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Abstract

In this paper, it is proved that every norm continuous linear local derivation of a nest
subalgebra of a factor von Neumann algebra is a derivation, and that every linear 2-local
derivation of a nest subalgebra of a factor von Neumann algebra is a derivation.
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1. Introduction

Let A be an (associative) algebra and E be a A-bimodule, and δ : A → E be a
linear mapping. Recall that δ is a Jordan derivation if δ(a2) = δ(a)a + aδ(a) holds
for all a in A, and that δ is a derivation if δ(ab) = δ(a)b + aδ(b) holds for all a and
b in A, and that δ is an inner derivation if there exists an element m in E such that
δ(a) = ma − am holds for all a in A. Also, δ is a local derivation if for each a in
A there is a derivation δa from A into E, depending on a, such that δ(a) = δa(a).
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A mapping θ : A → E is called a 2-local derivation if for each a and b in A there
is a derivation θa,b from A into E, depending on a and b, such that θ(a) = θa,b(a)

and θ(b) = θa,b(b). These two notions were introduced by Kadison [2] and Larson
and Sourour [6], and Šemrl [7].

The study of local mappings represents one of the most active research areas in
operator theory. In the past decade, similar questions have received a fair amount
of attention [3–6]. The interest in these types of mappings has been sparked by two
lines of research. One is the study of the reflexivity of the space of linear maps from
an algebra to itself. Let B be a subspace of the space of linear mappings B(X) on a
vector space X. B is said to be algebraically reflexive if, given T ∈ B(X) with the
property that T x ∈ Bx for all x ∈ X, then T ∈ B. Larson [1] asked which algebras
have a reflexive derivation space and when is the space of inner derivations relatively
reflexive in the space of derivations. Another is the study of Hochschild cohomology
for various operator algebras. These maps arise naturally when looking for sufficient
conditions to ensure that a map is a derivation. Kadison set out a program of study
for local maps in [2], suggesting that local derivations could prove useful in building
derivations with particular properties. In his study of the local derivations of von
Neumann algebras, Kadison proved that every norm continuous linear local deriva-
tion from a von Neumann algebra into its dual normal bimodule is a derivation. Crist
[3] proved the same result for the direct limit of finite dimensional CSL algebras
via ∗-extendable embedding (e.g., a triangular AF algebras). Without the linearity
assumption, Šemrl [7] proved that every 2-local derivation on B(H), the algebra of
all bounded linear operators on a Hilbert space H , is a derivation. However, Šemrl’s
method was based on the fact that a 2-local derivation of B(H), which vanishes
at two special operators, must be the zero mapping. It is clear that any attempt to
extend Šemrl’s results to general operator algebras must use different techniques. In
this paper we consider linear local derivations and linear 2-local derivations of nest
subalgebras of factor von Neumann algebras. More precisely, we prove that every
norm continuous linear local derivation of a nest subalgebra of a factor von Neumann
algebra is a derivation, and that every linear 2-local derivation of a nest subalgebra
of a factor von Neumann algebra (no continuity is assumed) is a derivation.

Let M be a von Neumann algebra acting on a separable Hilbert space H . A nest
β in M is a totally ordered family of (selfadjoint) projections in M which is closed
in the strong operator topology, and which includes 0 and I . Let P be a projection in
β, we define

P+ = inf{Q ∈ β : Q > P } and P− = sup{Q ∈ β : Q < P }.
If P+ − P /= 0 or P − P− /= 0, then P+ − P or P − P− is called an atom of β. A
nest is said to be continuous if it has no atoms. The nest subalgebra of M associated
to a nest β is the set algMβ = {T ∈ M : PT P = T P for all P ∈ β}. The diagonal
DM(β) of a nest subalgebra algMβ is the von Neumann subalgebra (algMβ) ∩
(algMβ)

∗. The core C(β) of the nest subalgebra algMβ is the von Neumann al-
gebra generated by the projections {P : P ∈ β}. Let RM(β) denote the norm closed
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algebra generated by {PT P⊥ : T ∈ M,P ∈ β}. It is clear that RM(β) is a norm
closed ideal of the nest subalgebra algMβ. As a notational convenience, if E is an
idempotent, we let E⊥ denote I − E throughout this paper.

