforming lanosterol into FF-MAS, increases RORg
transcriptional activity [12]. Interestingly, mouse embryos defi-
cient in CYP51 exhibit smaller lymph node anlagen, and have
reduced numbers of LTi cells. Loss-of-function mutation of
SC4MOL, an enzyme downstream of CYP51, reduces in vitro
polarization into Th17 cells [12]. In an independent study, Hu et al.
also found that inhibition of CYP51 by ketoconazole reduces IL-17
production from Th17 cells, without affecting RORgt expression in
vitro. Ketoconazole also reduces IL-17 production from gd T cells
that had been stimulated with IL-1b/IL-23 to induce IL-17
production. Injection of anti-CD3 into mice results in elevation
of IL-17 in the plasma. Treatment with the CYP51 inhibitor
ketoconazole prior to anti-CD3 injection reduces IL-17 levels,
whereas IFN-g is not affected. Similarly, ketoconazole treatment of
mice reduces skin inflammation and IL-17 expression in an
imiquimod-induced psoriasis model [11]. Consistent with the
findings reported by Santori et al., these data strongly suggest that
sterols formed after the CYP51-mediated demethylation step in the
cholesterol synthesis pathway function as endogenous RORgt
agonists. However, Hu et al. found that both zymosterol and the
further downstream desmosterol also increase co-activator
recruitment and IL-17 production from Th17 cells [11]. More
importantly, desmosterol (but not zymosterol) can be readily
detected in Th17 cells, further suggesting that it could function as
an endogeneous RORgt ligand. Like their 3-OH analogs, sulfated
sterols, in particular desmosterol sulfate, can also be detected in
Th17 cells, and are even more potent RORgt agonists than their 3-
OH corresponding sterols [11]. The fact that the cholesterol
derivatives 20a-OHC, 22R-OHC and 25-OHC have not been
detected in Th17 cells does not formally exclude the possibility
that they might be endogenous ligands. Taken together, these
studies clearly demonstrate that intermediates in the cholesterol
synthesis pathway indeed function as endogenous ligands for
RORgt, although there is still some disagreement as to which ones
are most critical. It is currently not clear whether different
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endogenous ligands occupy the RORgt LBD depending on the
activation and metabolic state of the cell. Interestingly, a recent
report suggests that pathways that modulate the lipidome in Th17
cells indeed have the capacity to modify the transcriptional profile
of RORgt and hence the pathogenicity of Th17 cells [85]. CD5L/AIM,
a member of the scavenger receptor cysteine-rich superfamily
known to regulate lipid metabolism by binding to fatty acid
synthase in the cytoplasm of adipocytes [86], is expressed in non-
pathogenic Th17 cells but down-regulated upon exposure to IL-23,
which induces a more pro-inflammatory transcriptional program
[85]. In fact, CD5L/AIM overexpression is sufficient to suppress
RORgt-dependent transcription of IL-17 and IL-23 in Th17 cells.
Conversely, loss of CD5L/AIM converts non-pathogenic Th17 cells
into pathogenic cells that induce autoimmunity. Interestingly,
non-pathogenic WT Th17 cells have a very different lipidome
profile compared to CD5L-deficient Th17 cultured under non-
pathogenic conditions or WT Th17 cells cultured under pathogenic
conditions. CD5L/AIM decreases the level of polyunsaturated fatty
acids (PUFA), affecting the expression of key cholesterol biosyn-
thesis enzymes and, in turn, affecting the binding and activity of
RORgt. Therefore, it appears that RORgt-expressing cells can
respond to external signals by adjusting the abundance or the
nature of endogenous ligands, in order to modulate the RORgt-
dependent transcriptional profile.

4.2.2. Synthetic inverse agonists for RORgt
Given the prominent association of IL-17 production with

inflammatory and autoimmune diseases, it is not surprising that
there has been a strong interest in developing small molecule
antagonists/inverse agonists targeting RORgt, in particular for the
treatment of psoriasis [17,19,21,24]. It is desired to identify
compounds that function as inverse agonists, meaning that they
bind to RORgt and recruit co-repressors instead of co-activators in
order to inhibit RORgt-dependent target gene transcription.
Ligands may also disfavor co-activator recruitment by inducing
a LBD conformational change by which the AF2 region is
disordered and therefore cannot interact with either co-activator
or co-repressor, such compounds are classified as antagonists [87].
It is noteworthy that all compounds targeting the LBD affect RORgt
and RORg alike.

