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Abstract

In this paper we generalize a result in [J. An, Z. Wang, On the realization of Riemannian symmetric spaces in Lie groups,
Topology Appl. 153 (7) (2005) 1008–1015, showing that an arbitrary Riemannian symmetric space can be realized as a closed
submanifold of a covering group of the Lie group defining the symmetric space. Some properties of the subgroups of fixed points
of involutions are also proved.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose G is a connected Lie group with an involution σ . Then the Lie algebra g of G has a canonical de-
composition g = k ⊕ p, where k and p are the eigenspaces of dσ in g with eigenvalues 1 and −1, respectively. Let
Gσ = {g ∈ G | σ(g) = g}, and suppose K is an open subgroup of Gσ . Suppose moreover that AdG(K)|p is compact,
that is, G/K has a structure of Riemannian symmetric space. In the particular case that K = Gσ , it was proved in [1]
that P = exp(p) is a closed submanifold of G, and there is a natural isomorphism G/Gσ ∼= P . This gave a realization
of the symmetric space G/Gσ in G. In this paper we generalize this result to the case of arbitrary symmetric space
G/K , that is, the case that K is an arbitrary open subgroup of Gσ such that AdG(K)|p is compact.

In Section 2 we will make some preparation for this generalized realization. Some properties of the subgroup Gσ

will be examined. We will prove the following results.

• There exists a covering group G′ of G with covering homomorphism π such that there is an involution σ ′ on G′
with π ◦ σ ′ = σ ◦ π , and such that π−1(K) = (G′)σ ′

.

✩ This work is supported by the 973 Project Foundation of China (#TG1999075102).
* Corresponding author.

E-mail addresses: anjinpeng@gmail.com (J. An), zdwang@pku.edu.cn (Z. Wang).
0166-8641/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2006.01.002



2944 J. An, Z. Wang / Topology and its Applications 153 (2006) 2943–2947
• The quotient group Gσ /Gσ
0 is isomorphic to (Z2)

r for some non-negative integer r , where Gσ
0 is the identity

component of Gσ .
• Gσ is connected if π1(G) is finite with odd order.

In Section 3 we will give the precise statement of the realization of arbitrary symmetric spaces in Lie groups. Briefly
speaking, a symmetric space G/K is diffeomorphic to a closed submanifold P ′ of a covering group G′ of G, where G′
is chosen such that π−1(K) = (G′)σ ′

. The idea of the proof is that G/K ∼= G′/π−1(K) = G′/(G′)σ ′ ∼= expG′(p) = P ′.

2. The subgroups of fixed points of involutions

For a Lie group H with an automorphism θ , we always denote Hθ = {h ∈ H | θ(h) = h}, and denote the identity
component of Hθ by Hθ

0 . In this section we prove the following two theorems. The realization of arbitrary symmetric
spaces in Lie groups will be based on Theorem 2.1.

Theorem 2.1. Let G be a connected Lie group with an involution σ , K an open subgroup of Gσ . Then there exists a
covering group G′ of G with covering homomorphism π such that there is an involution σ ′ on G′ with π ◦σ ′ = σ ◦π ,
and such that π−1(K) = (G′)σ ′

.

Theorem 2.2. Let G be a connected Lie group with an involution σ . Then the quotient group Gσ /Gσ
0 is isomorphic

to (Z2)
r for some non-negative integer r , and r = 0 if π1(G) is finite with odd order.

First we introduce some notations. Let G be a connected Lie group with an involution σ . For g,h ∈ G, denote the
set of all continuous paths γ : [0,1] → G with γ (0) = g and γ (1) = h by Ω(G,g,h), and denote π1(G,g,h) = {[γ ] |
γ ∈ Ω(G,g,h)}, where [γ ] is the homotopy class relative to endpoints determined by γ . Note that π1(G,g,g) is the
fundamental group π1(G,g) of G with basepoint g. For g ∈ Gσ and γg ∈ Ω(G,e,g), let γ σ

g ∈ Ω(G,e, e) be defined
as

γ σ
g (t) =

{
γg(2t), t ∈ [0, 1

2 ];
σ(γg(2 − 2t)), t ∈ [ 1

2 ,1].
The set πg = {[γ σ

g ] | γg ∈ Ω(G,e,g)} is a subset of π1(G, e). For g1, g2 ∈ Gσ , if they belong to the same coset space
of Gσ

0 , it is obvious that πg1 = πg2 . So we can define π[g] = πg for g ∈ Gσ , where [g] denotes the coset space gGσ
0 .

