
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
J. Differential Equations 231 (2006) 108–134

www.elsevier.com/locate/jde

The two-dimensional Lazer–McKenna conjecture
for an exponential nonlinearity

Manuel del Pino ∗, Claudio Muñoz

Departamento de Ingeniería Matemática, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile

Received 8 January 2006; revised 29 June 2006

Available online 17 August 2006

Abstract

We consider the problem of Ambrosetti–Prodi type{
�u + eu = sφ1 + h(x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded, smooth domain in R
2, φ1 is a positive first eigenfunction of the Laplacian under

Dirichlet boundary conditions and h ∈ C0,α(Ω). We prove that given k � 1 this problem has at least k

solutions for all sufficiently large s > 0, which answers affirmatively a conjecture by Lazer and McKenna
[A.C. Lazer, P.J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal.
Appl. 84 (1981) 282–294] for this case. The solutions found exhibit multiple concentration behavior around
maxima of φ1 as s → +∞.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction and statement of main results

Let Ω ⊆ R
2 be a bounded and smooth domain. This paper deals with the boundary value

problem {
�u + eu = sφ1 + h(x) in Ω,

u = 0 on ∂Ω,
(1.1)
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where h ∈ C0,α(Ω) is given, s is a large, positive parameter and φ1 is a positive first eigen-
function of the problem −�φ = λφ under Dirichlet boundary condition in Ω . We denote its
eigenvalues as

0 < λ1 < λ2 � λ3 � · · · .

The Ambrosetti–Prodi problem is the equation{
�u + g(u) = f (x) in Ω,

u = 0 on ∂Ω,
(1.2)

where Ω ⊂ R
N is bounded and smooth, f ∈ C0,α(Ω), and the limits

ν ≡ lim
t→−∞

g(t)

t
< μ ≡ lim

t→+∞
g(t)

t

are assumed to exist. Problem (1.1) corresponds to a case in which ν = 0 and μ = +∞. In 1973,
Ambrosetti and Prodi [2] assumed that

0 < ν < λ1 < μ < λ2

and additionally that g′′ > 0. They proved the existence of a C1 manifold M of codimension 1
which separates C0,α(Ω) into two disjoint open regions,

C0,α(Ω) = O0 ∪M∪O2,

such that problem (1.2) has no solutions for f ∈O0, exactly two solutions if f ∈O2, and exactly
one solution if f ∈M.

In 1975, Berger and Podolak [4] obtained a more explicit representation for the result in [2]
by decomposing

f = sφ1 + h,

∫
Ω

hφ1 = 0,

and proving that for each such an h there is a number α(h) such that the problem{
�u + g(u) = sφ1 + h in Ω,

u = 0 on ∂Ω
(1.3)

has no solution if s < α(h) and exactly two solutions if s > α(h). Written in this form, letting s

be a parameter and h fixed, is what is commonly referred to as the Ambrosetti–Prodi problem.
The convexity assumption in the multiplicity result for large and positive s was relaxed sub-

sequently in [1,9,21]. In [22], Lazer and McKenna obtained a third solution of (1.3) under the
further assumption

ν < λ1 < λ2 < μ < λ3,
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while a fourth solution under this circumstance was found by Hofer [20] and by Solimini [29].
In [22] it was further conjectured that the number of solutions for very large s > 0 grows as the
interval (ν,μ) contains more and more eigenvalues, in particular, they conjectured that if

ν < λ1 < μ = +∞ (1.4)

and g does not grow “too fast” at infinity, then for all k � 1 there is a number sk such that for all
s > sk , problem (1.3) has at least k solutions.

Surprisingly enough, Dancer [10] was able to disprove the conjecture in the asymptotically
linear case in which ν and μ are finite, exhibiting an example in N � 2 in which the interval
(ν,μ) contains a large number of eigenvalues but no more than four solutions for large s exist.
The conjecture, for both μ finite and infinite actually holds true in one-dimensional and radial
cases under various situations, see [8,16,19,23,28] for these and related results. See also [5,13,
14,30] for other results in the PDE case.

How fast should “too fast” be in the growth of g under the situation (1.4)? The authors of the
conjecture had probably in mind a growth not beyond critical for the nonlinearity. This constraint
was indeed used in [8] in the radial case.

Recently Dancer and Yan [11,12] proved that the Lazer–McKenna conjecture holds true when
N � 3 and

g(t) = λt + t
p
+, 1 < p <

N + 2

N − 2
, λ < λ1,

by constructing and describing asymptotic behavior of the solutions found as s → +∞. In this
case ν = λ and μ = +∞. This has also been done in the critical case p = N+2

N−2 if, in addition,
0 < λ and N � 7, by Li, Yan and Yang in [24].

Problem (1.1) is also a problem involving criticality in R
2. While, strictly speaking, the non-

linearity stays below the threshold of compactness given by Trudinger–Moser embedding, for
which eu2

is critical, two-dimensional equations involving eu exhibit bubbling phenomena, sim-
ilar to that found at the critical exponent in higher dimensions. This has been a subject broadly
treated in the literature, in what regards to construction and classification of unbounded families
of solutions for this type of exponential nonlinearities.

The main result of this paper is a positive answer to the Lazer–McKenna conjecture for prob-
lem (1.1). Given any m � 1, there are at least m solutions for all s > 0 sufficiently large. These
solutions can be explicitly described: they exhibit multiple bubbling behavior around maximum
points of φ1.

Theorem 1. Given any m � 1 and any s sufficiently large, there exists a solution us of prob-
lem (1.1) such that

lim
s→+∞

∫
Ω

eus = 8πm.

More precisely, given any subset Λ of Ω for which

supφ1 < supφ1

∂Λ Λ
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and a sequence s → +∞, there is a subsequence and m points ξi ∈ Λ with

φ1(ξi) = sup
Λ

φ1

such that as s → +∞

eus ⇀ 8π

m∑
i=1

δξi
.

In particular, we observe that associated to any isolated local maximum point of ξ0 of φ1 one
has the phenomenon of multiple bubbling at a single point, namely, eus ⇀ 8πmδξ0 .