Inverse agonists and antagonists of RORgt have been discovered
by both screening and medicinal chemistry campaigns [23,83,88–
92]. For instance, digoxin binding to RORgt in the ligand binding
pocket prevents adoption of the agonist conformation of H12 by
the compound protruding from the pocket between helices H3 and
H11, thus antagonizing co-activator interaction [83]. Other
synthetic ligands have been shown to disrupt the position of
H11 and/or H12 and act as inverse agonists [23,83,88–92]. Another
class of compounds, deemed allosteric ligands, have also been
identified that can bind external to the ligand pocket and disrupt
the interaction of the RORgt-LBD with steroid receptor coactivator-
1 (SRC-1) cofactor peptide [92]. In this case, the RORgt LBD
crystallized with the typical NR arrangement of helices 1–11, but
with a novel position of H12. The putative allosteric pocket, absent
in the classical NR-folding motif, is formed by helices 4, 5, 11 and
the reoriented flexible H12. This antagonism mode is independent
of and unaffected by ligand binding at the canonical ligand binding
site [92]. Precisely how these different classes of compounds
interfere with downstream RORgt functions is not well under-
stood. Even when comparing two structurally related inverse
agonists, Xiao et al. found that one compound disrupted RORgt
binding to genomic DNA; whereas the other, more potent
compound, affected transcriptional regulation without globally
eliminating RORgt DNA binding [93]. The same study also suggests
that RORgt, when bound by inverse agonists, can occupy additional
DNA binding sites not normally bound in Th17 cells [93].
Co-activator binding assays and functional readouts, such as
IL-17 production, which are routinely used for compound screens
and validation, are not suited to reveal these mechanistic
differences.

Over the past few years a large number of compounds have
been identified by several groups (Fig. 5B) that are highly selective
for RORgt over RORa and other NRs, and that suppress IL-17
production in various cell-based assays [83,91,94–98]. Several of
these compounds have been tested in pre-clinical mouse models
for MS, psoriasis or joint inflammation and result in reduced IL-17
production, decreased susceptibility, delayed onset and reduced
disease severity [83,91,93,97–99]. VTP-43742, an inverse agonist
for RORgt, developed by Vitae Pharmaceuticals is currently in
phase II clinical trials for the treatment of psoriasis.

4.2.3. Synthetic agonists for RORgt
Ironically, several compounds that had been identified as

inverse agonists, based on their capacity to interrupt the
interaction between LBD and co-activator peptides in biochemical
assays, function as agonists when tested on full-length RORgt in a
cellular context, demonstrating imperfect translation from assay to
in vivo outcome [100,101]. Interestingly, relatively small structural
differences (Fig. 5C) can turn a RORgt inverse agonist (benzylsul-
fonamide) into a potent agonist (phenylsulfonamide) [88]. These
findings also demonstrate that it is possible to enhance the “basal”
(driven by endogenous ligand) activity of RORgt with synthetic
agonists. Several groups have since reported compounds with
agonist activity (Fig. 5D). These compounds elicit increased IL-17
production [88,100–102]. Although the role of IL-17 and Th17 cells
in cancer is highly complex and contentious [103,104], it has been
suggested that boosting IL-17 responses could be beneficial in
certain settings for immunotherapy, for instance by shifting the
balance between Th17 cells and regulatory T cells [104], which
more recently led some groups to investigate to use of RORgt
agonists in this context.

4.3. Post-translational modifications

Besides being regulated through ligand binding, various aspects
of NR function are controlled or modulated by post-translational
modifications (PTMs), including nuclear localization, protein
stability, DNA-binding and transcriptional activity. The best-
studied PTMs for NRs are phosphorylation, acetylation and
ubiquitinylation, and the most data exist for the steroid receptors,
estrogen receptor (ER), glucocorticoid receptor (GR) and androgen
receptor (AR) [105,106]. In fact, PTMs in this particular class of NRs
are linked to the pathophysiology of many diseases including
cancers, diabetes, and obesity [105,106]. Our understanding of how
RORgt is regulated by PTMs is still emerging. Its protein sequence
reveals a multitude of residues that can potentially function as
acceptors for PTMs. Indeed, proteomics studies have already
identified a number of phosphorylation, acetylation and ubiq-
uitinylation sites in RORgt (Fig. 6A).