We refer the reader to [13,14] for background information about von Neumann
algebras, and to [15] for the theory of nest algebras.

2. Local derivations

In this section, our main result is the following theorem.

Theorem 1. Let β be a nest in an arbitrary factor von Neumann algebra M, and
δ be a norm continuous linear local derivation from the nest subalgebra algMβ into
M. Then δ(AB) = δ(A)B + Aδ(B) for all A and B in algMβ.

To prove Theorem 1, we need some lemmas. We assume that δ is a norm con-
tinuous linear local derivation from algMβ into the factor von Neumann algebra M.
The proof of the following lemma is similar to that of [3]. It is shown that, without
loss of generality, we may assume that δ annihilates the diagonal DM(β) of the nest
subalgebra algMβ.

Lemma 2.1. δ = η + δ′, where η is an inner derivation and δ′ is a local derivation
that annihilates DM(β) the diagonal of algMβ.

Applying the same proof as in [2], we have the following lemma.

Lemma 2.2. (a) δ(E) = δ(E)E + Eδ(E) for every idempotent E in algMβ; (b) If
A,B,D ∈ algMβ, are such that AB = BD = 0, then Aδ(B)D = 0.

Lemma 2.3. δ(QAQ⊥) = Qδ(QAQ⊥)Q⊥ for all A in algMβ and all projections
Q in DM(β).

Proof. Let E = Q+QAQ⊥, it is clear that E is an idempotent in algMβ. By
Lemma 2.2(a), we have

δ(QAQ⊥)=δ(QAQ⊥)(Q+QAQ⊥)+ (Q+QAQ⊥)δ(QAQ⊥)
=δ(QAQ⊥)Q+Qδ(QAQ⊥),

which implies that

Qδ(QAQ⊥)Q = Q⊥δ(QAQ⊥)Q⊥ = 0. (1)

By Lemma 2.2(b), we have Q⊥δ(QAQ⊥)Q = 0. This together with Eq. (1) gives
us that δ(QAQ⊥) = Qδ(QAQ⊥)Q⊥. The proof is complete. �
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Lemma 2.4. δ(XT Y ) = δ(XT )Y +Xδ(T Y )−Xδ(T )Y for all T in algMβ and
X, Y in DM(β)+ RM(β).

Proof. Let E,F be idempotents in algMβ, it follows from Lemma 2.2(b) that
E⊥δ(ET F)F⊥ = E⊥δ(ET F⊥)F = Eδ(E⊥T F)F⊥ = Eδ(E⊥T F⊥)F = 0 for all
T in algMβ. Hence

δ(ET F)=δ(ET F)F + Eδ(ET F)− Eδ(ET F)F

=δ(ET )F − δ(ET F⊥)F + Eδ(T F)− Eδ(E⊥T F)−Eδ(ET F)F
=δ(ET )F + Eδ(T F)− Eδ(T )F.

Let P,Q be projections in β, it is clear that F = P + PSP⊥ andG = Q+QRQ⊥
are idempotents in algMβ for all S and R in M . Then

δ(PSP⊥T E) = δ(PSP⊥T )E + PSP⊥δ(T E)− PSP⊥δ(T )E
and

δ(ETQRQ⊥) = δ(ET )QRQ⊥ + Eδ(TQRQ⊥)− Eδ(T )QRQ⊥

for all projections E in DM(β), and hence

δ(PSP⊥TQRQ⊥) = δ(PSP⊥T )QRQ⊥ + PSP⊥δ(TQRQ⊥)
−PSP⊥δ(T )QRQ⊥.

