brought to you by CORE

Discrete Mathematics 312 (2012) 633-636

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Balanced and strongly balanced P_k -designs^{*}

Luigia Berardi^a, Mario Gionfriddo^b, Rosaria Rota^c

^a Dipartimento di Ingegneria Elettrica e dell'Informazione, Universitá dell'Aquila, Italy

^b Dipartimento di Matematica e Informatica, Universitá di Catania, Italy

^c Dipartimento di Matematica, Universitá di RomaTre, Italy

ARTICLE INFO

Article history: Available online 30 June 2011

Keywords: Balanced Strongly balanced Simply balanced G-design

ABSTRACT

Given a graph *G*, a *G*-decomposition of the complete graph K_v is a set of graphs, all isomorphic to *G*, whose edge sets partition the edge set of K_v . A *G*-decomposition of K_v is also called a *G*-design and the graphs of the partition are said to be the blocks. A *G*-design is said to be balanced if the number of blocks containing any given vertex of K_v is a constant. In this paper the concept of strongly balanced *G*-design is introduced and strongly balanced path-designs are studied. Furthermore, we determine the spectrum of those path-

designs which are balanced, but not strongly balanced.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let $K_v = (X, \mathcal{E})$ be the complete graph defined on a vertex set X. Let G be a subgraph of K_v . A G-decomposition of K_v is a pair $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is a partition of the edge set of K_v into subsets all of which yield subgraphs that are isomorphic to G. A G-decomposition $\Sigma = (X, \mathcal{B})$ of K_v is also called a G-design of order v and the classes of the partition \mathcal{B} are said to be the *blocks* of Σ [4–6].

A *G*-design is called *balanced* if the *degree* of each vertex $x \in X$ is a constant: in other words, the number of blocks of Σ containing *x* is a constant [1,3].

In the case $G = P_k$, path with *k* vertices, a *G*-decomposition is called a *path-decomposition* or a P_k -decomposition or a P_k -decign. In this paper we introduce the concept of a *strongly balanced G*-design as a balanced *G*-design with an additional property. We study some properties and relations between balanced and strongly balanced *G*-designs and, also, determine the spectrum of those path-designs which are balanced, but not strongly balanced.

2. Main definitions

In what follows, we denote by P_k a path with k vertices. If a P_k has vertices x_1, x_2, \ldots, x_k and edges $\{x_1, x_2\}$, $\{x_2, x_3\}, \ldots, \{x_{k-1}, x_k\}$, it will be denoted by (x_1, \ldots, x_k) .

It is well known that a P_k -design of order v, briefly a $P_k(v)$ -design, exists if and only if [2]: $v \cdot (v - 1) \equiv 0$, mod $2 \cdot (k - 1)$, $v \geq k$.

Let *G* be a graph with *n* vertices and let $\Sigma = (X, \mathcal{B})$ be a *G*-design. If $x \in X$ is a vertex of Σ , the *degree* d(x) of *x* is the number of blocks of Σ containing *x*.

A *G*-design $\Sigma = (X, \mathcal{B})$ is said to be *balanced* if the degree d(x) of a vertex $x \in X$ is a constant.

Observe that if *G* is a regular graph then a *G*-design is always balanced, hence the notion of a balanced *G*-design becomes meaningful only for a non-regular graph *G*.

Lavoro eseguito nell'ambito del GNSAGA e nell'ambito del MIUR. E-mail addresses: luigia.berardi@ing.univaq.it (L. Berardi), gionfriddo@dmi.unict.it (M. Gionfriddo), rota@mat.uniroma3.it (R. Rota).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.05.015

Example 1. Let $\Sigma = (X, \mathcal{B})$ be the $P_6(6)$ -design defined on Z_6 , having the blocks:

 $\mathcal{B}_1 = (0, 1, 5, 2, 4, 3), \qquad \mathcal{B}_2 = (1, 2, 3, 5, 0, 4), \qquad \mathcal{B}_3 = (2, 0, 3, 1, 4, 5).$

 Σ is a balanced P_6 -design of order 6. \Box

Example 2. Let $\Sigma = (X, \mathcal{B})$ be the $P_4(7)$ -design defined on $X = Z_7$, having the blocks:

B = (i, i + 1, i + 3, i + 6),

for every $i \in Z_7$.