4.3.1. Phosphorylation
Phosphorylation has been studied extensively for several NRs

[106]. Phosphorylation by kinases that are associated with general
transcription factors, such as Cdk7 within TFIIH, or that are
activated in response to various signals, such as AKT, PKA, PKC or
MAPK, can facilitate the recruitment of co-activators and, in doing
so, cooperate with the ligand to enhance transcription activation.
However, phosphorylation can also contribute to the termination
of the ligand-induced response by decreasing ligand affinity,
mediating dissociation from DNA or inducing NR degradation
[105–107]. Surprisingly, despite the fact that multiple phosphory-
lation sites have been detected for RORgt, including S184, T204,
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Y243, S255 and S318, the functional consequences of RORgt
phosphorylation await elucidation.

4.3.2. Acetylation
The recruitment of histone acetyltransferases (HATs) and

histone deacetylases (HDACs) as co-factors regulating RORgt
activity has been discussed above. However, like several other
NRs, RORgt itself is modified by acetylation (Fig. 6B, C). Two recent
studies report that p300 (KAT3B), but not other HATs, including the
closely related CBP (KAT3A), acetylates RORgt when over-
expressed in HEK293T cells [108,109]. In addition to modulating
chromatin organization, p300 can regulate non-histone proteins,
including nuclear transcription factors such as p53, NF-kB and
FOXP3 [110,111]. Acetylation of these transcription factors mod-
ulates their transcriptional activity by altering their protein
stability, subcellular localization and/or DNA-binding capacity
[112]. Acetylation and ubiquitinylation often compete for the same
lysine residues. Acetylation at these sites shields the protein from
ubiquitin-mediated proteasomal degradation. Although RORgt
might be stabilized to some extent through acetylation by p300
[109], it seems more convincing that acetylation in this case
actually impairs DNA-binding and hence transcriptional activity
[108]. Indeed, mass spectrometry and mutation studies confirmed
that p300 acetylates RORgt at K69, K81, K99, and K112, within the
DNA-binding domain. K69, K81, and K99 are predicted to be
positioned near the DNA [108]. Naive CD4T cells transduced with
K69/81/99Q (3K > Q) mutants mimicking a constitutively acetylat-
ed form of RORgt, fail to differentiate into Th17 cells and to produce
IL-17A under either Th0 or Th17 polarizing conditions [108]. The
histone deacetylase Sirtuin 1 (SIRT1) catalyzes the reverse reaction
by deacetylating RORgt [108]. The sirtuins are NAD+-dependent
protein deacetylases that play critical roles in transcriptional
regulation, cell cycling, replicative senescence, inflammation, and
metabolism. In mammals, SIRT1 in particular acts as an epigenetic
regulator that modulates the activity of several transcription
factors important for immune function [113–115]. SIRT1 has been
described as a negative regulator of regulatory T cell (Treg)
function, via deacetylation of FOXP3, the signature transcription
factor of Treg cells [116,117].

RORgt interacts with SIRT1 in both thymocytes and Th17 cells
through its LBD. Co-expression studies demonstrated that
wildtype SIRT1, but not a catalytically inactive H363Y mutant,
deacetylates RORgt. Indeed, K81, K87/88, and K99 of RORgt are
hyper-acetylated in SIRT1-deficient Th17 cells and thymocytes.
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T cell–specific SIRT1 deletion or treatment with pharmacological
SIRT1 inhibitors suppresses Th17 differentiation and protects mice
from EAE [108]. These findings suggest that SIRT1 increases the
transcriptional activity of RORgt, and reveal an unexpected pro-
inflammatory role of SIRT1.

A second study suggests that HDAC1 can also deacetylate
RORgt, at least when co-overexpressed in vitro [109]. Demonstra-
tion that this mechanism plays a role in Th17 cells has yet to occur.

