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Abstract In this paper, we determine the suitable validity criterion of kernelized fuzzy C-means

and kernelized fuzzy C-means with spatial constraints for automatic segmentation of magnetic res-

onance imaging (MRI). For that; the original Euclidean distance in the FCM is replaced by a

Gaussian radial basis function classifier (GRBF) and the corresponding algorithms of FCM meth-

ods are derived. The derived algorithms are called as the kernelized fuzzy C-means (KFCM) and

kernelized fuzzy C-means with spatial constraints (SKFCM). These methods are implemented on

eighteen indexes as validation to determine whether indexes are capable to acquire the optimal clus-

ters number. The performance of segmentation is estimated by applying these methods indepen-

dently on several datasets to prove which method can give good results and with which indexes.

Our test spans various indexes covering the classical and the rather more recent indexes that have

enjoyed noticeable success in that field. These indexes are evaluated and compared by applying

them on various test images, including synthetic images corrupted with noise of varying levels,

and simulated volumetric MRI datasets. Comparative analysis is also presented to show whether

the validity index indicates the optimal clustering for our datasets.
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Production and hosting by Elsevier B.V. All rights reserved.
ters and Information, Cairo

by Elsevier B.V. All rights

Faculty of Computers and

lsevier
1. Introduction

Clustering is one of the most popular classification methods
and has found many applications in pattern classification
and image segmentation [1–5]. Clustering algorithms attempt

to classify a voxel to a tissue class by using the notion of sim-
ilarity to the class. Unlike the crisp K-means clustering algo-
rithm [4], the FCM algorithm allows partial membership in
different tissue classes. Thus, FCM can be used to model the

partial volume averaging artifact, where a pixel may contain
multiple tissue classes [2,3]. The kernelized fuzzy C-means

mailto:zanaty22@yahoo.com
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(KFCM) [6–9] used a kernel function as a substitute for the in-
ner product in the original space, which is like mapping the
space into higher dimensional feature space. There have been

a number of other approaches to incorporating kernels into
fuzzy clustering algorithms. These include enhancing clustering
algorithms designed to handle different shape clusters [8].

More recent results of fuzzy algorithms have been presented
in [9] for improving automatic MRI image segmentation. They
used the intra-cluster distance measure to give the ideal num-

ber of clusters automatically; more discussion can be found
in [9]. Also, possibilistic clustering which is pioneered by the
possibilistic c-means (PFCM) algorithm was developed in
[10–12]. They had been shown that PFCM is more robust to

outliers than FCM. However, the robustness of PFCM comes
at the expense of the stability of the algorithm [11]. The PCM-
based algorithms suffer from the coincident cluster problem,

which makes them too sensitive to initialization [12].
Most fuzzy methods have several advantages including

yielding regions more homogeneous than other methods;

reducing the spurious blobs; removing noisy spots; reduced
sensitivity to noise compared to other techniques. However,
they require prior knowledge about the number of clusters in

the data, which may not be known for new data [13]. In liter-
ature, many studies in dealing with this problem are available
in [14–18], and, so, there are many cluster validity indexes in
this regard. Compactness and separation are two criteria for

the clustering evaluation and selection of an optimal clustering
scheme [14]. The variation of data within clusters indicates
compactness and isolation between clusters indicates separa-

tion, respectively.
Though some compatibility or similarity measure can be

applied to choose the clusters to be merged, no validity mea-

sure is used to guarantee that the clustering result after a merge
is better than the one before the merge. Partial results were sta-
ted in [19] to answer the questions: ‘‘Can the appropriate num-

ber of clusters be determined automatically? And if the answer
is yes, how?’’ More existing methods were found in [14–21] to
review few validity indexes that can combine with fuzzy c-
means algorithms. But, the performance of wide range indexes

is not found in any literature before; especially when they ap-
plied to kernelized fuzzy c-means (KFCM) or kernelized fuzzy
c-means with spatial constraints (SKFCM) methods.

In this paper, we seek the answer to the previous questions
for exploring which indexes can achieve high accuracy segmen-
tation whey they performed with KFCM and SKFCM. Our

objective is not to improve the segmentation accuracy via
enhancing the kernel function, but is to find the indexes with
KFCM and SKFCM capable to produce good MRI segmen-
tation. For that; the original Euclidean distance in the FCM

algorithm is replaced by the Gaussian radial base function
(GRBF)-induced kernel, which is shown to be more robust
than FCM (with Euclidean distances). This will make a gener-

alization of the existing FCM methods. The KFCM and
SKFCM algorithms based on Gaussian RBF kernel are de-
rived and applied independently on each image. Based on these

algorithms, eighteen indexes are implemented to estimate the
number of clusters that represents the best structure of a given
image. Key existing solutions are evaluated to obtain the clus-

ter validity in the domain of image segmentation. A wide num-
ber of various validity indexes from the classical and more
recent indexes are examined. As segmentation of medical
images is of particular interest in our application, the work
here includes the assessment of those indexes on 3D MRI
datasets.

The rest of this paper is organized as follows: Section 2 pre-

sents the kernel methods. Several criteria to determine the
number of clusters are briefly reviewed in Section 3. Experi-
mental comparisons are presented in Section 4. Finally, Sec-

tion 5 gives our conclusions.
2. Kernel methods

The kernel methods [8,13,22–26] are one of the most researched
subjects within machine learning community in the recent few
years and have widely been applied to pattern recognition and

function approximation. A common philosophy behind these
algorithms is based on the following kernel (substitution) trick,
that is, firstly with a (implicit) nonlinear map, from the data

space to the mapped d feature space, W: X fi F (x fi W(x)), a
dataset {x, . . . , x} ˝ X (an input data space with low dimen-
sion) is mapped into a potentially much higher dimensional
feature space or inner product F, which aims at turning the

original nonlinear problem in the input space into potentially
a linear one in rather high dimensional feature space so as to
facilitate problem solving as proved by Girolami [23]. A kernel

K(x, y) in the feature space can be represented as:

Kðx; yÞ ¼ ðWðxÞ;WðyÞÞ ð1Þ

where (W(x), W(y)) denotes the inner product operation.
An interesting point about kernel function is that the inner

product between W(x) and W(y) can be implicitly computed in
F, without explicitly using or even knowing the mapping W.

So, kernels allow computing inner products in the space,

where one could otherwise not practically perform any compu-
tations. Three commonly-used kernel functions in literature
[25] are:

(1) Gaussian Radial basis function (GRBF) kernel:
K(x, y) = exp (�kx � yk2/r2).

(2) Polynomial kernel: K(x, y) = (Æx, yæ + 1)d.

(3) Sigmoid kernel K(x, y) = tanh(aÆx, yæ + b).

where r, d, a and b are the adjustable parameters of the above

kernel functions. The main motives of using the kernel meth-
ods consist of: (1) inducing a class of robust non-Euclidean dis-
tance measures for the original data space to derive new
objective functions and thus clustering the non-Euclidean

structures in data; (2) enhancing robustness of the original
clustering algorithms to noise and outliers, and (3) still retain-
ing computational simplicity.