We denote the identity element of π1(G, e) by e.

Lemma 2.3. For g ∈ Gσ , π−1
[g] = π[g], that is, x ∈ π[g] ⇐⇒ x−1 ∈ π[g].

Proof. It is obvious from the equation [γ σ
g ]−1 = [(σ ◦ γg)

σ ]. �
Lemma 2.4. For g ∈ Gσ , π[g] = π[g−1].

Proof. For [γ σ
g ] ∈ π[g], [(γ −1

g )σ ] ∈ π[g−1], where γ −1
g (t) = γg(t)

−1. But by Lemma 16.7 in [4], [γ σ
g ] · [(γ −1

g )σ ] =
[γ σ

g ]·[(γ σ
g )−1] = [γ σ

g (γ σ
g )−1] = e, where (γ σ

g (γ σ
g )−1)(t) = γ σ

g (t)(γ σ
g )−1(t). So by Lemma 2.3, [γ σ

g ] = [(γ −1
g )σ ]−1 ∈

π−1
[g−1] = π[g−1]. This proves π[g] ⊂ π[g−1]. By symmetry, we have the equality. �

Lemma 2.5. For g1, g2 ∈ Gσ , [γ σ
g1

] · π[g2] = π[g1g2] for each [γ σ
g1

] ∈ π[g1]. Hence π[g1] · π[g2] = π[g1g2].

Proof. Let [γ σ
g2

] ∈ π[g2]. By Lemma 16.7 in [4], [γ σ
g1

] · [γ σ
g2

] = [γ σ
g1

γ σ
g2

] = [(γg1γg2)
σ ] ∈ π[g1g2]. So we have [γ σ

g1
] ·

π[g2] ⊂ π[g1g2]. To prove the equality, denote x = [γ σ
g1

], and consider the map lx :π[g2] → π[g1g2] defined by lx(y) =
xy. Since x−1 ∈ π−1

[g1] = π[g1] = π[g−1
1 ], x−1 · π[g1g2] ⊂ π[g2]. So we can also define the map lx−1 :π[g1g2] → π[g2] by

lx−1(y) = x−1y. Since lx ◦ lx−1 = id, lx is surjective. This means x · π[g2] = π[g1g2], hence π[g1] · π[g2] = π[g1g2]. �
Lemma 2.6. Let K be an open subgroup of Gσ . Then πK := ⋃

π[k] is a subgroup of π1(G, e).
k∈K



J. An, Z. Wang / Topology and its Applications 153 (2006) 2943–2947 2945
Proof. By Lemma 2.3, each π[k] is closed under the inverse operation, hence so is πK . By Lemma 2.5, πK is also
closed under multiplication. �

By Lemma 2.6, π[e] = π(Gσ
0 ) and π(Gσ ) are subgroups of π1(G, e). By Lemma 2.5, for each g ∈ Gσ and each

x ∈ π[g], π[g] = x · π[e]. So π[g] is a coset space of π[e] in π(Gσ ), that is, an element in the quotient group Πσ =
π(Gσ )/π[e] (note that the fundamental group of a Lie group is always Abelian). Define the map f :Gσ /Gσ

0 → Πσ by
f ([g]) = π[g]. By Lemma 2.5, f is a homomorphism.

Lemma 2.7. Let G be a connected Lie group with an involution σ . Then Gσ has finite many connected components.
If moreover G is simply connected, then Gσ is connected.

Proof. The subgroup Σ = {id, σ } of the automorphism group Aut(G) of G has a natural action on G, which we also
denote by σ . We form the semidirect product G = G ×σ Σ . Denote x = (e, σ ) ∈ G. Since the identity component
G0 of G is naturally isomorphic to G by i : (g, id) �→ g, and σ(i(y)) = i(xyx−1),∀y ∈ G0, to prove the lemma, it is
sufficient to show that Gx

0 = {y ∈ G0 | xyx−1 = y} has finite many connected components, and is connected when G0
is simply connected.

Since x = (e, σ ) is an element of order two in G, it lies in some maximal compact subgroup L of G. By Theorem 3.1
of Chapter XV in [3], there exist some linear subspaces m1, . . . ,mk of the Lie algebra g of G (which is isomorphic to
the Lie algebra of G) such that

(1) g = l ⊕ m1 ⊕ · · · ⊕ mk , where l is the Lie algebra of L;
(2) Ad(l)(mi ) = mi ,∀l ∈ L, i ∈ {1, . . . , k} (in particular, Ad(x)(mi ) = mi );
(3) the map ψ : L0 × m1 × · · · × mk → G0 defined by ψ(l,X1, . . . ,Xk) = leX1 · · · eXk is a diffeomorphism, where

L0 is the identity component of L.