 Σ is a balanced P_4 -design of order 7. \Box

Example 3. Let $\Sigma = (X, \mathcal{B})$ be the $P_3(4)$ -design defined on $X = \{0, 1, 2, 3\}$, having the blocks:

 $B_1 = (0, 1, 2),$ $B_2 = (0, 2, 3),$ $B_3 = (0, 3, 1).$

 Σ is not a balanced P_3 -design. The vertex 0 has degree three and the vertex 1 has degree two. \Box

3. Strongly balanced and simply balanced G-designs

Let *G* be a graph and let A_1, A_2, \ldots, A_h be the orbits of the automorphism group of *G* on its vertex set. Let $\Sigma = (X, \mathcal{B})$ be a *G*-design.

We define the degree $d_{A_i(x)}$ of a vertex $x \in X$ as the number of blocks of Σ containing x as an element of A_i . We say that:

 $\Sigma = (X, \mathcal{B})$ is a strongly balanced G-design if, for every i = 1, 2, ..., h, there exists a constant C_i such that

 $d_{A_i}(x) = C_i,$

for every $x \in X$.

Clearly, since for each vertex $x \in X$ the relation $d(x) = \sum_{i=1}^{h} d_{A_i}(x)$ holds, we have:

Theorem 3.1. A strongly balanced G-design is a balanced G-design.

The $P_6(6)$ -design of Example 1 is balanced but not strongly balanced, showing that the converse of Theorem 3.1 does not hold.

We say that a G-design is simply balanced if it is balanced, but not strongly balanced.

Example 4. Given a kite $K_3 + e$ having vertices a, b, c, d, we denote it by [a, b, (c, d)], where the ordered pair (c, d) contains the vertex c of degree three and the vertex d of degree one.

Let $\Sigma = (X, \mathcal{B})$ be the $(K_3 + e)$ -design of order 9, defined on $X = Z_9$, having the blocks:

[0, 2, (1, 8)], [0, 3, (6, 1)], [0, 4, (7, 2)],[0, 5, (8, 4)], [4, 5, (1, 7)], [6, 8, (2, 5)],

[7, 8, (3, 1)], [2, 3, (4, 6)], [6, 7, (5, 3)].

 Σ is a balanced ($K_3 + e$)-design, but it is not strongly balanced: observe that the vertex 0 is never a terminal vertex, while the vertex 1 occurs twice in a terminal position. \Box

In what follows, we will determine the spectrum for simply balanced P_5 -designs and P_6 -designs. Our purpose is a preliminary study of the existence of balanced *paths*-designs which are not strongly balanced. The same investigation for $(K_3 + e)$ -designs and other designs will be the subject of future work.

4. Simply balanced P₅-designs

It is known that [2].

Theorem 4.1. A balanced $P_5(v)$ -design exists if and only if $v \equiv 1 \mod 8$, $v \ge 9$.

Proof. The proof can be obtained using the *difference method*. If v = 8k + 1, $k \ge 1$, we can consider a $P_5(v)$ -design, defined on Z_{8k+1} , having as blocks the translates of k base blocks. These can be obtained by distributing in a suitable way the 4k differences among different elements of Z_{8k+1} on the 4k edges of the k base blocks. \Box

By the construction indicated in the previous Theorem we obtain $P_5(v)$ -designs which are strongly balanced, because the difference method produces these types of designs.

634

So, we can say that:

Theorem 4.2. A strongly balanced $P_5(v)$ -design exists if and only if $v \equiv 1 \mod 8$, $v \ge 9$.

So, we must determine the spectrum of those $P_5(v)$ -designs which are balanced, but not strongly balanced.

Theorem 4.3. There exists a simply balanced $P_5(9)$ -design.

Proof. Let v = 9. The system $\Sigma = (Z_9, \mathcal{B})$ having the following blocks:

(0, 1, 3, 7, 4), (1, 2, 4, 8, 5), (2, 3, 0, 5, 6), (3, 4, 6, 1, 7), (4, 5, 7, 2, 8), (0, 6, 8, 3, 5), (6, 7, 0, 4, 1), (7, 8, 1, 5, 2), (8, 0, 2, 6, 3),

is a balanced $P_5(9)$ -design, it is not strongly balanced.

Theorem 4.4. A simply balanced $P_5(v)$ -design exists if and only if $v \equiv 1 \mod 8$, $v \ge 9$.