4.3.3. Ubiquitinylation
Ubiquitinylation is a multi-step reversible process during which

activated ubiquitin is transferred onto lysine residues of substrate
proteins [118]. E3 ubiquitin ligases mediate the last step in this
cascade, whereas deubiquitinylating enzymes function to remove
ubiquitin from substrate proteins. Ubiquitin itself contains seven
lysine residues which enables the construction of poly-ubiquitin
chains. Depending on the chain topology, poly-ubiquitinylation
either triggers substrate protein degradation by the proteasome
(e.g. K48-linked poly-ubiquitinylation) or enables protein–protein
interactions and signaling (e.g. K63-linked poly-ubiquitinylation),
with additional new functions rapidly emerging [119]. Several
recent reports have begun to shed light on the complex regulation
of RORgt by ubiquitinylation by identifying several E3 ligases and
deubiquitinases that target RORgt (Fig. 6B and D) [120–122].

TRAF5, a known signaling adaptor involved in CD40, NOD-like
receptor (NLR), RIG-I like receptor (RLR) and IL-17 receptor (IL-17R)
signaling pathways, interacts with and ubiquitinylates RORgt
[122]. TRAF5 can function as an E3 ubiquitin ligase due to its N-
terminal RING finger domain [123]. TRAF5 does not target RORgt
for proteasomal degradation. Although the precise ubiquitinyla-
tion site has not been mapped, TRAF5 mediates K63-linked poly-
ubiquitinylation of RORgt [122], presumably functioning to
modulate its transcriptional activity. In fact, loss of TRAF5 in
human Th17 cells down-regulates IL-17A and IL–17 F and even
somewhat reduces RORgt levels [122].

In contrast, ITCH, a member of the HECT family of E3 ubiquitin
ligases, was recently shown to limit IL-17 production by targeting
RORgt for proteasomel degradation. ITCH-deficient mice develop
spontaneous colitis at 6–8 months of age associated with increased
IL-17A levels in mucosal tissues and elevated numbers of IL-17-
producing cells in spleens and mesenteric lymph nodes. These
mice also exhibit higher tumor burden and increased inflamma-
tion in a pre-clinical model of inflammation-induced colon cancer.
ITCH and RORgt interact through their WW and PPXY motifs,
respectively, and WT ITCH, but not a catalytic-dead mutant,
mediates K48 poly-ubiquitinylation and hence proteasomal
degradation of RORgt [121]. Another E3 ligase, UBR5, a member
of the UBR box family, also interacts with RORgt in Th17 cells.
Although the ubiquitin-linkage has not been determined, knock-
down of UBR5 in Th17 cells drastically stabilizes RORgt protein and
increases IL-17 production [120], suggesting that UBR5 indeed
targets RORgt for proteasomal degradation.

Several deubiquitinases have been described to affect Th17 cell
function or IL-17 signaling. USP18 has been found to regulate T cell
activation and Th17 cell differentiation by deubiquitinylating the
TAK1-TAB1 complex [124]. The ubiquitin-specific protease USP25
has been identified as a negative regulator of IL-17-mediated
signaling and inflammation acting through the removal of
ubiquitinylation on TRAF5 and TRAF6 [125]. Recently, two
members of the USP family of deubiquitinases, USP17 and USP4,
have been demonstrated to stabilize RORgt in co-overexpression
studies [126,127]. USP17 decreases K48-linked poly-ubiquitinyla-
tion of RORgt at K360 and inhibits proteasome-dependent
degradation. Knockdown of endogenous USP17 in Th17 cells
decreases RORgt protein levels and expression of Th17-related
genes, such as IL-17A and IL–17F [126]. The same group also
described USP4, which is highly expressed in Th17 cells, as a
deubiquitinase for RORgt. Similar to USP17, USP4 reduces K48-
linked poly-ubiquitinylation of RORgt, at least upon over-expres-
sion [127]. The lysine residues that are targeted by USP4 have not
been mapped. Again, knockdown of USP4 in Th17 cells decreases
RORgt protein levels, and IL-17 transcription. The DNA-binding
domain of RORgt is essential for its interaction with USP4 [127].
Interestingly, TGF-b together with IL-6 enhance USP4-mediated
deubiquitinylation of RORgt [127]. TGF-b has been shown to
mediate USP4 nuclear-to-cytoplasmic transport [128]. It is not
clear at this point what the relative contributions of USP4 and
USP17 are to the overall stabilization of RORgt in vivo.

