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Human Tudor staphylococcal nuclease (Tudor-SN) protein modulates
the kinetics of AGTR1-30UTR granule formation
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a b s t r a c t

Human Tudor staphylococcal nuclease (Tudor-SN) interacts with the G3BP protein and is recruited
into stress granules (SGs), the main type of discrete RNA-containing cytoplasmic foci structure that
is formed under stress conditions. Here, we further demonstrate that Tudor-SN binds and co-localizes
with AGTR1-30UTR (30-untranslated region of angiotensin II receptor, type 1 mRNA) into SG. Tudor-SN
plays an important role in the assembly of AGTR1-30UTR granules. Moreover, endogenous Tudor-SN
knockdown can decrease the recovery kinetics of AGTR1-30UTR granules. Collectively, our data
indicate that Tudor-SN modulates the kinetics of AGTR1-30UTR granule formation, which provides
an additional biological role of Tudor-SN in RNA metabolism during stress.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Stress granules (SG) are a type of cytoplasmic RNA foci that
aggregate in response to environmental stress stimuli, such as heat
shock, oxidative stress, or viral infection, and play diverse roles in
the regulation of mRNA translation, storage, stability, and decay
[1–6]. SGs contain arrested preinitiation complexes, untranslated
mRNAs, RNA-binding proteins, and other stress-related proteins,
such as Ras-GAP SH3 domain-binding protein (G3BP) [7,8],
TIA-1-related protein (TIAR) [7,9], and Tudor-SN [10–12]. SGs
provide a temporal reservoir for mRNAs released from polysomes
during stress, which also allows the resumption of translation after
the stress-inducing conditions have subsided. This process is depen-
dent on a set of RNA-binding proteins [1–7]. The study on the roles
of RNA binding proteins in the stress-induced remodeling of mRNP
(messenger ribonucleoprotein) complexes is an important issue.
Tudor-SN protein, also known as SND1 (staphylococcal nuclease
domain containing 1) or p100, is evolutionarily conserved in
humans [13–19], animals [20–22], and plants [23–25]. Human
Tudor-SN is characterized by four N-terminal tandem repeats of
the staphylococcal nuclease-like domain (SN) and a C-terminal
TSN (Tudor-SN5) domain [13,14]. Tudor-SN plays several distinct
roles by binding different protein partners or RNA substrates. For
example, Tudor-SN functions as a transcriptional co-activator
through an interaction between its SN domain and basal transcrip-
tion machinery, such as CREB-binding protein (CBP) and RNA
polymerase II [15,16], while taking part in pre-mRNA splicing
through the binding of the TSN domain with symmetrical dimeth-
ylarginine-modified Sm core proteins of the spliceosome [17,18].
Our previous study indicated that Tudor-SN efficiently associated
and co-localized with G3BP in SGs via the SN domain [10].
Accumulating evidence has revealed that Tudor-SN is a type of
RNA-binding protein and that this function is mainly mediated
through its SN domain [14,19,24–27]. It is interesting to study
the role of Tudor-SN in RNA metabolism within SGs during stress.
The SN domain of Tudor-SN was reported to interact with 30UTR
(30-untranslated region) of AGTR1 (angiotensin II receptor, type 1)
mRNA under normal conditions [19]. Here, we further demonstrate
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that Tudor-SN binds and co-localizes with AGTR1-30UTR in SG
under stress conditions, which leads us to study the potential
post-transcriptional regulatory mechanism of Tudor-SN on AGTR1
mRNA-containing SG formation.

AGTR1 protein, a member of G protein-coupled receptor family,
is involved in the physiological actions of Angiotensin II (Ang II)
[28,29]. The expression of AGTR1 can be greatly affected by
post-transcriptional regulation of AGTR1 mRNA following treat-
ment of cells with estrogen, Ang II, H2O2, or insulin [30–34]. For
example, insulin up-regulates AGTR1 expression by stabilizing
AGTR1 mRNA in a 30UTR dependent manner [34]. In the
present study, we demonstrate that Tudor-SN is important for
AGTR1-30UTR granule aggregation, and the knockdown of
endogenous Tudor-SN decreases the SG recovery kinetics.
2. Materials and methods