Sigmoid kernel is a two-layer neural network kernel and is
used as a particular kind of two-layer sigmoid neural network.
For this, only a set of parameters satisfying the Mercer theo-

rem can be used to define a kernel function [23–26]. The inter-
ested reader may refer to [25] for more details. In this section
we only stress on GRBF, which is shown to be more robust

than FCM (with Euclidean distances) [7].

2.1. Fuzzy C-means method (FCM)

Fuzzy C-means clustering (FCM), also known as fuzzy ISO-

DATA, is a data clustering algorithm in which each data point
belongs to a cluster to determine a degree specified by its
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membership grade [1–3]. Bezdek [1] proposed this algorithm as
an alternative to earlier k-means clustering. FCM partitions a
collection of N vector xi, i = 1, . . . , N into C fuzzy groups,

and finds a cluster centre in each group such that an objective
function of a dissimilarity measure is minimized. The major
difference between FCM and k-means is that FCM employs

fuzzy partitioning such that a given data point can belong to
several groups with the degree of belongingness specified by
membership grades between 0 and 1. In FCM, the membership

matrix U= [uij] is allowed to have not only 0 and 1 but also
the elements with any values between 0 and 1. This matrix sat-
isfies the constraints:

XC
i¼1

uij ¼ 1; 8j ¼ 1; . . . ;N; 0 6 uij 6 1;
XN
j¼1

uij > 0; 8i

The objective function of FCM can be formulated as
follows:

Jm ¼
XC
i¼1

XN
j¼1

umij kxj � cik2 ð2Þ

where C is the number of clusters; ci is the cluster centre of fuz-
zy group i and the parameter m is a weighting exponent on

each fuzzy membership. Fuzzy partitioning is carried out
through an iterative optimization of the objective function
shown above, updating of membership uij and the cluster cen-
tres ci by:

uij ¼
1PC

k¼1
jjxj�ci jj
jjxj�ck jj

� �2=ðm�1Þ ð3Þ

ci ¼
PN

j¼1u
m
ij xjPN

j¼1u
m
ij

In image clustering, the most commonly used feature is the
gray-level value, or intensity of image pixel. Thus the FCM
objective function is minimized when high membership values

are assigned to pixels whose intensities are close to the centroid
of its particular class, and low membership values are assigned
when the point is far from the centroid.

2.2. Kernelized fuzzy C-means method (KFCM)

The algorithm that uses inner products can implicitly be exe-
cuted in the feature space F. This trick can also be used in clus-

tering, as shown in support vector clustering [22] and kernel
(fuzzy) C-means algorithms [23,24]. A common ground of
these algorithms is to represent the clustering centre as a line-

arly-combined sum of all W(xk), i.e. the clustering centres is lo-
cated in feature space. A kernelized FCM algorithm is
constructed with objective function as following:

Jm ¼
Xc
i¼1

XN
j¼1

umij jjWðxjÞ �WðciÞÞjj2 ð4Þ

where W is an implicit nonlinear map as described previously.
Unlike Refs. [23,24], W(ci) here is not expressed as a linearly-

combined sum of all W(xk) anymore, a so-called dual repre-
sentation, but still reviewed as a mapped point (image) of
ci in the original space, then with the kernel substitution
trick, we have:
kWðxjÞ �WðciÞÞk2 ¼ ðWðxjÞ �WðciÞÞTðWðxjÞ �WðciÞÞ
¼ WTðxjÞWðxjÞ �WTðxjÞWðciÞ
�WðxjÞWTðciÞ þWTðciÞWðciÞ

¼ Kðxj; xjÞ � 2Kðxj; ciÞ þ Kðci; ciÞ

In GRBF kernel K(x, c) = exp(�kx � ck2/r2),
K(xj, xj) = 1, K(ci, ci) = 1, and WT(xj)W(ci) = W(xj)W

T(ci).
From Eqs. (2) and (4), we get:

Jm ¼ 2
XC
i¼1

XN
j¼1

umij ð1� Kðxj; ciÞÞ ð5Þ

The objective of this paper is to determine the validity cri-
terion of kernelized fuzzy C-means (KFCM) when applied to
MRI data sets. It was shown in [22] that the GRBF kernel,

has better segmentation results on simulated MR images cor-
rupted by noise and other artifacts than the based polynomials
algorithms [21–26]. We confine ourselves to the GRBF kernel

to seek the best index that can be used for reliable kernelized
fuzzy C-means clustering.

In a similar way to the FCM algorithm, the objective func-

tion Jm in Eq. (5) can be minimized under the constraint of U.
Specifically, taking the first derivatives of Jm with respect to uij
and ci, and zeroing them respectively, two necessary but not
sufficient conditions for Jm to be at its local extrema will be ob-

tained. The fuzzy membership matrix U can be obtained from:

uij ¼
PC

k¼1ð1� Kðxj; ckÞÞ1=ðm�1Þ

ð1� Kðxj; ciÞÞ1=ðm�1Þ
ð6Þ

The cluster center ci can be obtained from:

ci ¼
PN

j¼1u
m
ij Kðxj; ciÞxjPN

j¼1u
m
ij Kðxj; ciÞ

ð7Þ

Through the following section, we will only use the GRBF

kernel for the simplicity of derivation of Eqs (6) and (7). For
other kernel functions, the corresponding equations are a little
more complex, because their derivatives are not as simple as the

GRBF kernel function. The standard kernelized fuzzy C-means
(KFCM) algorithm can be summarized in the following steps:

Step 1: Fix c, tmax, m> 1 and e > 0 for some positive

constant.
Step 2: Initialize the memberships u0

ij;C;m.
Step 3: For t= 1, 2, . . . , tmax do

(a) Update all prototype ct
i with Eq. (7);

(b) Update all memberships ut
ij with Eq. (6);

(c) Compute Et ¼ maxi;jjut
ij � ut�1

ij j, if Et
6 e, stop;

End;

2.3. Kernelized fuzzy C-means with spatial constraints
(SKFCM)

In this section, we select three kinds of fuzzy c-means methods
which almost cover all objective functions. The objective func-

tion consists of two parts: the original objective function and
penalty called spatial constraint. All improvements of fuzzy
c-means methods lie on modifying spatial constraint formula.