While RORgt seems to be a direct substrate for USP4 and USP17,
another deubiquitinylating enzyme, DUBA (OTUD5), also affects
RORgt protein stability without any detectable direct interaction.
Deficiency in DUBA results in drastically increased IL-17A production
and accumulation of RORgt in IL-17 producing cells both in vitro and
in vivo [120]. Protein stabilization in the absence of a deubiquitinase
suggests an indirect effect, and indeed DUBA interacts with and
stabilizes UBR5, which in turn promotes the degradation of RORgt
[120]. This is a common theme in the ubiquitin field, where in many
cases deubiquitinases regulate the stability of E3 ligases and in turn,
indirectly, regulate the activity and/or stability of downstream
substrates. Another well-studied example is USP7 regulating the
stability of MDM2 which in turn affects p53 levels [129]. DUBA and
UBR5 form a stable complex in T cells [120], and presumably co-
regulate several substrates besides RORgt. It is currently not known
if DUBA can also associate with ITCH.

A large body of literature suggests that the proteasome is
directly involved in regulating the transcriptional activity of NRs,
including RORs [130–132]. For instance, two proteasome subunits,
PSMB6 and PSMC5, have been shown to interact with ROR
receptors [72,133]. The role of the proteasome in this context
includes both proteolytic and non-proteolytic activities [130].
Interestingly, the proteasome inhibitor MG-132 was found to
inhibit transcriptional activity of NRs, including ERa and RORa
[134,135]. Mechanistically this observation is still incompletely
understood, likely complex and to some extent target gene-
specific. In part, gene activation may require proteolytic removal of
NR:co-repressor complexes [130–132]. Co-activators recruit E3
ligases and subsequently ubiquitinylated co-repressors are tar-
geted for degradation. However, proteasomal turnover of chroma-
tin-bound NRs themselves seems to be required for transcriptional
activity. Consistent with this notion, Hairless (Hr) functions as an
effective repressor of ROR-induced transcriptional activation, in
part by stabilizing RORs and protecting them from degradation
[135,136]. This apparent paradox is explained by a model in which
degradation is required for the disruption of the transcription
initiation complex, thus facilitating the transition to a productive
elongation complex and elongation of transcription. NR removal
enables the reassembly of transcriptional complexes (promoter
recharging) to ensure multiple rounds of transcription [130–132].

Decoding of the myriad forms and sites of post-translational
modification governing RORgt function is emerging as an area of
intense investigation. Layered atop those individual modification is
the implication of cross talk and contingency existing between
different PTM types. As already discussed, acetylation can protect
lysine residues from ubiquitinylation. Phosphorylation, on the
other hand, is a common trigger of ubiquitinylation. Interruption of
any of these processes can impinge on the likelihood and
consequence of others.

4.4. Regulation of RORgt expression and function by other NRs

Several other NRs modulate RORgt function, although mostly
by regulating its expression. The fact that NR ligands, including
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Fig. 7. IL-17-transcriptional network.
(A) Transcription factors cooperating with RORgt. RORgt functions within a
transcriptional network to regulate target gene expression. BATF and IRF4 open
chromatin to allow transcription of Il17a (left panel). IkBz activates the Il17a
promoter and Runx1 cooperatively binds the Il17a promoter with RORgt. HIF-1a
directly interacts with RORgt and recruits p300. Blimp-1 co-binds many promoter
regions with RORgt and co-regulates target gene expression.
(B) RORgt interacts with and is inhibited by FOXP3. During Th17 and T regulatory
cell differentiation in vitro as well as in certain regulatory T cell subsets in vivo,
RORgt and FOXP3 are co-expressed and interact with each other. FOXP3 functions as
a repressor of RORgt by binding to its LBD.
(C) RORgt regulation by Rmrp and DDX5 in Th17 cells. The DEAD-box protein 5
(DDX5) interacts with RORgt and activates its transcriptional activity. The lncRNA
Rmrp facilitates the DDX5/RORgt interaction selectively in Th17 cells.
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retinoic acid, vitamin D, and several PPARg agonists, are protective
in pre-clinical T cell-mediated autoimmunity models, such as EAE,
colitis, or collagen-induced arthritis provides circumstantial
evidence for this concept [137–140]. Activation of RARa, a receptor
closely related to RORgt, by all-trans-retinoic-acid (ATRA) for
example, strongly interferes with Th17 differentiation by sup-
pressing RORgt expression and inducing FOXP3, thus promoting
the development of regulatory T cells [141,142]. Peroxisome
proliferator-activated receptor g (PPARg) is a NR that forms
heterodimers with retinoid X receptors (RXR) [143]. PPARg also
suppresses RORgt expression and hence functions as a suppressor
for Th17 differentiation. Ligand-activated PPARg blocks RORgt
expression by stabilizing binding of the co-repressor SMRT to the
Rorc promoter [144].