Proof (*Construction*). $v \rightarrow v + 8$

Let $\Sigma_1 = (X, \mathcal{B}_1)$ be a simply balanced $P_5(9)$ -design. Let $\Sigma_2 = (Y, \mathcal{B}_2)$ be a strongly balanced $P_5(v)$ -design, where $v = 8k + 1, k \ge 1$ and $X \cap Y = \{0\}$. Define a family \mathcal{F} of P_5 -paths, containing all the pairs $\{x, y\}$ with $x \in X - \{0\}$ and $y \in Y - \{0\}$, as follows.

Since v = 8k + 1, then $|Y - \{0\}| = 8k$ and it is possible to partition the set $Y - \{0\}$ into two classes as follows: $\Gamma_a = \{a_1, a_2, \dots, a_{4k}\}, \Gamma_b = \{b_1, b_2, \dots, b_{4k}\}.$

Furthermore, since $|X - \{0\}| = 8$, it is possible to partition $X - \{0\}$ into the following two classes: $A = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}, B = \{\beta_1, \beta_2, \beta_3, \beta_4\}.$

Let $\Gamma_{\alpha,\beta}$ be the family containing the following blocks:

$$\begin{split} &(\alpha_4, a_i, \alpha_1, a_{k+i}, \alpha_3), \\ &(\alpha_4, a_{k+i}, \alpha_2, a_i, \alpha_3), \\ &(\alpha_1, a_{2k+i}, \alpha_3, a_{3k+i}, \alpha_2), \\ &(\alpha_1, a_{3k+i}, \alpha_4, a_{2k+i}, \alpha_2), \\ &(\beta_4, b_i, \beta_1, b_{k+i}, \beta_3), \\ &(\beta_4, b_{k+i}, \beta_2, b_i, \beta_3), \\ &(\beta_1, b_{2k+i}, \beta_3, b_{3k+i}, \beta_2), \\ &(\beta_1, b_{3k+i}, \beta_4, b_{2k+i}, \beta_2), \end{split}$$

for every i = 1, 2, ..., k.

Let $\Gamma_{a,b}$ be the family containing the following blocks:

```
(b_1, \alpha_1, b_{2k+1}, \alpha_2, b_2),
(b_2, \alpha_1, b_{2k+2}, \alpha_2, b_3),
(b_{2k-1}, \alpha_1, b_{4k-1}, \alpha_2, b_{2k}),
(b_{2k-1}, \alpha_3, b_1, \alpha_4, b_{2k+2}),
(b_{2k+1}, \alpha_3, b_1, \alpha_4, b_{2k+2}),
(b_{2k+2}, \alpha_3, b_2, \alpha_4, b_{2k+3}),
(b_{4k-1}, \alpha_3, b_{2k-1}, \alpha_4, b_{4k}),
(b_{4k}, \alpha_3, b_{2k}, \alpha_4, b_{2k+1}),
(a_1, \beta_1, a_{2k+1}, \beta_2, a_2),
(a_2, \beta_1, a_{2k+2}, \beta_2, a_3),
(a_{2k-1}, \beta_1, a_{4k-1}, \beta_2, a_{2k}),
(a_{2k}, \beta_1, a_{4k}, \beta_2, a_1),
```

```
(a_{2k+1}, \beta_3, a_1, \beta_4, a_{2k+2}),

(a_{2k+2}, \beta_3, a_2, \beta_4, a_{2k+3}),

\dots

(a_{4k-1}, \beta_3, a_{2k-1}, \beta_4, a_{4k}),

(a_{4k}, \beta_3, a_{2k}, \beta_4, a_{2k+1}).
```

If $\mathcal{F} = \Gamma_{\alpha,\beta} \cup \Gamma_{a,b}$, it is possible to verify that the blocks of \mathcal{F} cover all the edges having a vertex in $X - \{0\}$ and the other vertex in $Y - \{0\}$. Furthermore, each vertex $x \in X - \{0\}$ appears in \mathcal{F} k times in the central position, 2k times in any of the two medial positions and 2k times in any of the two extreme positions of a P_5 -block.

Set $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{F}$ and note that the blocks of \mathcal{B} passing through an element of $X - \{0\}$ are only those in $\mathcal{B}_1 \cup \mathcal{F}$. Since Σ_1 is simply balanced one can easily check that $\Sigma = (X \cup Y, \mathcal{B})$ is a simply balanced $P_5(v + 8)$ -design. \Box

5. Simply balanced P₆-designs

It is known that [2].