Based on this formula, we can divide fuzzy methods into three
categories: firstly, the spatial constraint is only based on
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Euclidean distance as in Ahmed et al. [2]. In the next category,
the spatial constraint is only based on membership values as
presented in Zhang et al. [6]. The third one, it uses Euclidean

distances based on weighted averaging image window as in
Kang et al. [7]. Others recent methods try to enhance one of
these objective function such as in [9,12]. Here, we replace

the Euclidian distance by GRBF kernel of the KFCM with
spatial constraint to induce the generalization of these meth-
ods. For example, Ahmed et al. [2] introduced the modified

objective function of FCM as:

Jm ¼
XC
i¼1

XN
j¼1

umij kxj � cik þ
a
NR

XC
i¼1

XN
j¼1

umij

X
r2Nj

kxr � cik2 ð8Þ

The Euclidean distance of objective function in Eq. (8) is re-
placed by Gaussian RBF kernel as:

Jm ¼ 2
XC
i¼1

XN
j¼1

umij ð1� Kðxj; ciÞÞ þ
2a
NR

XC
i¼1

XN
j¼1

umij

X
r2Nj

ð1

� Kðxr; ciÞÞ ð9Þ

where Nj stands for the set of neighbors that exist in a window
around xj (not including xj itself) and NR is the cardinality of
Nj. The parameter a controls the effect of the penalty term and

lies between zero and one inclusive.
This penalty term 2a

NR

PC
i¼1
PN

j¼1u
m
ij

P
r2Nj
ð1� Kðxr; ciÞÞ con-

tains spatial neighborhood information, which acts as a regu-
larizer and biases the solution toward piecewise-homogeneous

labeling. Such regularization is helpful in segmenting images
corrupted by noise.

The objective function Jm under the constraint of uij and ci
can be solved by using the following theorem [7]:

Theorem. Let X = {xi, i = 1, 2, . . ., N|xi e Rd} denotes an
image with N pixels to be partitioned into C classes (clusters),
where xi represents feature data. The algorithm is an iterative

optimization that minimizes the objective function defined by Eq.
(9) with the following constraints:
XC
i¼1

uij ¼ 1; 8j ¼ 1; . . . ;N; 0 6 uij 6 1;
XN
j¼1

uij

> 0; 8i ð10Þ

Then uij and ci must satisfy the following equalities:

uij ¼
1

PC
k¼1

ð1�Kðxj ;ciÞÞþ a
NR

P
r2Nj
ð1�Kðxr ;ciÞÞ

ð1�Kðxj ;ckÞÞþ a
NR

P
r2Nj
ð1�Kðxr ;ckÞÞ

 !1=ðm�1Þ ð11Þ

ci ¼
P

j¼1u
m
ij fð1� Kðxj; ciÞxj þ a

NR

P
r2Nj
ð1� Kðxr; ciÞÞxrgPN

j¼1u
m
ij fð1� Kðxi; ciÞÞ þ a

NR

P
r2Nj
ð1� Kðxr; ciÞÞg

ð12Þ
Proof. The minimization of constraint problem Jm in Eq. (9)
under constraints can be solved by using the Lagrange

multiplier method. Now we define a new objective function
with constraint condition (10) as follows:
Lm ¼ 2
XC
i¼1

XN
j¼1

umij ð1� Kðxj; ciÞÞ þ
2a
NR

XC
i¼1

XN
j¼1

umij

X
r2Nj

ð1

� Kðxr; ciÞÞ þ
XN
j¼1

kj 1�
XC
i¼1

uij

 !
Taking the partial derivative of Lm with respect uij and ki,
and then setting them to zero, we have:

@Lm

@uij
¼ 0() 2mum�1ij ð1� Kðxj; ciÞÞ þ

2a
NR

mum�1ij

X
r2Nj

ð1

� Kðxr; ciÞÞ þ kjð�1Þ
¼ 0 ð13Þ

@Lm

@kj

¼ 0()
XC
i¼1

uij � 1 ¼ 0 ð14Þ

From Eq. (13) we obtain:

uij ¼
kj

2mðð1� Kðxj; ciÞÞ þ a
NR

P
r2
ð1� Kðxr; ciÞÞ

� �
0
BB@

1
CCA

1=ðm�1Þ

ð15Þ

Substituting (15) into (14) gives:

kj

2m

� �1=ðm�1ÞXC

k¼1
1

ð1�Kðxj;ckÞÞþ a
NR

P
r2ð1�Kðxr;ckÞÞ

 !1=ðm�1Þ

¼ 1

ð16Þ

kj

2m

� �1=ðm�1Þ

¼ 1PC
k¼1ðð1�Kðxj; ckÞÞ þ a

NR

P
r2ð1�Kðxr; ckÞÞ

� ��1=ðm�1Þ
ð17Þ

Finally, substituting Eq. (17) into Eq. (15), we get:

uij ¼
1

PC
k¼1

ð1�Kðxj ;ciÞÞþ a
NR

P
r2Nj
ð1�Kðxr ;ciÞÞ

ð1�Kðxj ;ckÞÞþ a
NR

P
r2Nj
ð1�Kðxr ;ckÞÞ

 !1=ðm�1Þ ð18Þ

In GRBF kernel K(x, c) = exp(�kx � ck2/r2), similarly we
obtain:

@Lm

@ci
¼ 0() 2

XN
j¼1

umij ð1� Kðxj; ciÞÞðxj � ciÞð�1=r2Þ þ 2a
NR

�
XN
j¼1

umij

X
r2Nj

ð1� Kðxr; ciÞÞðxr � ciÞð�1=r2Þ

¼ 0

Then we get:

XN
j¼1

umij ðð1� Kðxj; ciÞÞxj þ
a
NR

X
r2Nj

ð1� Kðxr; ciÞÞxrÞ

¼
XN
j¼1

umij ðð1� Kðxj; ciÞÞ þ
a
NR

X
r2Nj

ð1� Kðxr; ciÞÞÞci

ci ¼
P

j¼1u
m
ij ðð1� Kðxj; ciÞÞxj þ a

NR

P
r2Nj
ð1� Kðxr; ciÞÞxrÞPN

j¼1u
m
ij ðð1� Kðxi; ciÞÞ þ a

NR

P
r2Nj
ð1� Kðxr; ciÞÞÞ

ð19Þ

This completes the proof. h
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The objective function of Zhang et al. [6] can be defined as:

Jm ¼
XC
i¼1

XN
j¼1

umij kxj � cik2 þ
a
NR

XC
i¼1

XN
j¼1

umij
X
r2Nj

ð1� uirÞm

Similar to Ahmed et al. [2], the objective function of Zhang

et al. [6] can be derived as:

Jm ¼ 2
XC
i¼1

XN
j¼1

umij ð1� Kðxj; ciÞÞ þ
a
NR

XC
i¼1

XN
j¼1

umij

X
r2Nj

ð1� uirÞm

ð20Þ

The objective function Jm is minimized under the constraint
of uij and we get:

uij ¼
1

PC
k¼1

ð1�Kðxj ;ciÞÞþ a
NR

P
r2Nj
ð1�uirÞm

ð1�Kðxj ;ckÞÞþ a
NR

P
r2Nj
ð1�uirÞm

 !1=ðm�1Þ ð21Þ

Because the penalty function does not depend on ci the nec-
essary conditions under which Eq. (12) attains its minima is
identical to that of standard KFCM (Eq. (7)).