REV-ERBa and REV-ERBb are NRs with an atypical LBD that
lacks the AF2 region, and thus cannot interact with co-activators
[145]. Instead, they interact constitutively with NCORs and
function as repressors of transcription [34,146]. Interestingly,
REV-ERBs recognize similar RORE motifs as RORs and have been
shown to antagonize ROR signaling in various settings [34,147].
However, the interplay and co-regulation of gene expression
between REV-ERBs and RORs has mostly been studied in
metabolism and circadian rhythm [34]. While surprisingly a direct
co-regulation of immune-relevant RORgt target genes by REV-
ERBs has not been demonstrated to date, REV-ERBa-deficient mice
have alterations in Th17 differentiation [148]. However, this effect
relies, at least in part, on transcriptional regulation of RORgt
expression. REV-ERBa suppresses the expression of the transcrip-
tion factor NFIL3, which in turn inhibits RORgt expression. The
report by Yu et al. was also the first to link Th17 cell development to
the circadian clock network through the transcription factor REV-
ERBa [148]. Providing a very similar mechanism, a more recent
report further links seasonal changes in MS disease activity to
differences in melatonin levels. Melatonin induces the expression
of the repressor NFIL3 by inhibiting REV-ERBa� Treatment with
melatonin ameliorates disease in an experimental model of MS and
directly interferes with the differentiation of human and mouse
Th17 cells [149].

4.5. Regulation of RORgt by other transcription factors

Since the identification of RORgt as the master transcription
factor of Th17 cells, a number of other components have been
identified that together form a transcriptional network that
regulates Th17 cell differentiation (Fig. 7A). BATF and IRF4 function
as pioneering factors that open chromatin early upon T cell
activation. In fact, most if not all RORgt binding sites in T cells are
co-bound by BATF/IRF4 [150]. IkBz belongs to the Bcl3 family of
nuclear proteins. It interacts with NF-kB and regulates down-
stream biological functions. IkBz is indispensable for Th17 cell
development by cooperating with RORgt to activate the Il17a
promoter and inducing Th17 cell differentiation [151]. Runx1 is
another transcription factor that can interact with RORgt and binds
cooperatively to the Il17a promoter to augment Th17 differentia-
tion. Runx1 is required for IL-17 production in Th17 cells. Runx1
also controls the balance of Th17 and Treg cell development [152].
As already discussed, environmental factors play important roles
in regulating Th17 cell differentiation. Hypoxia-inducible factor 1
(HIF-1a) is an essential transcription factor under hypoxia
condition to control the metabolic switch from oxidative
phosphorylation to aerobic glycolysis. HIF-1a is up-regulated in
Th17 cells in a STAT3-dependent manner. Importantly, HIF-1a is
indispensable for Th17 cell development. T cells deficient in HIF-1a
expression fail to differentiate into Th17 cells in vitro. HIF-1a
directly binds to the Rorc promoter and induces transcription. In
addition, HIF-1a also directly interacts with RORgt and recruits
p300 to regulate Il17a gene expression in Th17 cells [153]. Recently,
Blimp-1 was described to be induced by IL-23 in pathogenic Th17
cells and to promote pathogenicity in inflammatory disease
models, such as EAE. Genome-wide occupancy studies revealed
that Blimp-1 binds in proximity to RORgt binding sites in the
regulatory regions of many Th17 genes including Il23r, Il17a, Il17f,
and Csf2, and regulates their expression. However, it is unclear
whether there is a direct interaction between RORgt and Blimp-1
[154].