Denote Lx
0 = {l ∈ L0 | xlx−1 = l}, mx

i = {X ∈ mi | Ad(x)(X) = X}, i = 1, . . . , k. We claim that Gx
0 =

ψ(Lx
0 × mx

1 × · · · × mx
k ). In fact, for y ∈ Gx

0 , write y = leX1 · · · eXk , where l ∈ L0,Xi ∈ mi . Then y = xyx−1 =
(xlx−1)eAd(x)(X1) · · · eAd(x)(Xk). By (3), we have xlx−1 = l, Ad(x)(Xi) = Xi, i = 1, . . . , k. That is, l ∈ Lx

0 , Xi ∈ mx
i .

Hence we have Gx
0 ⊂ ψ(Lx

0 × mx
1 × · · · × mx

k ). The other inclusion is obvious.
Since L0 is a connected compact Lie group, Lx

0 has finitely many connected components, hence so does Gx
0 =

ψ(Lx
0 ×mx

1 ×· · ·×mx
k ). If G0 is simply connected, by (3), L0 is also simply connected. By Theorem 8.2 of Chapter VII

in [2], Lx
0 is connected, hence so is Gx

0 . This proves the lemma. �
Lemma 2.8. For g ∈ Gσ , if e ∈ π[g], then [g] = Gσ

0 .

Proof. We endow G̃ = ⋃
g∈G π1(G, e, g) with the canonical smooth manifold structure and the canonical group

structure such that G̃ is the universal covering group of G with covering homomorphism π([γ ]) = γ (1). The induced
involution of σ on G̃ is σ̃ ([γ ]) = [σ ◦ γ ]. Let g ∈ Gσ . If e ∈ π[g], by definition of π[g], there is a γg ∈ Ω(G,e,g)

such that [γg] = [σ ◦ γg] in π1(G, e, g). That is, [γg] ∈ (G̃)σ̃ . By Lemma 2.7, (G̃)σ̃ is connected. So g = π([γg]) ∈
π((G̃)σ̃ ) = Gσ

0 , that is, [g] = Gσ
0 . �

Proposition 2.9. Each non-trivial element of Πσ has order 2, and the homomorphism f :Gσ /Gσ
0 → Πσ is an iso-

morphism.

Proof. The first assertion follows from Lemma 2.3, the surjectivity of f follows from the definition of Πσ , and the
injectivity of f follows from Lemma 2.8. �

In particular, we have

Lemma 2.10. For g1, g2 ∈ Gσ , if [g1] �= [g2], then π[g ] ∩ π[g ] = ∅.
1 2
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Now we are prepared to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.2. By Lemma 2.7, Gσ /Gσ
0 is a finite group. By Proposition 2.9, Gσ /Gσ

0 is Abelian, and each
non-trivial element of Gσ /Gσ

0 has order 2. By the structure theorem of finitely generated Abelian groups, Gσ /Gσ
0 is

isomorphic to (Z2)
r for some non-negative integer r . If π1(G) is finite with odd order, so are π(Gσ ), Πσ , and Gσ /Gσ

0 .
This forces r = 0. �
Proof of Theorem 2.1. We define an equivalence relation on the set

⋃
g∈G Ω(G,e, g) as follows. For γ1, γ2 ∈⋃

g∈G Ω(G,e, g), γ1 ∼ γ2 if and only if γ1(1) = γ2(1) and [γ12] ∈ πK , where γ12 ∈ Ω(G,e, e) is defined by

γ12(t) =
{

γ1(2t), t ∈ [0, 1
2 ];

γ2(2 − 2t), t ∈ [ 1
2 ,1].