The construction gives much more accurate information on the asymptotic profile of these
solutions, in particular we have the expansion

us = − s

λ1
φ1 − ρ +

m∑
i=1

G(ξi, x) + o(1)

uniformly on compact subsets of Ω \ {ξ1, . . . , ξm}, where ρ = (−�)−1h in H 1
0 (Ω) and G(x, ξ)

denotes the Green function of the problem{−�xG(x, ξ) = 8πδξ (x), x ∈ Ω,

G(x, ξ) = 0, x ∈ ∂Ω.
(1.5)

In order to restate the problem in perhaps more familiar terms, let us substitute u in Eq. (1.1)
by u− s

λ1
φ1 −ρ. Replacing further the parameter s by λ1s and setting k(x) = e−ρ , (1.1) becomes

equivalent to {
�u + k(x)e−sφ1eu = 0 in Ω,

u = 0 on ∂Ω,
(1.6)

and thus what one typically expects are solutions of us (1.6) that resemble

us(x) ∼
k∑

j=1

mjG(ξi, x),

with mj > 1, where ξi ’s are maxima of φ1. This multiple bubbling phenomenon is in strong
opposition to the seemingly similar, well studied problem{

�u + ε2k(x)eu = 0 in Ω,

u = 0 on ∂Ω,
(1.7)

with k ∈ C2(Ω), infΩ k > 0 and ε → 0, where bubbling of solutions with∫
Ω

ε2k(x)eu = O(1)

is forced to be simple, namely with all mj ’s equal to one, as it follows from the results in
[6,25–27]. Blowing up families of solutions to this problem have been constructed in [3,7,15,17].
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For instance, it is found in [15] the presence of solutions with arbitrary number of bubbling points
whenever Ω is not simply connected, see also [18] for a similar phenomenon for large exponents
in a power nonlinearity. Multiple bubbling has been built recently, in [32], for the anisotropic
problem {

div(a(x)∇u) + ε2k(x)eu = 0 in Ω,

u = 0 on ∂Ω,

around isolated local maxima of the (uniformly positive) coefficient a. The moral of our result
is that multiple bubbling in the isotropic case may be triggered by the fact that the coefficient in
front of eu does not go to zero in uniform way. Multiple bubbling “wants to take place” where the
coefficient vanishes faster in s. This should be somehow connected with phenomena associated
to (1.7), where k(x) is replaced by |x|αk(x), weight resulting for Liouville type equations with
singular sources. Important advances in understanding of blowing-up solutions for that problem
have been obtained, see, for instance, [31] and references therein.

The rest of this paper will devoted to the proof of Theorem 1. We will actually give to it a
precise version in terms of problem (1.6) in Theorem 2 below.

As we have mentioned, we do not intend to express our results in their most general forms.
For instance, the choice of φ1 as the positive function in the right-hand side of (1.1) is made for
historical reasons but it is certainly not essential. We could in principle replace it, for instance,
by any positive function φ, where now concentration will take place around local maxima of the
function (−�)−1φ in H 1

0 (Ω).
On the other hand, we also remark that a similar result to Theorem 1 is valid for the problem{

�u + λu + eu = sφ1 + h(x) in Ω,

u = 0 on ∂Ω,

provided that λ < λ1. Note that ν = λ, μ = +∞ in this case. The basic fact is that �+λ satisfies
maximum principle. Green’s function should consistently be replaced by the one associated to
this operator.

2. Preliminaries and ansatz for the solution

In what remains of this paper we fix a set Λ as in the statement of Theorem 1. For notational
simplicity we assume

max
x∈Λ

φ1(x) = 1.

What we will do next is to construct a reasonably good approximation U to a solution of (1.6)
which will have as parameters yet to be adjusted, points ξi where the spikes are meant to take
place. As we will see, a convenient set to select ξ = (ξ1, . . . , ξm) is

Os ≡
{
ξ ∈ Λm: 1 − φ1(ξj ) � 1√

s
, ∀j = 1, . . . ,m, and min

i �=j
|ξi − ξj | � 1

sβ

}
, (2.1)

where the number β > 1 will be specified later. We thus fix ξ ∈Os .
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For numbers μj > 0, j = 1, . . . ,m, yet to be chosen, we define

uj (x) = uj,s(x) = log
8μ2

j δ
2
j(

μ2
j δ

2
j + |x − ξj |2

)2
+ sφ1(ξj ) − logk(ξj ), (2.2)

so that uj solves

�u + k(ξj )δ
2
j e

u = 0 in R
2,

∫
R2

k(ξj )δ
2
j e

u = 8π, (2.3)

where, since we are approximating a solution to (1.6), we naturally choose

δj = δj (s) ≡ exp

{
− s

2
φ1(ξj )

}
. (2.4)

Note that uj is not zero on the boundary of Ω , so that we add to it a harmonic correction so
that boundary condition is satisfied. Let Hj(x) be the solution of{

�Hj = 0 in Ω,

Hj = −uj on ∂Ω.

We define our first approximation U(ξ) as

U(ξ) ≡
m∑

j=1

Uj , Uj ≡ uj + Hj . (2.5)

As we will see precisely below, uj +Hj ∼ G(x, ξj ), where G(x, ξ) is the Green function defined
in (1.5). Let us consider H(x, ξ), its regular part, namely, the solution of{−�xH(x, ξ) = 0, x ∈ Ω,

H(x, y) = Γ (x − y) = −4 log 1
|x−y| , x ∈ ∂Ω, (2.6)

so that

G(x,y) = H(x,y) − Γ (x − y).

While uj is a good approximation to a solution of (1.6) near ξj , it is not so much the case for U ,
namely,

U = uj +
(

Hj +
∑
k �=j

uk

)
,

unless the remainder vanishes at main order near ξj . This is achieved through the following
precise choice of the parameters μk :

log 8μ2
k = logk(ξj ) + H(ξk, ξk) +

∑
G(ξi, ξk). (2.7)
i �=k
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Let us observe, in particular, that since ξ ∈Os ,

1

C
� μk � Cs2β for all k = 1, . . . ,m and some C > 0. (2.8)

The following lemma expands Uj in Ω .

Lemma 2.1. Assume ξ ∈ Os . Then we have

Hj(x) = H(x, ξj ) − log 8μ2
j + logk(ξj ) + O

(
μ2

j δ
2
j

)
, (2.9)

uniformly in Ω , and

uj (x) = log 8μ2
j − logk(ξj ) − Γ (x − ξj ) + O

(
μ2

j s
2βδ2

j

)
, (2.10)

uniformly in the region |x − ξj | � 1
2sβ , so that there,

Uj (x) = G(x, ξj ) + O
(
μ2

j s
2βδ2

j

)
. (2.11)

Proof. Let us prove (2.9). Define z(x) = Hj(x) + log 8μ2
j − logk(ξj ) − H(x, ξj ). Since z is

harmonic we have

max
Ω

|z| = max
∂Ω

∣∣−uj + log 8μ2
j − logk(ξj ) − Γ (· − ξj )

∣∣
= max

x∈∂Ω

∣∣∣∣log
1

|x − ξj |4 − log
1

(μ2
j δ

2
j + |x − ξj |2)2

∣∣∣∣ = O
(
μ2

j δ
2
j

)
,

uniformly in Ω , as s → ∞. Expansion (2.10) is directly obtained by definition of uj and μj . �
Now, let us write

δ = δ(s) = e−s/2, Ωs = δ−1Ω, ξj = δξ ′
j . (2.12)

Then u solves (1.6) if and only if v(y) ≡ u(δy) − 2s satisfies{
�v + q(y, s)ev = 0 in Ωs,

v(y) = −2s, y ∈ ∂Ωs,
(2.13)

where

q(y, s) ≡ k(δy) exp
{−s

(
φ1(δy) − 1

)}
.