It had been noticed early on that the cell fates of Th17 cells and
regulatory T cells are closely linked during de novo differentiation
in vitro. TGF-b induces the expression of both RORgt and FOXP3,
the forkhead family transcriptional repressor important for the
development and function of regulatory T cells [155,156]. Depend-
ing on the culture conditions, a range of phenotypes from pro-
inflammatory Th17 cells (generated with IL-6, IL-1b and IL-23 in
the absence of TGF-b) over suppressive Th17 cells (generated with
IL-6 and low amounts of TGF-b) to regulatory T cells (generated
with IL-2 and high amounts of TGF-b) can be obtained [155–160].
Indeed, FOXP3 and RORgt are transiently co-expressed in this
process (Fig. 7B). Both factors interact with one another [160,161],
and in fact FOXP3 has been found to co-localize with RORgt
binding to DNA in cultured T cells [93]. FOXP3 also interacts with
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RORa and this interaction, most likely analogous to the one with
RORgt, has been characterized in much detail. FOXP3 inhibits its
transcriptional activity [162]. This interaction was mapped to the
second exon for FOXP3 which is missing in a second shorter
isoform expressed in human. The shorter FOXP3 isoform also does
not interact with RORgt [161]. Interestingly, this region of FOXP3
contains a “co-activator like” LXXLL motif, which was shown to
interact with AF2 of RORa. Mutation of the LXXLL motif in FOXP3
abolishes the interaction with and repression by FOXP3. Addition-
ally, the inhibition of RORa (or RORgt) by FOXP3 does not require
an intact forkhead domain, demonstrating that FOXP3 functions
independently of DNA-binding [161,162].

Functionally, FOXP3 and RORgt antagonize one another. In vitro,
the expression of one or the other is extinguished eventually by
signals provided by IL-6 or IL-2, respectively. Interestingly, more
recently a stable subset of RORgt + FOXP3 + regulatory T cells has
been identified in the intestinal lamina propria [163–165]. This
subset is critically import to regulate gut-specific immune
responses [163,164]. RORgt and FOXP3 appear to co-regulate a
number of genes, presumably through FOXP3-mediated suppres-
sion of certain RORgt target genes, resulting in signatures of both
Tregs and Th17 cells being expressed in these cells [165]. How the
co-expression of FOXP3 and RORgt is stably maintained is
currently not known.

4.6. Rmrp – a long non-coding RNA as co-regulator of RORgt

In recent years, RNASeq approaches have revealed that
mammalian cells transcribe a large proportion (about two-thirds)
of their genomic DNA in a highly regulated, cell type-specific
manner, most of it into non-coding RNA (ncRNA) [166,167].
Arbitrarily, ncRNAs exceeding 200nt in length have been desig-
nated long non-coding RNAs (lncRNA). Although we are only
beginning to appreciate the various crucial roles played by this
highly abundant class of transcripts, several functions for lncRNAs
in regulating high-order chromosomal dynamics, telomere biolo-
gy, subcellular structural organization or transcription factor
activity have already been established [168–171].

Work by Gangqing et al. analyzing a large number of T cell
subsets, ranging from thymic precursors to various Th cell subsets,
in mice revealed a highly dynamic and cell-specific expression of
more than 1500 genomic regions that generate lncRNAs. These
regions are adjacent to genes encoding proteins critically involved
in regulating immunological function, and many of them are
bound and regulated by key T cell transcription factors such as T-
bet, GATA-3, STAT4 and STAT6 [172]. Similarly, Spurlock et al.
identified more than 2000 lncRNAs expressed in human T cell
subsets. Recapitulating some of the findings in mice, the authors
identified clusters of lncRNAs that are Th lineage-specific in their
expression, and are intragenic or adjacent to Th lineage-specific
genes encoding proteins with immunologic functions [173]. The
role of the vast majority of these lncRNA is still unknown.