Denote G′ = (
⋃

g∈G Ω(G,e, g))/∼, and denote the equivalence class of a γ ∈ ⋃
g∈G Ω(G,e, g) by 〈γ 〉. Endow

G′ with a smooth manifold structure in the canonical way, and define the group operation on G′ as follows. For
〈γ1〉, 〈γ2〉 ∈ G′, let α(t) = γ1(t)γ2(t) and β(t) = γ1(t)

−1, and define 〈γ1〉〈γ2〉 = 〈α〉, 〈γ1〉−1 = 〈β〉. It is easy to check
that these are well defined, making G′ a Lie group. Let π :G′ → G be the map π(〈γ 〉) = γ (1), then π is a covering
homomorphism. Since σ∗(πK) = πK , the map σ ′ :G′ → G′, σ ′(〈γ 〉) = 〈σ ◦ γ 〉 is a well defined involution of G′. It
is obvious that π ◦ σ ′ = σ ◦ π , that is, σ ′ is just the induced involution of σ on G′. Now we have

〈γ 〉 ∈ (G′)σ ′ ⇐⇒ 〈σ ◦ γ 〉 = 〈γ 〉
⇐⇒ σ ◦ γ ∼ γ

⇐⇒ γ (1) ∈ Gσ , [γ σ
γ (1)] ∈ πK

⇐⇒ γ (1) ∈ K (by Lemma 2.10)

⇐⇒ 〈γ 〉 ∈ π−1(K).

That is, (G′)σ ′ = π−1(K). This completes the proof of Theorem 2.1. �
Remark 2.1. The covering group G′ of G satisfying the conclusion of Theorem 2.1 is not necessarily unique. For
example, let G be a semisimple Lie group with trivial center, and let σ be a global Cartan involution of G. Then
K = Gσ is a maximal compact subgroup of G. Let G′ be any finite cover of G with an involution σ ′ such that
π ◦ σ ′ = σ ◦ π , then (G′)σ ′

is a maximal compact subgroup of G′. Since π−1(Gσ ) is a compact subgroup of G′
containing (G′)σ ′

, it must equal (G′)σ ′
. In fact, using the same method as in the proof of Theorem 2.1, it is easy

to see that a covering group G′ of G with covering homomorphism π satisfying π−1(K) = (G′)σ ′
if and only if

π∗(π1(G
′, e))∩π(Gσ ) = πK , and the group G′ that we constructed in the proof of Theorem 2.1 is just the one satisfying

π∗(π1(G
′, e)) = πK .

Remark 2.2. Professor Jiu-Kang Yu pointed out to the first author proofs of Theorems 2.1 and 2.2 using nonabelian
cohomology after he read the first draft of the paper.

3. Covering groups and the realization of symmetric spaces

Let G be a connected Lie group with an involution σ , and let K be an open subgroup of Gσ . Let g = k ⊕ p be
the canonical decomposition of the Lie algebra g of G with respect to the differential of the involution σ . Suppose
AdG(K)|p is compact, that is, G/K has a structure of Riemannian symmetric space. Suppose π :G′ → G is a covering
homomorphism of Lie groups. Then the twisted conjugate action τ of G on G, which is defined by τg(h) = ghσ(g)−1,
can be lifted to a well defined action τ ′ of G on G′, that is, τ ′

g(h
′) = g′h′σ ′(g′)−1, g ∈ G,h′ ∈ G′, where g′ ∈ π−1(g),

σ ′ is the induced involution of σ on G′.

Theorem 3.1. Under the above assumptions, there is a covering group G′ of G with covering homomorphism π such
that P ′ = exp′

G(p) is a closed submanifold of G′, and such that the map ϕ :G/K → P ′ defined by ϕ(gK) = g′σ ′(g′)−1

is a diffeomorphism, where g′ ∈ π−1(g), σ ′ is the induced involution of σ on G′. With respect to the actions of G by
left multiplication on G/K and by the action τ ′ on P ′, ϕ is equivariant.
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Proof. By Theorem 2.1, there is a covering group G′ of G with covering homomorphism π such that π−1(K) =
(G′)σ ′

. So π induces a G-equivariant diffeomorphism π̄ :G′/(G′)σ ′ → G/K with respect to left multiplications (note
that the left multiplication of G on G′/(G′)σ ′

is well defined). Since AdG′((G′)σ ′
)|p = AdG(K)|p is compact, by

Corollary 2.6 in [1], P ′ = expG′(p) is a closed submanifold of G′, and the map ϕ′ :G′/(G′)σ ′ → P ′, ϕ′(g′(G′)σ ′
) =

g′σ ′(g′)−1 is a G′-equivariant diffeomorphism with respect to left multiplication and twisted conjugate action of G′.
Let ϕ = ϕ′ ◦ (π̄)−1. Then ϕ(gK) = ϕ′(g′(G′)σ ′

) = g′σ ′(g′)−1. It is obviously a G-equivariant diffeomorphism with
respect to left multiplication on G/K and the action τ ′ on P ′. �
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