Let us define V (y) = U(δy)−2s, with U our approximate solution (2.5). We want to measure
the size of the error of approximation

R ≡ �V + q(y, s)eV . (2.14)
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It is convenient to do so in terms of the following norm:

‖v‖∗ = sup
y∈Ωs

∣∣∣∣∣
[

m∑
j=1

γj

(γ 2
j + |y − ξ ′

j |2)3/2
+ δ2

]−1

v(y)

∣∣∣∣∣, (2.15)

where

γj = μjδj δ
−1 = μj exp

{
s

2

(
1 − φ1(ξj )

)}
. (2.16)

Important facts in the analysis below are the estimates

1

C
� γj � Cs2βe

√
s/2, (δγj ) � Cs2βe−s/4. (2.17)

Here and in what follows, C denotes a generic constant independent of s or ξ ∈Os .

Lemma 2.2. The error R in (2.14) satisfies

‖R‖∗ � Cs2β+1e−s/4 as s → ∞.

Proof. We assume first |y − ξ ′
k| � 1

2sβδ
, for some index k. We have

�V (y) = −δ2
m∑

j=1

k(ξj )e
−sφ1(ξj )euj (δy) = −

m∑
j=1

8γ 2
j

(γ 2
j + |y − ξ ′

j |2)2

= − 8γ 2
k

(γ 2
k + |y − ξ ′

k|2)2
+

∑
j �=k

O
(
μ2

j s
4βδ2δ2

j

)
.

Let us estimate q(y, s)eV (y). By (2.9) and the definition of μj ’s,

Hk(x) = H(ξk, ξk) − log 8μ2
k + log k(ξj ) + O

(
μ2

kδ
2
k

) + O
(|x − ξk|

)
= −

∑
j �=k

G(ξj , ξk) + O
(
μ2

kδ
2
k

) + O
(|x − ξk|

)
,

and if j �= k, by (2.11)

Uj (x) = uj (x) + Hj(x) = G(ξj , ξk) + O
(|x − ξk|

) + O
(
μ2

j s
2βδ2

j

)
.

Then

Hk(x) +
∑
j �=k

Uj (x) =
∑
j

O
(
μ2

j s
2βδ2

j

) + O
(|x − ξk|

)
. (2.18)
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Therefore,

q(y, s)eV (y) = q(y, s)δ4 exp

{
uk(δy) + Hk(δy) +

∑
j �=k

Uj (δy)

}

= 8μ2
kq(y, s)

(γ 2
k + |y − ξ ′

k|2)2k(ξk)

{
1 +

∑
j �=k

O
(
μ2

j s
2βδ2

j

) + O
(
δ
∣∣y − ξ ′

k

∣∣)}

= 8γ 2
k

(γ 2
k + |y − ξ ′

k|2)2

{
1 + O

(
sδ

∣∣y − ξ ′
k

∣∣)}.
We can conclude that in this region

∣∣R(y)
∣∣ � C(m,Ω)

sγ 2
k δ|y − ξ ′

k|
(γ 2

k + |y − ξ ′
k|2)2

+
∑
j �=k

O
(
μ2

j s
4βδ2δ2

j

)
.

If |y − ξ ′
j | > 1

2sβδ
for all j , using (2.9)–(2.11) we obtain

�V =
∑
j

O
(
μ2

j s
4βδ2δ2

j

)
and

q(y, s)eV (y) = O

(
δ4 exp

{
−

m∑
j=1

Γ (x − ξj )

})
= O

(
s4m(m−1)βδ4).

Hence,

R(y) =
∑
j

O
(
sKδ2δ2

j

)
for some K > 0 so that, finally,

‖R‖∗ =
∑

k

O(sγkδ)

and by estimate (2.17) the proof is concluded. �
Next consider the energy functional associated with (1.6)

Js[u] = 1

2

∫
Ω

|∇u|2 −
∫
Ω

k(x)e−sφ1eu. (2.19)

We will give an asymptotic estimate of Js[U ], where U(ξ) is the approximation (2.5). The choice
of parameters μj as in (2.7) and computations essentially contained in [15] show that the follow-
ing expansion holds.
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Lemma 2.3. With the election of μj ’s given by (2.7),

Js[U ] = 16π
∑
i �=j

log |ξi − ξj | + 8πs

m∑
j=1

φ1(ξj ) + O(1), (2.20)

where O(1) is uniform in ξ ∈Os .

In the subsequent analysis we will stay in the expanded variable y ∈ Ωs so that we will look
for solutions of problem (2.13) in the form v = V + ψ , where ψ will represent a lower order
correction. In terms of ψ , problem (2.13) now reads{

L(ψ) ≡ �ψ + Wψ = −[R + N(ψ)] in Ωs,

ψ = 0 on ∂Ωs,
(2.21)

where

N(ψ) = W
[
eψ − 1 − ψ

]
and W = q(y, s)eV .

Note that

W(y) =
m∑

j=1

8γ 2
j

(γ 2
j + |y − ξ ′

j |2)2

(
1 + O

(
sδ

∣∣y − ξ ′
j

∣∣)) for y ∈ Ωs,

which can be written in the following way:

Lemma 2.4. For y ∈ Ωs and ξ ∈ Os , W(y) = O(δ2 ∑m
j=1 δ2

j e
uj (δy)), and then ‖W‖∗ = O(1).

3. The linearized problem

In this section we develop a solvability theory for the linear operator L defined in (2.21) under
suitable orthogonality constrains. We consider

L(ψ) ≡ �ψ + W(y)ψ, (3.1)

where W(y) was introduced in (2.21). By Lemma 2.4 the operator L resembles

L0(ψ) ≡ �ψ +
(

δ2
m∑

j=1

δ2
j e

uj

)
ψ, (3.2)

which is a essentially a superposition of linear operators which, after translations and dilations,
approach as s → ∞ the operator in R

2

L∗(ψ) ≡ �ψ + 8
2 2

ψ, (3.3)

(1 + |z| )
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namely, equation �v + ev = 0 linearized around the radial solution v(y) = log 8
(1+|y|2)2 . The key

fact to develop a satisfactory solvability theory for the operator L is the nondegeneracy of v up
to the natural invariances of the equation under translations and dilations. In fact, if we set

Z0(z) = |z|2 − 1

|z|2 + 1
, (3.4)

Zi(z) = 4zi

1 + |z|2 , i = 1,2, (3.5)

the only bounded solutions of L∗(ψ) = 0 in R
2 are linear combinations of Zi , i = 0,1,2; see [3]

for a proof.
We define for i = 0,1,2 and j = 1, . . . ,m,

Zij (y) ≡ 1

γj

Zi

(
y − ξ ′

j

γj

)
, i = 0,1,2.