The objective functions of Kang et al. [7] is as follows:

Jm ¼
XC
i¼1

XN
j¼1

umij jjxj � cijj2 þ a
XC
i¼1

XN
j¼1

umij jj�x�j � cijj2 ð22Þ

Similarly, in Kang et al. [7], the objective function can be

derived as:

Jm ¼ 2
XC
i¼1

XN
j¼1

umij ð1� Kðxj; ciÞÞ þ 2a
XC
i¼1

XN
j¼1

umij ð1

� Kð�x�j ; ciÞÞ ð23Þ
where �x�j represents the grey value of pixel in the weighted aver-
aging image window, more discussions can be shown in [7].

Similarly to Eqs. (11) and (12), the membership functions
and cluster centers are updated by the following expressions:

uij ¼
1PC

k¼1
ð1�Kðxj ;ciÞÞþað1�Kð�x�

j
;ciÞÞ

ð1�Kðxj ;ckÞÞþað1�Kð�x�
j
;ckÞÞ

� �1=ðm�1Þ ð24Þ

ci ¼
PN

j¼1u
m
ij Kðxi; ciÞxi þ að1� Kð�x�j ; ciÞÞ�x�j
� �

PN
j¼1u

m
ij ð1� Kðxi; ciÞÞ þ að1� Kð�x�i ; ciÞÞf g

ð25Þ

The SKFCM algorithm is almost identical to the KFCM,
except in step 3(a) and (b), Eqs. (18) and (19) in Ahmed
et al. [2], Eqs. (21) and (7) in Zhang et al. [6], and Eqs. (24)
and (25) in Kang et al. [7] are used instead of Eqs. (6) and

(7) to update the memberships and centers.

3. Indexes for determining number of clusters

One of the most important issues in cluster analysis is the eval-
uation of clustering results to find the partitioning that best fits
the underlying data. Although fuzzy methods [3–7] have several

advantages in segmentation accuracy and less sensitive to noise,
they have a drawback in requiring prior knowledge about the
number of clusters in the data, which may not be known for

new data. The final number of clusters is still always sensitive
to define the threshold criterion for merging. Though some
compatibility or similarity measure can be applied to choose

the clusters to be merged, no validity measure is used to guar-
antee that the clustering result after a merge is better than the
one before the merge, i.e. we want to explore which indexes
can achieve high accuracy segmentation [19]. In the sequel,

we evaluate 18 indexes for determining the number of clusters.
In this section, we will seek the most suitable validity crite-

rion in the following indexes, regrouped into three categories.

The first category uses only the membership values. The sec-
ond one involves both the U matrix and the dataset itself. Sta-
tistical indexes are presented in the third one. In our

implementation, the under-sampled dataset is obtained by
averaging every 2 · 2 pixels (2 · 2 · 2 voxels for 3D data) in
the original dataset. One desirable effect here is that the resul-
tant half-sized dataset contains smaller noise, which ought to

lead to better cluster estimation. The KFCM and SKFCM
are defined by a matrix U= [uij], where uij denotes the degree
of membership of the vector xj in the i cluster. Also, a set of

cluster representatives have been defined. We denote a crite-
rion by q, and we search for the minimum or maximum in
the plot of q versus C (number of clusters). Also, in case that

q exhibits a trend with respect to the number of clusters, we
seek a significant knee of decrease (or increase) in the plot of q.

3.1. Indexes involving only the membership values

3.1.1. The partition coefficient (PC)

The partition coefficient is proposed by Bezdek et al. [27], and

defined as:

PC ¼ 1

N

XN
i¼1

XC
j¼1

u2ij ð26Þ

The PC index values range in [1/C, 1], where C is the num-

ber of clusters. The closer the index to unity the ‘‘crisper’’ the
clustering is. In case that all membership values to cluster par-
tition are equal, that is, uij = 1/C, the PC coefficient obtains its

lowest value. Thus, a value close to 1/C indicates that there is
no clustering tendency in the considered dataset or the cluster-
ing algorithm failed to reveal it.

3.1.2. The partition entropy coefficient (PE)

The partition entropy coefficient is defined as [27]:

PE ¼ � 1

N

XN
i¼1

XC
j¼1

uij � logðuijÞ ð27Þ

The index is computed for values of C greater than 1 and its
values range in [0, log C]. The closer the value of PE to 0, the

harder the clustering is. As in the previous case, the values of
index close to the upper bound (i.e. log C), indicate absence of
any clustering structure in the dataset or inability of the algo-

rithm to extract it.

3.1.3. The modification of the PC index (MPC)

The drawback of PC is its monotonous dependency on the

number of clusters. Thus, we seek significant knees of increase
(for PC) or decrease (for PE) in plot of the indexes versus the
number of clusters. Modification of the PC index proposed by

Dave [28] can reduce the monotonic tendency by using the fol-
lowing formula:

MPCðCÞ ¼ 1� C

C� 1
ð1� C�PCÞ ð28Þ
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where 0 6MPCðCÞ 6 1: Note that the MPC index is equiva-

lent to the non-fuzziness index (NFI). In general, an optimal
cluster number C\ is found by solving max26C6N�1MPCðCÞ
to produce a best clustering performance for the data set X.

3.2. Indexes involving the membership values and the dataset

3.2.1. The Xie–Beni index (S)

The Xie–Beni index, also called the compactness and separa-
tion validity function, is defined as [29]:

S ¼ 1

N

� �XC
i¼1

r2
i

( ),
fDming2 ð29Þ

where

r2
i ¼

XN
j¼1

uijkxj � cik2

where xj: j = 1, . . . , N is a set of N feature vectors that is to be
partitioned (clustered) into C clusters, for each cluster ci,

i= 1, . . . , C, represents its prototype, or center, and Dmin is
the minimum distance between the prototypes (cluster centers).
A large Dmin value means a lower reciprocal value. Each r2 is a
fuzzy weighted mean-square error for the ith cluster, which is

smaller for more compact clusters.

3.2.2. The modified Xie–Beni index (XB)

It is a modification [30] of the Xie–Beni index by summing only
the members of each cluster rather than over all N exemplars
for each cluster. Also the reciprocal XB= 1/S is taken so that
a larger value of XB indicates a better clustering and the XB is

called modified Xie–Beni clustering validity measure.

3.2.3. The I-indexes (I)

Consider a data set of N points partitioned into C clusters. The
I index [31] is defined as follows:

I ¼ Dmax

C� EC

� �p

ð30Þ

where

EC ¼
XN
i¼1

XC
j¼1

ujikxi � cjk

The value of C for which this index is maximized is consid-
ered to be the correct number of clusters. The first factor Dmax

is the maximum distance between the prototypes (cluster cen-

ters). It will increase with the number C, hence reducing the in-
dex as the number of cluster increases. The second factor 1

C
will

try to reduce the index as the number of cluster increases. The

third factor 1
EC
, which measures the total fuzzy dispersion, will

penalize the index as it is increased. The power of p is used to
control the contrast between the different cluster configura-
tions. In our implementation, we take p = 2.