Since δ is norm continuous and the set of finite linear combinations of projections
in DM(β) is norm dense in DM(β) and the linear space {PSP⊥ : P ∈ β, S ∈ M} is
norm dense in RM(β), we have

δ(CTD) = δ(CT )D + Cδ(TD)− Cδ(T )D, (2)

δ(CT B) = δ(CT )B + Cδ(T B)− Cδ(T )B, (3)

δ(ATD) = δ(AT )D + Aδ(TD)− Aδ(T )D, (4)

and

δ(AT B) = δ(AT )B + Aδ(T B)− Aδ(T )B (5)

for all C,D in DM(β) and all A,B in RM(β). We then have by Eqs. (2)–(5) that

δ(XT Y ) = δ(XT )Y +Xδ(T Y )−Xδ(T )Y

for all T in algMβ and all X and Y in DM(β)+ RM(β). The proof is complete. �

Taking T = I in Lemma 2.4, we have the following corollary.

Corollary 2.1. δ(XY) = δ(X)Y +Xδ(Y ) for all X, Y in DM(β)+ RM(β).
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Let β be a finite nest in a factor von Neumann algebraM , it is clear that DM(β)+
RM(β) = algMβ. Hence by Corollary 2.1, we have the following corollary.

Corollary 2.2. Let β be a finite nest inM. Then every norm continuous linear local
derivation from algMβ into M is a derivation.

Lemma 2.5. LetA ∈ algMβ andB ∈ DM(β)+RM(β). IfAB ∈ DM(β)+RM(β),

then δ(AB) = δ(A)B + Aδ(B).

Proof. If P = 0+ /= 0, then PT ∈ DM(β)+ RM(β) for all T in M . Hence by
Lemma 2.4, we have

δ(PT AB) = δ(PT A)B + PT δ(AB)− PT δ(A)B.

On the other hand, it follows from Corollary 2.1 that

δ(PT AB) = δ(PT A)B + PTAδ(B).

This implies that PT [δ(AB)− δ(A)B − Aδ(B)] = 0 for all T in M . Noticing that
M is a factor von Neumann algebra, we have δ(AB) = δ(A)B + Aδ(B).

If 0+ = 0, then there exists a decreasing sequence Pn of projections in β\{0}
which converges strongly to 0. Hence by Lemma 2.4, we have

δ(PnT P
⊥
n AB) = δ(PnT P

⊥
n A)B + PnT P

⊥
n δ(AB)− PnT P

⊥
n δ(A)B

for all T in M. On the other hand, it follows from Corollary 2.1 that

δ(PnT P
⊥
n AB) = δ(PnT P

⊥
n A)B + PnT P

⊥
n Aδ(B).

Thus P⊥
n [δ(AB)− δ(A)B − Aδ(B)] = 0. Letting n → ∞, we have δ(AB) =

δ(A)B + Aδ(B). The proof is complete. �

Proof of Theorem 1. LetA,B be operators in algMβ. If P = I− /= I , then T P⊥ ∈
DM(β)+ RM(β) for all T in M . Hence by Lemma 2.5, we have

δ(ABT P⊥) = δ(AB)T P⊥ + ABδ(T P⊥).

On the other hand, we have from Lemma 2.5 again

δ(ABT P⊥)=δ(A)BT P⊥ + Aδ(BT P⊥)
=δ(A)BT P⊥ + A[δ(B)T P⊥ + Bδ(T P⊥)]
=δ(A)BT P⊥ + Aδ(B)T P⊥ + ABδ(T P⊥).

This implies that [δ(AB)− δ(A)B − Aδ(B)]T P⊥ = 0 for all T in the factor von
Neumann algebra M . Thus δ(AB) = δ(A)B + Aδ(B).

If I− = I , then there exists an increasing sequence Pn of projections in β\{I }
which converges strongly to I . Hence by Lemma 2.5, we have

δ(ABPnT P
⊥
n ) = δ(AB)PnT P

⊥
n + ABδ(PnT P

⊥
n )
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for all T in M . On the other hand, it follows from Lemma 2.5 that

δ(ABPnT P
⊥
n )=δ(A)BPnT P⊥

n + Aδ(BPnT P
⊥
n )

=δ(A)BPnT P⊥
n + Aδ(B)PnT P

⊥
n + ABδ(PnT P

⊥
n ).