Additionally, let us consider R0 a large but fixed number and χ a radial and smooth cut-off
function with χ ≡ 1 in B(0,R0) and χ ≡ 0 in B(0,R0 + 1)c. Let

χj (y) = χ
(
γ −1
j

∣∣y − ξ ′
j

∣∣), j = 1, . . . ,m.

Given h ∈ L∞(Ωs), we consider the problem of finding a function ψ such that for certain
scalars cij one has

⎧⎨⎩L(ψ) = h + ∑2
i=1

∑m
j=1 cijχjZij in Ωs,

ψ = 0 on ∂Ωs,∫
Ωs

χj (y)Zijψ = 0 for all i = 1,2, j = 1, . . . ,m.

(3.6)

Proposition 3.1. There exist positive constants s0 > 0 and C > 0 such that for any h ∈ L∞(Ωs)

and any ξ ∈ Os , there is a unique solution ψ = T (h) to problem (3.6) for all s > s0, which
defines a linear operator of h. Besides, we have the estimate∥∥T (h)

∥∥∞ � Cs‖h‖∗. (3.7)

The proof will be split into a series of lemmas which we state and prove next.

Lemma 3.1. The operator L satisfies the maximum principle in ΩR ≡ Ωs\⋃m
j=1 B(ξ ′

j ,Rγj ),
for R large but independent of s. Namely, if L(ψ) � 0 in ΩR and ψ � 0 on ∂ΩR , then ψ � 0
in ΩR .

Proof. Notice that for s sufficiently large, γj � δ−1, for all j . This ensures that ΩR is well
defined. Now, it is sufficient to find a smooth function f (y) such that f > 0 in ΩR and L(f ) � 0
in ΩR .
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For this purpose, we use the following lemma, whose proof is contained in [32].

Lemma 3.2. There exist constants R1 > 0, C > 0 such that for any s > 0 large enough, there
exists f :ΩR1 → [1,∞) smooth and positive verifying

L(f ) � −
m∑

j=1

γj

|y − ξ ′
j |3

− δ2

in ΩR1 , and 1 < f � C uniformly in ΩR1 .

We briefly recall the argument: we consider numbers R1, s large enough and define

1

C
α2f (y) = f0(δy) −

m∑
j=1

γ α
j

|y − ξ ′
j |α

,

with f0 the solution of −�f0 = 1 in Ω , f0 = 2 on ∂Ω and α ∈ (0,1). It is directly checked that
f verifies the required conditions. �

Let us consider now the inner norm

‖ψ‖i ≡ sup
Ωc

R

|ψ |,

where we understand Ωc
R ≡ Ωs\ΩR = ⋃m

j=1 B(ξ ′
j ,Rγj ).

Lemma 3.3. There exists a constant C = C(R,m) > 0 such that if L(ψ) = h in Ωs , ψ = 0
on ∂Ωs , h ∈ L∞(Ωs), and s is sufficiently large, we have

‖ψ‖∞ � C
{‖ψ‖i + ‖h‖∗

}
. (3.8)

Proof. We will establish this estimate with the aid of Lemmas 3.1 and 3.2. We let f be the
function defined in the latter result. We consider the function

ψ̂ = (‖ψ‖i + ‖h‖∗
)
f,

and claim that ψ̂ � |ψ | on ∂ΩR if R is sufficiently large. In fact, if y ∈ ∂Ωs , by the positivity
of f , we have

ψ̂(y) � 0 = ∣∣ψ(y)
∣∣.

On the other hand, if |y − ξ ′
k| = Rγk for some k = 1, . . . ,m,

ψ̂(y) � ‖ψ‖if � ‖ψ‖i �
∣∣ψ(y)

∣∣ for
∣∣y − ξ ′

k

∣∣ = Rγk, k = 1, . . . ,m.



120 M. del Pino, C. Muñoz / J. Differential Equations 231 (2006) 108–134
Finally, using that

∣∣h(y)
∣∣ �

(
m∑

j=1

γj

(γ 2
j + |y − ξ ′

j |2)3/2
+ δ2

)
‖h‖∗,

we have for y ∈ ΩR ,

L(ψ̂)(y) �
(‖ψ‖i + ‖h‖∗

)
L(f ) � −‖h‖∗

{
m∑

j=1

γj

|y − ξ ′
j |3

+ δ2

}

� −‖h‖∗

{
m∑

j=1

γj

(γ 2
j + |y − ξ ′

j |2)3/2
+ δ2

}
� −∣∣h(y)

∣∣ � −∣∣L(ψ)(y)
∣∣

provided R large. In particular, we have L(ψ̂) � −L(ψ) and L(ψ̂) � L(ψ), in ΩR . Hence, by
Maximum Principle in Lemma 3.1 we have |ψ(y)| � ψ̂(y), for y ∈ ΩR . From this we obtain

‖ψ‖∞ � ‖ψ̂‖∞ � C
{‖ψ‖i + ‖h‖∗

}
as desired. �

The next step is to obtain a priori estimates for the problem

⎧⎨⎩
L(ψ) = h in Ωs,

ψ = 0 on ∂Ωs,∫
Ωs

χjZijψ = 0 for all i = 0,1,2, j = 1, . . . ,m.
(3.9)

which involves more orthogonality conditions than those in (3.6). We have the following esti-
mate.

Lemma 3.4. Let ψ be a solution of problem (3.9) with ξ ∈ Os . Then, there exists a C > 0 such
that

‖ψ‖∞ � C‖h‖∗ (3.10)

for all s > 0 sufficiently large.

Proof. We carry out the proof by a contradiction argument. If the result was false, then, there
would exist a sequence sn → ∞, points ξn ∈ Osn , functions hn with ‖hn‖∗ → 0 and associated
solutions ψn with ‖ψn‖∞ = 1 such that

⎧⎨⎩
L(ψn) = hn in Ωsn,

ψn = 0 on ∂Ωsn,∫
χjZijψn = 0 for all i = 0,1,2, j = 1, . . . ,m.

(3.11)

Ωsn
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By virtue of Lemma 3.3 and ‖ψn‖∞ = 1 we have lim infn→∞ ‖ψn‖i � α > 0. Let us set
ψ̂n(z) = ψn((ξ

′
j )

n + γ n
j z), where the index j = j (n) is such that supB(ξ ′n

j ,Rγj ) |ψn| � α, and

can be assumed to be the same for all n. We notice that ψ̂n satisfies

�ψ̂n + (
γ n
j

)2
Wψ̂n = (

γ n
j

)2
hn in Ωn ≡ γ −1

j

(
Ωs − (

ξ ′
j

)n)
.

Elliptic estimates allow us to assume that ψ̂n converges uniformly over compact subsets of R
2 to

a bounded, nonzero solution ψ̂ of

�ψ + 8

(1 + |z|2)2
ψ = 0.