Theorem 5.1. A balanced $P_6(v)$ -design exists if and only if $v \equiv 1 \mod 5$, $v \ge 6$.

Theorem 5.2. There exist strongly balanced and simply balanced $P_6(6)$ -designs.

Proof. Let v = 6. We can verify that:

(i) the system $\Sigma_1 = (Z_6, \mathcal{B}_1)$ with the blocks:

(0, 1, 2, 5, 4, 3), (1, 5, 3, 0, 2, 4), (2, 3, 1, 4, 0, 5),

is a strongly balanced $P_6(9)$ -design;

(ii) the system $\Sigma_2 = (Z_6, \mathcal{B}_2)$ with the blocks:

(0, 1, 2, 4, 5, 3), (1, 5, 2, 0, 3, 4), (2, 3, 1, 4, 0, 5),

is a balanced $P_6(6)$ -design, which is not strongly balanced. \Box

Theorem 5.3. (i) A simply balanced $P_6(v)$ -design exists if and only if $v \equiv 1 \mod 5$, $v \ge 6$. (ii) A strongly balanced $P_6(v)$ -design exists if and only if $v \equiv 1 \mod 5$, $v \ge 6$.

Proof. From Theorem 5.2, for v = 6 there exist simply balanced $P_6(6)$ -designs and strongly balanced $P_6(6)$ -designs. *Construction* $v \rightarrow v + 5$

Observe that if $\Sigma = (X, \mathcal{B})$ is a strongly balanced $P_6(v)$ -design with v = 5k + 1, necessarily all vertices have degree k in any position of P_6 . This is not true in any simply balanced $P_6(v)$ -design.

Let $\Sigma_1 = (X, \mathcal{B}_1)$ be a simply [resp. strongly] balanced $P_6(6)$ -design. Let $\Sigma_2 = (Y, \mathcal{B}_2)$ be a strongly balanced $P_6(v)$ -design, where $v = 5k + 1, k \ge 1$ and $X \cap Y = \{0\}$.

Define a family \mathcal{F} of P_6 -paths, containing all the pairs $\{x, y\}$ with $x \in X - \{0\}$ and $y \in Y - \{0\}$, as follows.

Since v = 5k + 1, $|Y - \{0\}| = 5k$ and it is possible to partition the set $Y - \{0\}$ into k classes as follows:

 $\Gamma_i = \{a_{i1}, a_{i2}, \ldots, a_{i5}\},\$

for every i = 1, 2, ..., k.

So, if $X = \{0, A, B, C, D, E\}$, let \mathcal{F} be the family containing the following blocks:

 $(A, a_{i1}, B, a_{i5}, C, a_{i4}), (B, a_{i2}, C, a_{i1}, D, a_{i5}), (C, a_{i3}, D, a_{i2}, E, a_{i1}),$

 $(D, a_{i4}, E, a_{i3}, A, a_{i2}), (E, a_{i5}, A, a_{i4}, B, a_{i3}),$

for every i = 1, 2, ..., k.

Since Σ_1 is a *simply* [resp. *strongly*] balanced $P_6(6)$ -design and Σ_2 is a strongly balanced $P_6(v)$ -design in which all vertices have degree k in any position of P_6 , if $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{F}$, it is possible to verify that $\Sigma = (X \cup Y, \mathcal{B})$ is a *simply* balanced $P_6(v + 9)$ -design [resp. *strongly balanced* $P_6(v + 9)$ -design with all vertices having degree k + 1 in any position of P_6]. \Box

References

- [1] M. Gionfriddo, G. Quattrocchi, Embedding balanced P₃-designs into balanced P₄-designs, Discrete Mathematics 308 (2008) 155–160.
- [2] K. Heinrich, Path-decompositions, Le Matematiche XLVII (1992) 241–258.
- [3] P. Hell, A. Rosa, Graph decompositions, handcuffed prisoners and balanced P-designs, Discrete Mathematics 2 (1972) 229–252.
- [4] C. Lindner, Graph decompositions and quasigroups identities, Le Matematiche XLV (1990) 83-118.
- [5] C. Rodger, Graph decompositions, Le Matematiche XLV (1990) 119–139.

^[6] M. Tarsi, Decompositions of a complete multigraph into simple paths: nonbalanced handcuffed designs, Journal of Combinatorial Theory Ser. A 34 (1983) 60–70.