Huang et al. recently demonstrated that the transcriptional
activity of RORgt in Th17 cells is critically dependent on one
particular lncRNA [174]. Leading up to this realization, a new co-
activator of RORgt in Th17 cells, the DEAD-box protein 5 (DDX5),
was identified in a liquid-chromatography-tandem mass spectros-
copy (LC–MS/MS)-based approach. DDX5 belongs to a large family
of RNA helicases that hydrolyze adenosine-5-triphosphate to
unwind RNA [175], and has previously been described as a
transcriptional co-activator for other NRs [176,177]. DDX5 co-
regulates the transcription of nearly 40% of RORgt target genes,
including Il17a and Il17f [174]. Indeed, DDX5 is required for Th17-
mediated inflammatory pathologies, including colitis and EAE
[174]. The observation that the RNA helicase activity of DDX5 is
essential for its function in Th17 cells ultimately led to the
identification and characterization of an lncRNA component of the
DDX5/RORgt complex (Fig. 7C). The RNA component of mitochon-
drial ribonuclease protein complex (Rmrp) is a lncRNA that is
known for its role in mitochondrial RNA processing (MRP) and
maturation of 5.8 S ribosomal RNA [178]. Interestingly, mutations
in Rmrp in human result in a rare autosomal recessive disorder
named cartilage-hair hypoplasia (CHH) characterized by skeletal
dysplasia, hypoplastic hair, neuronal dysplasia of the intestine,
predisposition to lymphoma and defective immunity [179].
However, the role of Rmrp in immune cells was poorly understood.
Elegant studies using CRISPR to generate mutants of Rmrp in mice
demonstrate a critical role in facilitating the DDX5/RORgt
interaction and RORgt target gene transcription [174]. Curiously,
both DDX5 and Rmrp, despite being highly expressed in
thymocytes, are dispensable for RORgt function in thymocyte
development [174]. In these cells, Rmrp does not co-precipitate
with DDX5. Similarly, the development of lymph nodes is normal
in mice with either mutant Rmrp or a lymphoid cell-specific
deficiency in DDX5, suggesting that LTi are intact in these mice
[174,180]. These findings do not only raise important questions as
to what are the signals and molecular triggers of DDX5/Rmrp/
RORgt complex formation, but also potentially provide a very
attractive new approach for targeting the RORgt/Th17 pathway
pharmacologically for the treatment of inflammatory and autoim-
mune disorders, by eliminating unintended effects on thymocytes
and LTi cells. Most certainly the functional characterization of
Rmrp in Th17 cells will only be the first in a series of discoveries in
this exciting new area of immune regulation through lncRNAs.

5. Concluding remarks

As detailed before, RORgt plays an essential role in establishing
and maintaining adaptive immune responses by enabling the
formation of secondary and tertiary lymphoid organs and by
regulating thymic T cell development and Th17 cell differentiation.
However, the requirement of RORgt for the development of several
innate lymphoid cells underscores its importance in innate
immunity, as well. Lastly, the strong association with autoimmu-
nity makes RORgt an important drug target. Partly driven by this
realization, we have come a long way from “orphan” NR RORgt to a
much more granular understanding of its complex biology and the
various regulatory circuits that govern RORgt expression and
activity. Presumably best studied to date are the transcriptional
networks that function in concert with RORgt itself to regulate IL-
17 expression. More relevant from a drug development aspect, we
have also made enormous progress in developing highly selective
and potent inverse agonists targeting the transcriptional activity of
RORgt. Still lagging behind but rapidly evolving is our understand-
ing of the endogenous ligands that drive RORgt function within the
cell. It seems now clear that these ligands are intermediates or
products of the cholesterol synthesis pathway, and we are
beginning to uncover other cellular pathways that determine
the availability of these ligands. It will be interesting to further
investigate the crosstalk and feedback loops between cellular
(lipid) metabolism and RORgt activity, to better understand their
dynamics and how they relate to and shape the pro-inflammatory
nature of the immune cell through modulating RORgt target gene
expression. Another part of RORgt biology that is still largely
unexplored is the co-factor landscape, and its influence on various
RORgt functions. Uncovering and understanding these selective
co-factor interactions will be an important area of future research
and holds the potential to develop highly selective therapies that
avoid detrimental on-target side effects. Another piece in the
puzzle is the rapidly evolving appreciation of post-translational
modifications as important modulators of RORgt function. In some
cases, PTMs might be the cause of selective co-factor interactions,
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or they might regulate DNA-binding (acetylation) or stability
(ubiquitinylation). It is surprising that although several RORgt
phosphorylation sites have been detected, none of them has been
studied functionally. While kinases have been classic drug targets
for a long time, recent progress greatly expands our ability to target
E3 ubiquitin ligases and deubiquitinases. Future research in these
areas will allow us to further deepen our understanding of RORgt
biology and to fully realize the potential of targeting this pathway
in the clinic.
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