This implies that ψ̂ is a linear combination of the functions Zi , i = 0,1,2, namely, ψ̂ =∑2
k=0 αkZk . But orthogonality conditions over ψ̂n pass to the limit thanks to ‖ψ̂n‖∞ � 1. Dom-

inated convergence then yields

0 =
∫

Ωsn

χjZijψn =
∫
R2

χZiψ̂n + o(1) =
2∑

k=0

αk

∫
R2

χZiZk + o(1), i = 0,1,2.

But
∫

R2 χZiZk = 0 for i �= k and
∫

R2 χZ2
i > 0. Then αk = 0 for all k = 0,1,2 and hence ψ̂ ≡ 0,

a contradiction with lim infn→∞ ‖ψn‖i > 0. �
Now we will deal with problem (3.9) lifting the orthogonality constraints

∫
Ωs

χjZ0jψ = 0,
j = 1, . . . ,m, namely,⎧⎨⎩

L(ψ) = h in Ωs,

ψ = 0 on ∂Ωs,∫
Ωs

χjZijψ = 0 for all i = 1,2, j = 1, . . . ,m.
(3.12)

We have the following a priori estimates for this problem.

Lemma 3.5. Let ψ be a solution of (3.12) with ξ ∈ Os . Then, there exists a C > 0 such that

‖ψ‖∞ � Cs‖h‖∗ (3.13)

for all s sufficiently large.

Proof. Let R > R0 + 1 be a large and fixed number. Let us consider the function

Ẑ0j = Z0j (y) − 1

γj

+ a0jG(δy, ξj ), (3.14)

where

a0j ≡ 1

γ {H(ξ , ξ ) − 4 log(δγ R)} . (3.15)

j j j j
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From estimate (2.8), we have

C1|logδj | � log(δγjR) � C2|logδj | and

Ẑ0j (y) = O

(
G(δy, ξj )

γj |logδj |
)

. (3.16)

Next we consider radial smooth cut-off functions η1 and η2 with the following properties:

0 � η1 � 1, η1 ≡ 1 in B(0,R), η1 ≡ 0 in B(0,R + 1)c; and

0 � η2 � 1, η2 ≡ 1 in B(0,1), η2 ≡ 0 in B

(
0,

4

3

)c

.

With no loss of generality we assume that B(0, 4
3 ) ⊆ Ω . Then we set

η1j (y) = η1

( |y − ξ ′
j |

γj

)
, η2j (y) = η2

(
4δ

∣∣y − ξ ′
j

∣∣), (3.17)

and define the test function

Z̃0j = η1jZ0j + (1 − η1j )η2j Ẑ0j .

Let ψ be a solution to problem (3.12). We will modify ψ so that the extra orthogonality
conditions with respect to Z0j ’s hold. We set

ψ̃ = ψ +
m∑

j=1

dj Z̃0j +
2∑

i=1

m∑
j=1

eijχjZij . (3.18)

We adjust ψ̃ to satisfy the orthogonality condition∫
Ωs

χjZij ψ̃ = 0 for all i = 0,1,2; j = 1, . . . ,m. (3.19)

Then,

L(ψ̃) = h +
m∑

j=1

djL
(
Z̃0j

) +
2∑

i=1

m∑
j=1

eijL(χjZij ). (3.20)

If (3.19) holds, the previous lemma allows us to conclude

‖ψ̃‖∞ � C

{
‖h‖∗ +

m∑
j=1

|dj |
∥∥L(

Z̃0j

)∥∥∗ +
2∑

i=1

m∑
j=1

|eij |
∥∥L(

χj Z̃ij

)∥∥∗

}
. (3.21)

Estimate (3.13) is a direct consequence of the following two claims:
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Claim 1. The constants dj and eij are well defined and

∥∥L(χjZij )
∥∥∗ � C

γj

,
∥∥L(

Z̃0j

)∥∥∗ � C log s

γj |logδj | , i = 1,2; j = 1, . . . ,m. (3.22)

Claim 2. The following bounds hold:

|dj | � Cγj |logδj |‖h‖∗, |eij | � Cγj log s‖h‖∗, i = 1,2; j = 1, . . . ,m. (3.23)

After these facts have been established, using that

∥∥Z̃0j

∥∥∞ � C

γj

and ‖χjZij‖∞ � C

γj

we obtain (3.13), as desired.
Let us prove now Claim 1. First we find dj and eij . From definition (3.18), orthogonality

conditions (3.19) and the fact that suppχjχk = ∅ if j �= k, we can write

eij = −
∑m

k=1 dk

∫
Ωs

χjZij Z̃0k∫
Ωs

χjZ
2
ij

, i = 1,2; j = 1, . . . ,m. (3.24)

Notice that
∫
Ωs

Z2
ij χ

2
j = c > 0, for all i, j , and

∫
Ωs

χjZij Z̃0l = O

(
γj log s

γl |logδl |
)

, j �= l.

Then, from (3.24)

|eij | � C
∑
l �=j

|dl | γj log s

γl |logδl | . (3.25)

We need to show that dj is well defined. In fact, multiplying definition (3.18) by Z0kχk , integrat-
ing and using the orthogonality condition (3.19) for i = 0, we get

m∑
j=1

dj

∫
Ωs

χkZ0kZ̃0j = −
∫
Ωs

χkZ0kψ, ∀k = 1, . . . ,m. (3.26)

But
∫
Ωs

χkZ0kZ̃0k = ∫
Ωs

χkZ
2
0k = C for all k, and

∫
χkZ0kZ̃0j = O

(
γk log s

γj |logδj |
)

,

Ωs
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if k �= j . Then, if we define

mkj =
∫
Ωs

χkZ0kZ̃0j and fk = −
∫
Ωs

χkZ0kψ,

system (3.26) can be written as

m∑
j=1

mkjdj = fk, k = 1, . . . ,m.

But the matrix with coefficients γjmkjγ
−1
k is clearly diagonal-dominant, thus invertible, so the

matrix mkj is also invertible. Thus dk is well defined.
Let us prove inequalities (3.22). We note that in the region |y − ξ ′

j | � (R + 1)γj ,

L(χjZij ) = χjL(Zij ) + �χjZij + 2∇χj · ∇Zij

= O

(
sδj γ

2
j

(γ 2
j + |y − ξ ′

j |2)2

)
+ O

(
γ −1
j

(γ 2
j + |y − ξ ′

j |2)1/2

)
+ O

(
1

(γ 2
j + |y − ξ ′

j |2)3/2

)
,

and then ‖L(χjZij )‖∗ = O(γ −1
j ). We prove now the second inequality in (3.22). In fact,

L
(
Z̃0j

) = �η1j

(
Z0j − Ẑ0j

) + 2∇η1j · ∇(
Z0j − Ẑ0j

) + 2∇η2j · ∇Ẑ0j + �η2j Ẑ0j

+ η1j

{
L(Z0j ) −L

(
Ẑ0j

)} + η2jL
(
Ẑ0j

)
.