Thus [δ(AB)− δ(A)B − Aδ(B)]Pn = 0. Letting n → ∞, we have δ(AB) =
δ(A)B + Aδ(B) for all A and B in algMβ. The proof is complete. �

From the proofs of Lemma 2.5 and Theorem 1, we have the following corollary.

Corollary 2.3. Let β be a nest in a factor von Neumann algebra M with 0+ = 0
and I− = I. Then every linear local derivation δ from algMβ into M (no continuity
of δ is assumed ) is a derivation.

Christensen [9] proved that every derivation of nest algebras is an inner derivation.
Hence by Theorem 1 and Corollary 3.1, we have the following corollaries.

Corollary 2.4. Every norm continuous linear local derivation of nest algebras is an
inner derivation.

Corollary 2.5. Every linear local derivation of neat algebras with nests that satisfy
0+ = 0 and I− = I is an inner derivation.

By Theorem 1, we can obtain the following corollary, which partially answers the
question posed by Larson [1, Remark 6.4].

Corollary 2.6. Let β be any nest in an arbitrary factor von Neumann algebra M.
Then the nest subalgebra algMβ has an algebraic reflexive derivation space.

3. 2-local derivations

In this section, our main result is the following theorem.

Theorem 2. Let β be a nest in an arbitrary factor von Neumann algebra M, and θ
be a linear 2-local derivation from the nest subalgebra algMβ into M (no continuity
of θ is assumed). Then θ(AB) = θ(A)B + Aθ(B) for all A and B in algMβ.

Clearly, every linear 2-local derivation is a linear local derivation. Therefore, some
results of the above section can apply to linear 2-local derivations. To prove Theorem
2, we also need some lemmas. We assume that θ is a linear 2-local derivation from
algMβ into the factor von Neumann algebraM. It follows from the following lemma
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that, without loss of generality, we may assume that θ is a Jordan derivation that
annihilates C(β) the core of algMβ.

Lemma 3.1. θ is a Jordan derivation and θ = η + θ ′, where η is an inner deriva-
tion and θ ′ is a Jordan derivation that annihilates C(β) the core of algMβ.

Proof. Let A be any operator in algMβ, then

θ(A2) = θA,A2(A
2) = θA,A2(A)A+ AθA,A2(A) = θ(A)A+ Aθ(A).

This shows that θ is a Jordan derivation. Hence by Herstein’s results [10], we have

θ(ABC + CBA) = θ(A)BC + Aθ(B)C + ABθ(C)

+ θ(C)BA+ Cθ(B)A+ CBθ(A)

for all A,B and C in algMβ. Next we prove that θ : C(β) → M is an inner deriva-
tion.

Let A,B and X be operators in C(β), we define

ω(X) = θ(AX)− (θ(A)X + Aθ(X)).

Noticing that C(β) is an abelian von Neumann algebra, we have

2θ(AXB)=θ(X)AB+Xθ(A)B +XAθ(B)+θ(B)AX+Bθ(A)X+BAθ(X)
=θ(A)XB+Aθ(X)B+AXθ(B)+θ(B)XA+Bθ(X)A+BXθ(A).

This implies thatω(X)B −Bω(X)= 0 for allB in C(β), and henceω(X) ∈ DM(β).
Now let X, Y ∈ C(β), then

2ω(XY) = (θ(Y )X+Yθ(X))A−A(θ(Y )X+Yθ(X))+XYθ(A)−θ(A)XY.
Since θ(Y )X + Yθ(X)− (θ(X)Y +Xθ(Y )) ∈ DM(β), we have

2(ω(X)Y +Xω(Y )) = (θ(X)Y +Xθ(Y ))A− θ(A)XY

−A(θ(X)Y +Xθ(Y ))+XYθ(A)

= (θ(Y )X + Yθ(X))A− θ(A)XY

−A(θ(Y )X + Yθ(X))+XYθ(A)

= 2ω(XY).