3.2.4. The Davies–Bouldin index (DB)

Assume a similarity measure R(mi, mj) = Rij between two clus-
ters mi and mj is defined based on a measure of dispersion

s(ci) = si of a cluster mi, and a dissimilarity measure d(mi, mj) =
dij between two clusters mi and mj. Rij is defined to be non
negative and symmetric. Then the Davies–Bouldin (DB) index

is defined as [32]:
DB ¼ 1

C

XC
j¼1

maxRij; i ¼ 1; . . . ;C; i – j ð31Þ

where

Rij ¼
si þ sj
dij

The similarity between clusters is obtained and the maxi-
mum value is denoted as max Rij. If ci denotes the centroid
of cluster mi, with:

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

cardðmiÞ
X

x2mi
kx� cik2

s
ð32Þ

dij ¼ max kci � cjki; j ¼ 1; . . . ;C

The number of clusters which minimizes the DB index is the

optimal one.

3.2.5. The cluster validity measure (VM)

The cluster validity measure (VM) is defined as [33]:

VM ¼ ðCþ ðf� Gð2; 1Þ þ 1ÞÞ:Da

De

ð33Þ

where Da which measures the compactness of the clusters, is
defined as:

Da ¼
1

N

XC
i¼1

X
x2mi
kx� cik2 ð34Þ

De which measures the average separation between two clus-
ters over all possible pairs of clusters, is defined as:

De ¼ averageðkci � cjk2Þ; i ¼ 1; 2; . . . ;C; j

¼ iþ 1; . . . ;C ð35Þ

f is some natural constant; G(2, 1) is a GRBF with mean value
equal to 2 and standard deviation equal to 1, and ci is the clus-

ter center of the cluster mi. The VM measure should be mini-
mized to get a good segmentation result coming from
compact and well separated clusters.

3.2.6. The Fukuyama–Sugeno index (FS)

The Fukuyama–Sugeno index is defined as [34]:

FS ¼
XN
i¼1

XC
j¼1

umij ðkxi � cjk2 � kcj � ck2Þ ð36Þ

where �c ¼
Pc

i¼1ci=C. It is clear that for compact and well-sep-
arated clusters we expect small values for FS. The first term in

the parenthesis measures the compactness of the clusters and
the second one measure the distances between two clusters
centers.

3.2.7. The fuzzy hyper volume (FHV)

The fuzzy hyper volume is proposed by Gath and Geva [35]
based on the concepts of hyper volume and density. The fuzzy

hyper volume is given by:

FH ¼
XC
j¼1

Vj ð37Þ

Vj ¼
X
j

					
					
1=2

¼
PN

i¼1u
m
ij ðxi � cjÞðxi � cjÞTPN

i¼1u
m
ij

 !1=2

ð38Þ
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Small values of FH indicate the existence of compact
clusters.

3.2.8. The average partition density (PA)

The average partition density is defined as [32]:

PA ¼ 1

C

XC
j¼1

Sj

Vj

ð39Þ

with Sj ¼
P

x2Xj
uij, where xj is the set of data points within a

window around j (i.e. the center of cj cluster), Sj is called the

sum of the central members of the cj cluster.

3.2.9. The partition density index (PD)

The partition density index is given by [32]:

PD ¼ S=FH

where

S ¼
XC
j¼1

Sj ð40Þ

The PD and PA measures should be at a minimum to get
good segmentation results.

3.2.10. The separation and compactness index (SC)

A validity function proposed by Zahid et al. [36] is defined by:

SCðCÞ ¼ SC1ðCÞ þ SC2ðCÞ ð41Þ

where

SC1ðCÞ ¼
Pnc

i¼1kci � cik2=CPC
i¼1ð
PC

j¼1ðumij Þkxj � cik2=
PC

j¼1uijÞ

and

SC2ðCÞ ¼
PC�1

i¼1
PC

l¼iþ1ð
PC

j¼1ðminðuij; uljÞÞ2Þ=
PC

j¼1 minðuij; uljÞPC
j¼1ðmax

16i6C
uijÞ2=

PC
j¼1 max

16i6C
uij

Both SC1 and SC2 measure the ratio of separation and
compactness. SC1 considers the geometrical properties of the
data structure and membership functions. SC2 considers only

the fuzzy memberships. In general, we find an optimal C\ by
solving min26C6NSCðCÞ to produce the best clustering perfor-
mance for the data set X.

3.2.11. The partition coefficient and exponential separation
(PCAES) index

The PCAES validity index is defined as [37]:

PCAESi ¼
XN
j¼1

u2ij=uM � exp �min
k–i
fkci � ckk2g=bT

� �
ð42Þ

where

uM ¼ min
16i6C

XN
j¼1

u2ij

( )

and

bT ¼
PC

l¼1kc1 � ck2

C

Obviously we have �C 6 PCAESðCÞ 6 C.
A large PCAES(C) value means that each of these c clusters
is compact and separated from other clusters. A small
PCAES(C) value means that some of these c clusters are not

compact or separated from other clusters. The maximum of
PCAES(C) with respect to c, could be used to detect the data
structure with a compact partition and well-separated clusters.

Thus, an optimal c\ can be found by solving
min26C6NPCAESðCÞ to produce a best clustering performance
for the data set X.

3.2.12. The PBMF index

The PBMF-index [38] can provide a measure of goodness of
clustering on different partitions of a data set and is defined

as follows:

PBMF ¼ 1

c
�

E1 �max
i;j
kci � cjkPC

i¼1
PN

j¼1u
m
ij kxj � cik

ð43Þ

where C is the number of clusters. Here, E1 ¼
PN

j¼1uijkxj � cik.
It is seen that the factor E1 in the expression of the index is

a constant term for a particular data set. The maximum value
of the index is supposed to give the appropriate number of

clusters.

3.2.13. The compose within and between scattering (CWB)

index

CWB index [39] is defined by:

CWB ¼ aScatðCÞ þDisðCÞ ð44Þ

where

ScatðcÞ ¼
1
C

PC
i¼1½rðciÞ

T � rðciÞ�1=2

½rðXÞT � rðXÞ�1=2
DisðCÞ

¼ Dmax

Dmin

XC
i¼1

XC
r¼1
kci � crk

 !�1

rðXÞ ¼ 1

N

XN
j¼1
ðxj � xÞ2 x : center of the whole dataset

rðciÞ ¼
1

N

XN
j¼1

uijðxj � ciÞ2 wherei ¼ 1; . . . ;C

Dmax = max{ci � cr}, i, r= 1, . . . , C and i „ r
Dmin = min{ci � cr}, i, r = 1, . . . , C and i „ r
a = Dis(cmax)

CWB tends to find an optimum value of both compactness
and separation in fuzzy c-partitions. In this index, Scat(C) is

average scattering for c classes and Dis(C) is a distance func-
tion associated with distance between class centers. The first
term represents the compactness and second term the separa-

tion. These two terms usually show opposite trends as C is
changed. The minimum value of the index is supposed to give
the appropriate number of clusters.