Now we consider the four regions

Ω1 ≡ {∣∣y − ξ ′
j

∣∣ � γjR
}
, Ω2 ≡ {

γjR <
∣∣y − ξ ′

j

∣∣ � γj (R + 1)
}
,

Ω3 ≡
{
γj (R + 1) <

∣∣y − ξ ′
j

∣∣ � 1

4δ

}
and Ω4 ≡

{
1

4δ
<

∣∣y − ξ ′
j

∣∣ � 1

3δ

}
.

Notice that (2.19) and (3.3) imply

η1j

{
L(Z0j ) −L

(
Ẑ0j

)} + η2jL
(
Ẑ0j

) = O

(
sδγ 2

j

(γ 2
j + |y − ξ ′

j |2)3/2

)
(3.27)

for all y ∈ Ω1 ∪ Ω2. Lut us now analyze L(Z̃0j ) in each Ωi . In Ω1,

L(Z̃0j ) = O

(
sδγ 2

j

(γ 2
j + |y − ξ ′

j |2)3/2

)
. (3.28)

In Ω2,

Z0j − Ẑ0j = 1

γj

− a0jG(δy,χj ) = −a0j

{
4 log

γjR

|y − ξ ′ | + O(δγj )

}
, (3.29)
j
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hence we conclude

∣∣Z0j − Ẑ0j

∣∣ = O

(
1

γj |logδj |
)

and
∣∣∇(

Z0j − Ẑ0j

)∣∣ = O

(
1

γ 2
j |logδj |

)
, (3.30)

and then

L
(
Z̃0j

) = O

(
1

γ 2
j |logδj |

)
. (3.31)

In Ω4, thanks to (3.16), |Ẑ0j | = O( 1
γj |logδj | ), |∇Ẑ0j | = O( δ

γj |logδj | ) and

L
(
Ẑ0j

) = �Z0j + WẐ0j

= O

(
γj

(γ 2
j + |y − ξ ′

j |2)2

)
+

∑
k �=j

O

(
1

γj |logδj |
γ 2
k

(γ 2
k + |y − ξ ′

k|2)2

)
.

Then, in this region

∥∥L(
Z̃0j

)∥∥∗ = O

(
1

γj |logδj |
)

. (3.32)

Finally, we consider y ∈ Ω3. We have

L
(
Z̃0j

) = L
(
Ẑ0j

)
=

{
W − 8γ 2

j

(γ 2
j + |y − ξ ′

j |2)2

}
Z0j + W

{
a0jG(δy, ξj ) − 1

γj

}
≡ A1 + A2.

To estimate these two terms, we need to split Ω3 into several subregions. We let

Ω3,j ≡
{
γj (R + 1) <

∣∣y − ξ ′
j

∣∣ � 1

2sβδ

}
, Ω3,k ≡

{
y ∈ Ω3

∣∣∣ ∣∣y − ξ ′
k

∣∣ � 1

2sβδ

}
, k �= j,

and Ω̃3 ≡
{
y ∈ Ω3

∣∣∣ ∣∣y − ξ ′
l

∣∣ � 1

2sβδ
, ∀l

}
.

From Lemma 2.2, A1 = O(
sγj δ

(γ 2
j +|y−ξ ′

j |2)3/2 ) in Ω3,j , and A1 = O(sKδ2δ2
j γ

−1
j ) in Ω̃3.

If y ∈ Ω3,j ,

A2 = O

(
γ 2
j a0j

(γ 2
j + |y − ξ ′

j |2)2

{− logγjR + log
∣∣y − ξ ′

j

∣∣ + δ
∣∣y − ξ ′

j

∣∣})

= O

(
1

|logδj |
1

(γ 2 + |y − ξ ′ |2)3/2

)
,

j j
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and A2 = O(sKδ2δ2
j ), for some large K . Finally we get, for all y ∈ Ω3,j ∪ Ω̃3,

∣∣L(
Z̃0j

)∣∣ = O

(
1

|logδj |
1

(γ 2
j + |y − ξ ′

j |2)3/2

)
. (3.33)

In Ω3,k , k �= j , we write

L
(
Z̃0j

) = �Z0j + WẐ0j = −8γ 2
j

(γ 2
j + |y − ξ ′

j |2)2
Z0j + WẐ0j

= O
(
sKδj δ

3) + O

(
γ 2
k

(γ 2
k + |y − ξ ′

k|2)2

G(δy, ξj )

γj |logδj |
)

= O

(
γ 2
k

(γ 2
k + |y − ξ ′

k|2)2

log s

γj |logδj |
)

,

and then, combining (3.27)–(3.33) and the previous estimate, we arrive at

∥∥L(
Z̃0j

)∥∥∗ = O

(
log s

γj |logδj |
)

.

Finally, we prove Claim 2. Testing Eq. (3.20) against Z̃0j and using relations (3.21), (3.22), we
get

m∑
k=1

dk

∫
Ωs

L
(
Z̃0k

)
Z̃0j = −

∫
Ωs

hZ̃0j −
∫
Ωs

ψ̃L
(
Z̃0j

) +
2∑

l=1

m∑
k=1

elk

∫
Ωs

χkZlkL
(
Z̃0j

)

� C
‖h‖∗
γj

+ C‖ψ̃‖∞
∥∥L(

Z̃0j

)∥∥∗ + C

2∑
l=1

m∑
k=1

|elk| ‖L(Z̃0j )‖∗
γk

� C‖h‖∗
{

1

γj

+ ∥∥L(
Z̃0j

)∥∥∗

}
+ C

m∑
k=1

|dk|
∥∥L(

Z̃0k

)∥∥∗
∥∥L(

Z̃0j

)∥∥∗

+ C

2∑
l=1

m∑
k=1

|elk| ‖L(Z̃0j )‖∗
γk

,

where we have used that ∫
Ωs

γj

(γ 2
j + |y − ξ ′

j |2)3/2
� C for all j.
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But estimate (3.25) and Claim 1 imply

|dj |
∫
Ωs

L
(
Z̃0j

)
Z̃0j � C

‖h‖∗
γj

+ C

m∑
k=1

|dk| log2 s

γj γk|logδj ||logδk| + C
∑
k �=j

|dk|
∣∣∣∣ ∫
Ωs

L
(
Z̃0j

)
Z̃0k

∣∣∣∣.
(3.34)

We only need to estimate the terms
∫
Ωs

L(Z̃0j )Z̃0k , for all k. We have the following claim.

Claim 3. If R is sufficiently large,∫
Ωs

L
(
Z̃0j

)
Z̃0j = E

γ 2
j |logδj |

(
1 + o(1)

)
, (3.35)

where E is a positive constant independent of s and R. Besides, if k �= j∫
Ωs

L
(
Z̃0j

)
Z̃0k = O

(
log2 s

γjγk|logδj ||logδk|
)

. (3.36)

Assuming for the moment the validity of this claim, then replacing (3.35) and (3.36) in (3.34),
we get

|dj |
γj

� C|logδj |‖h‖∗ + C

m∑
k=1

|dk|
γk

log2 s

|logδk| , (3.37)

and then,

|dj | � Cγj |logδj |‖h‖∗.