Then ω : C(β) → DM(β) is a derivation, and hence by [15, Theorem 10.8] we have
ω = 0. Thus θ : C(β) → M is a derivation, and so there exists an operator T in
M such that θ(X) = TX −XT for all X in C(β). For every A in algMβ, we set
η(A) = TA− AT and θ ′(A) = θ(A)− η(A), then θ = η + θ ′ and θ ′ is a Jordan
derivation that annihilates C(β) the core of algMβ. The proof is complete. �
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From Lemma 3.1 and the results of Brešar [11] and Sakai [12], we have the
following corollary.

Corollary 3.1. Every linear 2-local derivation θ from a von Neumann algebra into
itself (no continuity of θ is assumed ) is an inner derivation.

Lemma 3.2. Let P be a projection in β, then θ(PA) = Pθ(A) and θ(AP⊥) =
θ(A)P⊥ for all A in algMβ.

Proof. It follows from the fact that θ is a Jordan derivation and θ(P ) = 0 that
θ(PAP ) = Pθ(A)P, θ(P⊥AP⊥) = P⊥θ(A)P⊥ and

θ(PAP⊥) = θ(PAP⊥ + P⊥AP) = Pθ(A)P⊥ + P⊥θ(A)P. (6)

By Lemma 2.3 and Eq. (6), we have θ(PAP⊥) = Pθ(A)P⊥. Hence θ(PA) =
θ(PAP )+ θ(PAP⊥) = Pθ(A) and similarly, θ(AP⊥) = θ(A)P⊥. The proof is
complete. �

Lemma 3.3. Let P be a projection in β, then for all A in algMβ and all X in M,
we have

(a) θ(APXP⊥) = θ(A)PXP⊥ + Aθ(PXP⊥);
(b) θ(PXP⊥A) = θ(PXP⊥)A+ PXP⊥θ(A).

Proof. (a) It is clear that if A and B belong to algMβ with AB = 0, then θ(A)B +
Aθ(B) = θA,B(AB) = 0. Hence by Lemmas 3.1, 3.2 and 2.3, we have

θ(APXP⊥)=θ(PAPXP⊥ + PXP⊥PA)
=θ(PA)PXP⊥ + PAθ(PXP⊥)
=θ(A)PXP⊥ + Aθ(PXP⊥).

Similarly, we can show that (b) holds. The proof is complete. �

Proof of Theorem 2. If β is a trivial nest, then algMβ = M , and hence θ is a deriv-
ation by Corollary 3.1. Now we suppose that β is a non-trivial nest. Let P be a fixed
non-trivial projection in β, and A and B be operators in algMβ. Then by Lemma
3.3(a),

θ(ABPXP⊥) = θ(AB)PXP⊥ + ABθ(PXP⊥) (7)

for all X in M . On the other hand, we have

θ(ABPXP⊥)=θ(A)BPXP⊥ + Aθ(BPXP⊥)
=θ(A)BPXP⊥ + Aθ(B)PXP⊥ + ABθ(PXP⊥).
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Note that M is a factor von Neumann algebra, then

[θ(AB)− θ(A)B − Aθ(B)]P = 0. (8)

Similarly, by Lemma 3.3(b), we can obtain that

P⊥[θ(AB)− θ(A)B − Aθ(B)] = 0. (9)

It follows from Lemma 3.2 that

Pθ(AB)P⊥ =θ(PABP⊥) = θ(PABP⊥ + BP⊥PA)
=θ(PA)BP⊥ + PAθ(BP⊥)
=Pθ(A)BP⊥ + PAθ(B)P⊥.

This and Eqs. (8) and (9) give us that θ(AB) = θ(A)B + Aθ(B) for all A and B in
algMβ. The proof is complete. �

By Theorem 2 and Christensen’s result [9], we have the following corollary.

Corollary 3.2. Every linear 2-local derivation of nest algebras is an inner derivation.
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