3.3. Statistical indexes

Some of the widely adopted criteria for statistical model selec-
tion are used for determining the number of clusters. Recently,
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El-Melegy et al. [19] presented two indexes for this reason, one
is based on Akaike’s information criterion (AIC) [40] and the
other is based on Cross-Validation [41].

3.3.1. The index based on Akaike’s information criterion (AIC)

The classical AIC is defined as:

AIC ¼ Da þ 2lr2 ð45Þ

where l(C) = (C � 1)N + C in soft case, and l(C) = N + C
in case of hard, is the number of degree of freedom of the mod-

el, Da can be computed from Eq. (34), and r the noise level,
can be estimated from

r2 ¼ DaðC�Þ
qN� lðC�Þ ð46Þ

where C\ is the maximum number of clusters, q is the co-

dimension of the model (q = 1). The smaller the AIC value
is, the better the clustering performance for the data set.

3.3.2. The index based on cross-validation (V)

This index is based on cross-validation [19], which is an old,
standard tool in statistics [41,42]. The data are divided into
two sets, one used for determining the clusters and the other

one is used to validate the obtained clusters. The underlying
idea here is to validate them on a dataset different from the
one used for cluster estimation. For the task of image segmen-
tation, the two subsets of data can be formed in several ways.

One way, which we will follow, is to use an under-sampled ver-
sion of the dataset for cluster estimation and the original data-
set for validation.

4. Results and discussion

The experiments were performed with two types of data. The

first type of data consists of two simple synthetic images
(synthetic1 and synthetic2), one corrupted by 9%, 12% salt
and pepper noise, and the other corrupted by Gaussian noise

of standard deviation (ST) 50% and 60%; and the image size
is 64 · 64 pixels, as shown in Fig. 1a and b, respectively. The
second type of data includes T1-weighted 3D MRI brain

data with slice thickness of 1 mm, corrupted by 3% and
6% noise, and no intensity inhomogeneities [43]. The image
size is 129 · 129 pixels obtained from the classical simulated
brain database of McGill University [43]. Two slices drawn

from the simulated MRI are shown in Fig. 1d and e. On
other hand, we will point to the original data as clean data
(0% noise). The quality of the segmentation algorithm is of
Figure 1 Test images: (a) synthetic1, (b) synthetic2, (c) 3D simulate

(slice91 and slice100).
vital importance to the segmentation process. The compari-
son score S for each algorithm as proposed in [44] is defined
as follows:

S ¼ A \ Aref

A [ Aref

				
				 ð47Þ

where A represents the set of pixels belonging to a class as
found by a particular method and Aref represents the reference
cluster pixels.

4.1. Kernelized fuzzy C-means algorithms

To assess the capabilities of the validity indexes to accurately

identify the number of clusters present in an image, both
KFCM and SKFCM methods were implemented. Through
our implementation, we set the following parameters:

r = 150 (GRBF kernel width),a = 0.5, m = 2, e = 0.00001,
and NR = 0.5 (a 2 · 2 window centered around each pixel, ex-
cept the central pixel itself). Note that the correct number of

clusters for synthetic1, and synthetic2 is 2 and 4 clusters
respectively. For the 3D simulated data, the correct number
of clusters is 10. The standard KFCM algorithms (using itera-
tive process Eqs. (6) and (7)) are applied independently on each

image The eighteen indexes are used to estimate the best cluster
of each image. In case of SKFCM, the objective functions of
Ahmed et al. [2] is used which always gives stable and good re-

sults. We use the iterative process in Eqs. (11) and (12), more
discussion can be shown in [7]. The outcome of each index on
the different test images is shown in Table 1.

4.1.1. In the case of KFCM algorithm

Dataset1 (synthetic1): the KFCM clustering algorithm is ap-
plied to synthetic1 corrupted by 9%, 12% salt and pepper

noise for the cluster number C= 2. By optimizing the valid-
ity functions, most of the indexes indicate that 2 is an opti-
mal cluster number which actually matches the structure of

the image set except FS, PE, PC, SC PD indexes in the ori-
ginal image and PD, PBMF, CWB, FS, PC, PCAES and V
indexes for 9% noise. The PD, PBMF and CWB indexes
gave the cluster number 3 for this dataset. However, FS,

PC, PCAES and V consider that 5 is a good cluster number
estimate. Furthermore, for 12% noise, PA, FHV, I, AIC,
and V still achieve optimal clusters. The estimated cluster

numbers by the validity indexes are shown in the synthetic1
column of Table 1.

Dataset2 (synthetic2): the KFCM clustering algorithm is

applied to synthetic2 image corrupted by 50% and 60%
d data, (d) and (e) two original slices from the 3D simulated data



Table 1 Number of clusters obtained by 18 indexes using the KFCM and SKFCM algorithms.

KFCM SKFCM

Synthetic1 Synthetic2 Gaussian noise ST 3D simulated data Synthetic1 Synthetic2 Gaussian noise ST 3D simulated data

0% noise 9% noise 12% noise 0% 50% 60% 0% noise 3% noise 6% noise 0% noise 9% noise 12% noise 0% 50% 60% 0% noise 3% noise 6% noise

Obtained number of clusters Obtained number of clusters

PD 2 3 4 3 2 2 7 10 9 2 2 2 4 2 2 7 2 9

PA 2 2 2 3 2 2 10 2 2 2 2 5 4 2 2 10 2 8

FHV 2 2 2 4 4 4 10 10 9 2 2 2 4 4 4 10 10 10

FS 4 5 5 2 2 3 8 6 8 3 4 5 2 7 6 10 10 8

PE 3 2 2 2 3 5 5 2 6 2 5 2 2 7 5 10 10 6

PC 3 5 4 4 3 3 8 2 7 2 5 4 4 7 5 9 10 8

S 2 2 3 4 2 2 5 2 2 2 2 3 4 2 2 10 2 2

XB 2 2 6 3 2 3 10 2 2 2 2 5 4 2 3 7 2 4

DB 9 2 3 4 7 5 8 10 9 2 4 6 4 5 5 10 10 10

I 9 2 2 4 4 4 10 10 10 2 2 2 4 4 4 10 10 10

VM 2 2 5 4 2 2 5 2 6 2 5 5 4 7 2 7 8 6

AIC 2 2 2 4 4 4 10 10 10 2 2 2 4 4 4 10 10 10

MPC 2 4 4 5 7 7 9 6 6 3 5 4 3 7 7 13 10 6

SC 3 2 3 4 2 2 10 2 2 2 2 3 4 2 2 5 2 6

PCAES 2 5 5 4 5 5 10 10 9 2 5 5 4 7 5 10 10 9

PBMF 2 2 2 4 4 4 9 10 9 2 2 2 4 3 4 10 7 10

CWB 2 3 5 4 3 2 9 3 4 2 4 5 4 6 2 7 4 4

V 2 5 2 4 6 7 10 9 9 2 5 4 4 7 7 10 10 9
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Gaussian noise of ST. Intuitively, 4 clusters are suitable for the
data set. The estimated cluster numbers by the validity indexes
are shown on the synthetic2 column of Table 1. By optimizing

the validity functions, most of the indexes gave optimal cluster
number except PD, PA, FS, PE, XB, andMPC for the original
image. For the noisy image of ST 50%, FHV, I, AIC, and

PBMF indicate that 4 is an optimal cluster number which actu-
ally matches the structure of the image set. PD, PA, FS, S, XB,
VM, and SC indicate that 2 is the best cluster number estimate.