Finally, using estimate (3.25), we conclude

|eij | � Cγj log s‖h‖∗

and Claim 2 holds. Let us proof Claim 3. Let us try with the first term (3.35). We decompose∫
Ωs

L
(
Z̃0j

)
Z̃0j = O(sδj ) +

∫
Ω2

L
(
Z̃0j

)
Z̃0j +

∫
Ω3

L
(
Z̃0j

)
Z̃0j +

∫
Ω4

L
(
Z̃0j

)
Z̃0j

≡ O(sδj ) + I2 + I3 + I4.

First we estimate I3. From (3.33),

I3 =
∫
Ω3

L
(
Ẑ0j

)
Ẑ0j =

∫
Ω3,j ∪Ω̃3

L
(
Ẑ0j

)
Ẑ0j +

∑
k �=j

∫
Ω3,k

L
(
Ẑ0j

)
Ẑ0j

= O

(
1

Rγ 2|logδj |
)

+ O

(
log2 s

γ 2|logδj |2
)

.

j j
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Now we estimate I4. From the estimates in Ω4, |I4| = O( 1
γ 2
j |logδj |2 ). On the other hand, we have

I2 =
∫
Ω2

{
�η1l

(
Z0j − Ẑ0j

) + 2∇η1j · ∇(
Z0j − Ẑ0j

)}
Z̃0j + O

(
sδ

γjR2

)
.

Thus integrating by parts the first term above we find

I2 =
∫
Ω2

∇η1j · ∇(
Z0j − Ẑ0j

)
Ẑ0j −

∫
Ω2

|∇η1l |2
(
Z0j − Ẑ0j

)2

−
∫
Ω2

∇η1j · ∇Ẑ0j

(
Z0j − Ẑ0j

) +
∫
Ω2

{
η1jL(Z0j ) + (1 − η1j )L

(
Ẑ0j

)}
≡ I2,a + I2,b + I2,c + I2,d .

Using (3.29) and (3.16), we get |∇Ẑ0l | = O( 1
R3γ 2

j

) in Ω2,

I2,b = O

(
R

γ 2
j |logδj |2

)
, I2,c = O

(
1

R2γ 2
j |logδj |

)
and I2,d = O

(
δ

R3γ 2
j |logδj |

)
.

Now, as Ẑ0j = Z0j (1 + O(
γj δR

|logδj | )), we conclude

I2,a = 1

γ 2
j |logδj |

R+1∫
R

rη′
1(r)

(
1 − r2

1 + r2

)(
1 + o(1)

)
dr = E

γ 2
j |logδj |

(
1 + o(1)

)
,

where E is a positive constant independent of s and R. Thus, for fixed R large and s small, we
obtain (3.35). The second result can be established with similar arguments. �

Now we can now treat the original linear problem (3.6).

Proof of Proposition 3.1. We first establish the validity of the a priori estimate (3.7) for solutions
ψ ∈ L∞(Ω) of problem (3.6), with h ∈ L∞(Ω). Lemma 3.5 implies

‖ψ‖∞ � Cs

{
‖h‖∗ +

2∑
i=1

m∑
j=1

|cij |‖χjZij‖∗

}
, (3.38)

but

‖χjZij‖∗ � Cγj ,
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then, it is sufficient to estimate the values of the constants cij . To this end, we multiply the first
equation in (3.6) by Zijη2j , with η2j the cut-off function introduced in (3.17), and integrate by
parts to find

∫
Ωs

ψL(Zij η2j ) =
∫
Ωs

hZij η2j +
2∑

k=1

m∑
l=1

ckl

∫
Ωs

η2jZijχlZkl. (3.39)

It is easy to see that
∫
Ωs

hη2jZij = O(γ −1
j ‖h‖∗). On the other hand, we have

L(η2jZij ) = �η2jZij + 2∇η2j · ∇Zij + η2jL(Zij )

= O
(
δ3) +

{
W − 8γ 2

j

(γ 2
j + |y − ξ ′

j |2)2

}
η2jZij ≡ O

(
δ3) + Bj .

To estimate Bj , we need to split suppη2j into several pieces. We consider the following subdo-
mains. For a fixed j , we let

Ω̂1k ≡
{∣∣y − ξ ′

k

∣∣ � 1

2sβδ

}
,

for any k = 1, . . . ,m, and

Ω̂2 ≡
{∣∣y − ξ ′

j

∣∣ � 1

3δ
,

∣∣y − ξ ′
k

∣∣ � 1

2sβδ
, ∀k

}
.

In Ω̂1j , using Lemma 2.2, Bj = O(
sδγj

(γ 2
j +|y−ξ ′

j |2)3/2 ). In Ω̂1k , k �= j ,

Bj = O

(
sβδγ 2

k

(γ 2
k + |y − ξ ′

k|2)2

)
.

Finally, in Ω̂2, Bj = O(sKδ2
j δ

3), for some constant K > 0 large. Then,∣∣∣∣ ∫
Ωs

ψL(η2jZij )

∣∣∣∣ � Csβδ‖ψ‖∞.

Now, ∫
Ωs

η2jχjZijZkl = Cδik

and if j �= l, and s is sufficiently large,∫
η2jχlZijZkl = O

(
γls

βδ
)
.

Ωs
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Using the above estimates in (3.39), we obtain

|cij | � Csβδ‖ψ‖∞ + C

γj

‖h‖∗ + C

2∑
k=1

∑
l �=j

|ckl |γls
βδ (3.40)

and then

|cij | � Csβδ‖ψ‖∞ + C

γj

‖h‖∗.

Putting this estimate in (3.38), we conclude the validity of (3.13).
Finally, the a priori estimate implies in particular that the homogeneous problem has only

the trivial solution. A standard argument involving Fredholm’s alternative, see, e.g., [15], gives
existence. This concludes the proof. �
Remark 3.1. The operator T is differentiable with respect to the variables ξ ′. In fact, computa-
tions similar to those used in [15] yield the estimate∥∥∂ξ ′T (h)

∥∥∞ � Cs2‖h‖∗ for all l = 1,2; k = 1, . . . ,m. (3.41)

Important element in this computation is that 1
γj

� C, uniformly on s.

4. The intermediate nonlinear problem

In order to solve problem (2.21) we consider first the intermediate nonlinear problem:⎧⎨⎩L(ψ) = −[R + N(ψ)] + ∑2
i=1

∑m
j=1 cijχjZij in Ωs,

ψ = 0 on ∂Ωs,∫
Ωs

χjZijψ = 0 for all i = 1,2, j = 1, . . . ,m.

(4.1)

For this problem we will prove:

Proposition 4.1. Let ξ ∈ Os . Then, there exists s0 > 0 and C > 0 such that for all s � s0 the
nonlinear problem (4.1) has a unique solution ψ ∈ which satisfies

‖ψ‖∞ � Cs2β+1e−s/4. (4.2)

Moreover, if we consider the map ξ ′ ∈ Os → ψ ∈ C(Ωs), the derivative Dξ ′ψ exists and defines
a continuous map of ξ ′. Besides

‖Dξ ′ψ‖∞ � Cs2β+2e−s/4. (4.3)

Proof. In terms of the operator T defined in Proposition 3.1, problem (4.1) becomes

ψ = B(ψ) ≡ −T
(
N(ψ) + R

)
.
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Let us consider the region

F ≡ {
ψ ∈ C(Ωs)

∣∣ ‖ψ‖∞ � s2β+1e−s/4}.
From Proposition 3.1, ∥∥B(ψ)

∥∥∞ � Cs
{∥∥N(ψ)

∥∥∗ + ‖R‖∗
}
,

and Lemma 2.2 implies

‖R‖∗ � Cs2β+1e−s/4.

Also, from the definition of N in (2.21), Mean-value theorem and Lemma 2.4 we obtain∥∥N(ψ)
∥∥∗ � ‖W‖∗‖ψ‖2∞ � C‖ψ‖2∞.

Hence, if ψ ∈ Fγ , ‖B(ψ)‖∞ � Cs2β+2e−s/4. Along the same way we obtain
‖N(ψ1) − N(ψ2)‖∗ � C maxi=1,2 ‖ψi‖∞‖ψ1 − ψ2‖∞, for any ψ1,ψ2 ∈ Fγ . Then, we con-
clude

∥∥B(ψ1) −B(ψ2)
∥∥∞ � Cs

∥∥N(ψ1) − N(ψ2)
∥∥∗ � Cs2β+2e−s/4‖ψ1 − ψ2‖∞.

It follows that for all s sufficiently large B is a contraction mapping of Fγ , and therefore a unique
fixed point of B exists in this region. The proof of (4.3) is similar to one included in [15] and we
thus omit it. �
5. Variational reduction

We have solved the nonlinear problem (4.1). In order to find a solution to the original prob-
lem (2.21) we need to find ξ such that

cij = cij (ξ
′) = 0, for all i, j, (5.1)

where cij (ξ
′) are the constants in (4.1). Problem (5.1) is indeed variational: it is equivalent to

finding critical points of a function of ξ ′. In fact, we define the functional for ξ ∈Os :

F(ξ) ≡ Js

[
U(ξ) + ψ̂ξ

]
, (5.2)

where U(ξ) is our approximate solution from (2.5) and ψ̂ξ = ψ(x
δ
,

ξ
δ
), x ∈ Ω , with ψ = ψξ ′ the

unique solution to problem (4.1) given by Proposition 4.1. Then we obtain that critical points
of F correspond to solutions of (5.1) for large s. That is:

Lemma 5.1. F :Os → R is of class C1. Moreover, for all s sufficiently large, if DξF(ξ) = 0 then
ξ satisfies (5.1).
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Proof. The proof of this fact is standard, see [15,17] or [32]. Here the estimate found for Dξ ′ψ
is used. �

The estimates for the solution ψξ ′ for problem (4.1) in Proposition 4.1 and a Taylor expansion
of F in the expanded domain Ωs similar to one done in [15] give us the following lemma.

Lemma 5.2. For points ξ ∈ Os the following expansion holds

Fs(ξ) = Js

[
U(ξ)

] + θs(ξ), (5.3)

where |θs | = O(sKe−s/2), for some fixed constant K > 0, uniformly on s.

6. Proof of Theorem 1

We consider the set

S = {
x ∈ Λ: φ1(x) = 1

}
. (6.1)

The result Theorem 1 is a direct consequence of the following more precise result.

Theorem 2. Given any positive integer m there exists s0 > 0 sufficiently large such that prob-
lem (1.6) has a solution us positive in Ω of the form

us(x) = U
(
ξ s

) + ψ̃s, (6.2)

which possesses exactly m local maximum points ξ s
1 , . . . , ξ s

m ∈ Λ, satisfying that as s → ∞

(i) dist(ξ s
j , S) → 0 and |ξ s

i − ξ s
j | � 1

sm(m+1) if i �= j ;

(ii) ‖ψ̃s‖∞ → 0.

The construction actually yields 1 − φ1(ξ
s
j ) < s−1/2. Thus if S is just constituted by a non-

degenerate maximum point x̄ we will have |ξ s
j − x̄| � Cs−1/4.

Proof of Theorem 2. According to Lemma 5.1, U(ξs) + ψ̂ξs is a solution of problem (1.6)
if ξ s ∈ Os is a critical point of the functional F defined in (5.2). We recall in particular that
‖ψ̃ξs ‖∞ → 0 as predicted by estimate (4.2). It thus suffices to establish that F attains its maxi-
mum value in Os for all sufficiently large s, for which we will see

sup
ξ∈∂Os

F(ξ) < sup
ξ∈Os

F(ξ). (6.3)

First we obtain a lower bound for supξ∈Os
F(ξ) Let us fix a point x̄ ∈ S and set

ξ0
j ≡ x̄ + 1√ ξ̂j ,
s
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where ξ̂ = (ξ̂1, . . . , ξ̂m) is an m-regular polygon in R
2. Clearly ξ0 ∈ Os because φ1(ξ

0
j ) = 1 +

O(s−1). Then

sup
ξ∈Os

F(ξ) � Js

(
U

(
ξ0)) + θs

(
ξ0) = 8π

{
m∑

i �=j

2 log
∣∣ξ0

i − ξ0
j

∣∣ + s

m∑
j=1

φ1
(
ξ0
j

)} + O(1)

� 8πm
{−(m − 1) log s + s

} + O(1).

Then,

sup
ξ∈Os

F(ξ) � 8πms − 8πm(m − 1) log s + O(1). (6.4)

Next we estimate from above F(ξ) for ξ ∈ ∂Os . Then, there are two possibilities: either
(1) there exist indices i0, j0, i0 �= j0 such that |ξi0 − ξj0 | = s−β , or (2) there exists i0 such that
1 − φ1(ξi0) = 1√

s
> 0.

In the first case, we have the following upper bound

F(ξ) � 8π

{
−2β log s + s

m∑
j=1

φ1(ξj )

}
+ O(1) � 8πm

{
s − 2

m
β log s

}
+ O(1). (6.5)

In the second case, 1 − φ1(ξ
s
i0
) � 1

2
√

s
. Then

F(ξ) � 8π

{
O(log s) + s

(
1 − 1

2
√

s
+ (m − 1)

)}
� 8πs

(
m − 1

2s1/2

)
+ O(log s). (6.6)

At this point we make the election β > m2 +m in the definition of Os . Relation (6.3) immediately
follows from combining estimates (6.4), (6.5), (6.6) and taking s sufficiently large. This finishes
the proof. �
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