DB and MPC indexes gave the optimal cluster number 7.
PCAES indicates that 5 is the best cluster number estimate.
V and (PE, PC, CWB) indexes gave the optimal cluster num-
ber 6 and 3, respectively. According to the index values shown

in Table 1, only FHV, I, and AIC indexes indicate that 4 is the
cluster number estimate for the noise of ST up to 60%.

Dataset3 (simulated volumetric MR data): we tested the

efficiency of the validity indexes for a T1-weighted MR data
with 3% and 6% noise respectively. As shown in Table 1,
PA, FHV, XB, I, AIC, SC, PCAES, and V indicate that 10

is an optimal cluster number for the original image set. For
3% noise, PD, FHV, I, DB, AIC, PCAES, PBMF, and V in-
dexes gave the optimal cluster. However only I, AIC, and

PBMF gave optimal results for this dataset with 6% noise
while PD, DB, PCAES, and V gave 9 clusters for this dataset.
Others indexes achieved inconsistent results.

Overall, the AIC, FHV, and I indexes gave the optimal

number of clusters 2, 4, and 10 for the three test datasets with
low noise level which actually matches the structure of the
images.

4.1.2. In the case of SKFCM algorithm

Dataset1 (synthetic1): the SKFCM algorithm applied to syn-
thetic1 image corrupted by 9% and 12% salt and pepper noise.

By optimizing the validity functions, most of the indexes indi-
cate that 2 are optimal clusters for this dataset which actually
matches the structure of the image except: FS and MPC for

original image and FS, PE, PC, DB, VM, MPC, PCAES,
Figure 2 The relationship between number of clusters and noise level

is applied to the synthetic1 image.
CWB and V for 9% noise. However, PE, PC, VM, MPC,
PCAES and V considered that 5 be the optimal cluster
number. For 12% noise dataset, only PD, FHV, PE, I, AIC,

and PBMF gave the actual clusters as shown in synthetic1
of Table 1.

Dataset2 (synthetic2): the SKFCM algorithm is applied to

synthetic2 image corrupted by Gaussian noise of ST 50%,
60% respectively. The estimated cluster numbers by the valid-
ity indexes are shown in the synthetic2 of Table 1. Most of in-

dexes indicate that 4 are optimal clusters for original dataset
except: FS, PE, and MPC indexes. FHV, DB, AIC and I in-
dexes gave the optimal cluster number 4 clusters for this data-
set which actually matches the structure of the image. But PD,

PA, XB, SC gave 2 clusters, PBMF gave three clusters, FS, PE,
PC, VM, MPC, PCEAS, CWB, and V indexes indicate that 7
is the optimal cluster number. In the case of dataset with noise

60% of ST, only FHV, I, AIC, and PBMF gave the actual clus-
ter number.

Dataset3 (simulated volumetric MR data): we tested the

efficiency of the validity indexes for a simulated volumetric
MR data (with 3% and 6% noise). As shown in Table 1, most
of indexes gave optimal cluster number except PD, PC, XB,

VM, SC, and CWB for original image. The FS, PE, PC,
DB, AIC, I, MPC, PCAES, and V indexes indicate that 10 is
the optimal cluster number for 3% noise dataset which actu-
ally matches the structure of the image. The PD, PA, S, XB,

and SC indexes considered that 2 is the optimal cluster num-
ber. However, FHV and VM indexes considered 8 and 9 are
the best cluster number. For 6% noise of dataset, only DB,

AIC, I, PBMF, FHV indexes gave the actual cluster number.
But PB, PCAES, and V indicate that 9 is best cluster number.

4.2. Different noise levels investigation

The performance of each index against noise is evaluated. Figs.
2–8 depict the relationship between the number of clusters and

various levels of noise for all indexes when KFCM is applied
for PBMF, CWB, MPC, PCAES and S indexes when the KFCM



Figure 3 The relationship between number of clusters and noise level for PC, PE, FS, FHV and SC indexes when the KFCM is applied

to the synthetic1 image.

Figure 4 The relationship between number of clusters and noise level for XB, PA, PD, VM and I indexes when the KFCM is applied to

the synthetic1 image.
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to the two synthetic images. It is clear that when MPC, XB,
AIC and SC indexes are used, the optimal number of cluster

is constant for different level of noise less than 12%, while
for the CWB index this relationship is unstable. For FS, as
the level noise increases, the obtained number of clusters in-

creases. The FHV, I and PBMF indexes give inconsistent
behavior on the synthetic2 and synthetic1, respectively.

Figs. 9–17 show the relationship between the number of

clusters and noise level for all indexes when applying the
SKFCM algorithm to the synthetic images. When MPC, S,
PC, XB, PA, SC, V and AIC indexes are used, the obtained
number of clusters is constant for various levels of noise,
whereas this relationship is unstable for CWB and PBMF in-
dexes. The FHV, I indexes seem to be working better than

the others for the KFCM algorithm. However, it has shown
tendency to be affected by noise. On the other hand, for the
SKFCM algorithm PBMF index seems to be working better

than the others. Things look discouraging as no index has
shown optimum performance throughout all noise levels
(using fuzzy KFCM and SKFCM cases). It is important to

note that some indexes, such as the AIC, I and FHV indexes
have demonstrated better performance with the fuzzy KFCM
and SKFCM algorithms rather than others. Overall, AIC,
FHV, and I present good stable cluster number at various



Figure 5 The relationship between number of clusters and noise level for AIC, DB and V indexes when the KFCM is applied to the

synthetic1 image.

Figure 6 The relationship between number of clusters and noise level for PBMF, CWB, MPC, PCAES and S indexes when the KFCM

is applied to the synthetic2 image.
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levels of noise, especially AIC gives the optimal cluster number
in all our tests in case of noisy and non noisy data sets.

On the other hand, in case of KFCM, one can read from
Table 1 that although many indexes give accurate results on
the 3D volume, only the AIC, FHV, and I yield correct or al-
most correct results on different levels of noises.
Analogously, on applying KFCM algorithm to noisy syn-
thetic images, the corresponding relationships between the

found number of clusters and noise standard deviation have
revealed that most indexes have constant outcomes for various
levels of noise, whereas this relationship is unstable for CWB,
PCAES, FS, and PC indexes.



Figure 7 The relationship between number of clusters and noise level for PC, PE, FS, FHV and SC indexes when the KFCM is applied

to the synthetic2 image.

Figure 8 The relationship between number of clusters and noise level for XB, PA, PD, VM and I indexes when the KFCM is applied to

the synthetic2 image.
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Figure 9 The relationship between number of clusters and noise level for AIC, DB and V indexes when the KFCM is applied to the

synthetic2 image.

Figure 10 The relationship between number of clusters and noise level for PBMF, CWB, MPC, PCAES and S index es when the

SKFCM is applied to the synthetic1 image.
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Figure 11 The relationship between number of clusters and noise level for PC, PE, FS, FHV and SC indexes when the SKFCM is

applied to the synthetic1 image.

Figure 12 The relationship between number of clusters and noise level for XB, PA, PD, VM and I indexes when the SKFCM is applied

to the synthetic1 image.
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Figure 13 The relationship between number of clusters and noise level for AIC, DB and V indexes when the SKFCM is applied to the

synthetic1 image.

Figure 14 The relationship between number of clusters and noise level for PBMF, CWB, MPC, PCAES and S indexes when the

SKFCM is applied to the synthetic2 image.
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4.3. Segmentation accuracy

In the previous section, we noted that I, FHV, and AIC
indexes always give better results than others. Our tests are fo-
cused on applying the standard FCM and most popular

SKFCM such as: Ahmed et al. [2], Zhang et al. [6], and Kang
et al. [7] with these indexes on T1-weighted MR phantom with
nine slices thickness of 1 mm, 3% noise. We set the parameter

r = 150 (GRBF kernel width),a = 0.5, m= 2, and NR = 0.5.
Table 2 shows the corresponding accuracy scores of the four
methods: standard FCM and SKFCM of Ahmed et al. [2],

Zhang et al. [6], and Kang et al. [7] for the nine classes.
Obviously, the standard KFCM gives the worst segmentation
accuracy in case I and FHV indexes, because I and FHV failed

to determine the true clusters number of slice 8, while all
methods with AIC data give satisfactory results. On the other
hand, the SKFCM of Ahmed et al. [2] and Kang et al. [7]
acquire the best segmentation performance in case of I and



Figure 15 The relationship between number of clusters and noise level for PC, PE, FS, FHV and SC indexes when the SKFCM is

applied to the synthetic2 image.

Figure 16 The relationship between number of clusters and noise level for XB, PA, PD, VM and I indexes when the SKFCM is applied

to the synthetic2 image.
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FHV respectively. Overall, the SKFCM of Kang [7] with AIC
index is more stable and achieves much better performance
than the others in different classes even with misleading of true
tissue of validity indexes.



Figure 17 The relationship between number of clusters and noise level for AIC, DB and V indexes when the SKFCM is applied to the

synthetic2 image.

Table 2 Segmentation accuracy (%) of four methods on brain classes.

Index Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Overall (%)

I Standard KFCM 66.87 55.77 59.087 64.0 70.32 37.96 63.99 10.12 97.99 58.456

Ahmed SKFCM [3] 67.55 61.14 78.83 73.88 67.96 61.87 89.21 15.27 97.27 68.108

Kang SKFCM [8] 79.54 77.55 78.34 82.01 78.65 81.98 8 18.54 99.54 74.98

Zhang SKFCM [7] 56.87 60.43 66.98 70.54 76.09 45.98 66.87 16.43 96.09 61.808

FHV Standard KFCM 67.55 51.14 67.83 91.03 67.96 21.87 59.21 11.27 97.26 59.457

Ahmed SKFCM [3] 75.46 71.88 99.98 82.21 96.63 82.31 55.70 1.50 96.82 73.611

Kang SKFCM [8] 78.09 74.65 73.87 83.65 98.32 90.34 65.76 20.9 98.98 76.062

Zhang SKFCM [7] 76.98 68.32 77.65 88.23 89.43 95.21 66.98 10.43 88.54 73.532

AIC Standard KFCM 53.52 64.38 75.19 89.3 62.76 29.09 83.09 42.76 98.95 66.563

Ahmed SKFCM [3] 64.92 87.64 77.84 86.18 66.17 89.18 99.95 56.3 99.03 80.801

Kang SKFCM [8] 77.98 86.72 89.54 88.34 85.12 77.02 60.0 76.89 100.0 82.401

Zhang SKFCM [7] 77.65 85.12 87.23 90.87 81.54 74.05 55.21 64.25 93.76 78.85
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5. Conclusion

In clustering, the role of a validity index is very important. The

hope is that the number of clusters within an image can be
determined automatically. The aim of this paper was to con-
sider the performance of 18 of the most popular indexes by

applying them in turn to a range of simulated and real data
sets, including 2D and 3D data sets, corrupted with different
types of noise of varying levels. To the best of our knowledge,

no such comprehensive survey and comparison has been re-
ported before in literature.
From the results of the experimentation, it is not possible to
identify definitively an index which will work well in all cases,

and hence be the most suitable as a general index for all cases.
However some cluster validity indexes can guide the selection
of the appropriate number of clusters existing in a dataset.

We have arranged these indexes into three categories. In the
first category: AIC, FHV, and I indexes appear to be good gen-
eral indexes and have exhibited the best overall performance in

all the experiments, outperforming all other indexes. The
PBMF, MPC, XB, PD, and DB indexes have shown accept-
able results, but have shown unstable performance on all test
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images under varying noise levels. The third category: V, S,
SC, PC, PCAES, CWB, VM, FS, PA, and PE gave incorrect
results in all test images.

Overall, on synthetic images, AIC, I and FHV indexes yield
the true number of clusters, whereas the FHV index shows bet-
ter performance in KFCM compared SKFCM. Furthermore,

the tests strongly suggest that the AIC index should be consid-
ered as the most robust index for general data and in particu-
lar, for determining the correct number of clusters using

KFCM and SKFCM for MR medical images. Moreover,
our tests prove that one can confide AIC method for determin-
ing the correct number of clusters using KFCM and SKFCM
for MR medical images. The most recent SKFCM with AIC

has obtained good segmentation performance (i.e. up to 90%
in synthetic images and up to 80% for MRI images).

This initial investigation should be expanded to consider

further testing on different real data sets from a wide range
of applications including medical images and reverse engi-
neered data. It would also be interesting to consider the effect

of systematic and random error noise levels within the data sets
to further establish the effect of this error on the performance
of the indexes. Further tests should also be carried out on clus-

tering improvement of the fuzzy methods using a wide range of
validity indexes for automatic clustering algorithms, via the
help of specialists within the fields of application.
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