2.1. Cell culture, plasmids and transfection

HeLa cells were cultured as described previously [16]. Tudor-SN
siRNA was generated as previously reported [15,18]. The plasmid
encoding RFP-epitope-tagged Tudor-SN (RFP-Tudor-SN) was
generated as described previously [10]. The pGenesil-DsRed-
Tudor-SN-shRNA and pGenesil-DsRed-scramble-shRNA plasmids
were constructed by Wuhan Cell Marker Biotechnology (China).
The GFP-MS2 system was constructed as follows: pCR4-
24�MS2SL-stable, pMS2-GFP plasmid encoding GFP-MS2 were a
kind gift from Dr. Robert H. Singer (Albert Einstein College of
Medicine, Bronx, NY, USA) (Addgene plasmid). To generate
pT7-AGTR1-30UTR, the AGTR1-30UTR (1430–1993 bp) fragment
was amplified by polymerase chain reaction (PCR) with the primers
EcoRI-forward (50-CGAATTCTCCACCAAGAAGCCTGCACCATG-30) and
BamHI-reverse (50-CCGGATCCGCAACTTGACGACTACTGCTTA-30),
using AGTR1 total cDNA transcript (OriGene) as a template. This
fragment was ligated into empty pSG5 vector containing the T7
bacteriophage promoter via EcoRI and BamHI enzymes. 24�MS2
stem loop repeats were cut from pCR4-24�MS2SL-stable plasmid
and subsequently ligated into pT7-AGTR1-30UTR or pSG5 using BglII
and BamHI enzymes to construct the pT7-AGTR1-30UTR-24�MS2
or pT7-24�MS2 plasmids. All PCR products were sequenced.

siRNA and plasmids were transfected using Lipofectamine 2000
(Invitrogen), according to the manufacturer’s protocol. GFP-MS2
system plasmids were transfected using Neofect™ DNA transfec-
tion reagent (China).
2.2. Fast protein liquid chromatography (FPLC) assay

Different cellular fractions were prepared as described previ-
ously [35]. Total cell lysates from HeLa cells treated with 0.5 mM
arsenite sodium for 1 h were harvested with Nonidet P-40 lysis
buffer that was supplemented with protease inhibitor cocktail
(Roche Diagnostics) and RiboLock ribonuclease inhibitor (MBI) at
4 �C. Approximately 10 mg of protein was concentrated to 500 ll
using an Ultrafree centrifugal filter apparatus (10 kDa nominal
molecular mass limit, Millipore) and then applied to a Superose 6
size exclusion column (850 mm � 20 mm, GE Healthcare). The
column was eluted at a flow rate of 0.5 ml/min. Each 500 ll
fraction was collected and divided into two portions equally. One
portion was used to perform Western blotting assay with rabbit
anti-Tudor-SN (Abcam), anti-Tubulin (Abcam), and anti-TIAR
(Cell Signaling Technology) antibodies, and the other was used
for reverse transcription-PCR to analyze the distribution of AGTR1
and GAPDH mRNA. The AGTR1 primers sequences were
50-TCCACCAAGAAGCCTGCACCA-30 (forward); 50-TGGGACCAGTGC
AGCACCTT-30 (reverse), which were also used in the RIP and RNA
FISH assays. The primer sequences of GAPDH were reported
previously [18].

2.3. RNA-binding protein immunoprecipitation (RIP) assay

RIP Assay was performed as reported previously [18]. Total
cell lysates from HeLa cells were incubated with rabbit
anti-Tudor-SN antibody (Santa Cruz Biotechnology) or rabbit
anti-IgG (Santa Cruz Biotechnology) conjugated with Protein G
Dynabeads (Invitrogen) at 4 �C overnight with head-over-tail
rotation. The precipitated AGTR1 mRNAs were detected by the
reverse transcription-PCR assay, and the enriched Tudor-SN
was confirmed by Western blotting assay using rabbit anti-
Tudor-SN antibody.

2.4. Immunofluorescence (IF) and live-cell imaging assays

The IF and live-cell imaging assays were performed as described
previously [10]. Briefly, cells were fixed, permeabilized, and then
incubated with goat anti-Tudor-SN (Santa Cruz Biotechnology) at
4 �C overnight. After washing, cells were incubated with donkey
anti-goat IgG (TR) antibody (Abcam) or Alexa Fluor 488-coupled
donkey anti-rabbit IgG antibody (1:800 dilution) at 4 �C overnight.
Images were collected using an Olympus FV1000 confocal
microscope. The OLYMPUS IX81-CSU live cell system was used
for live-cell imaging.

2.5. RNA fluorescence in situ hybridization (RNA FISH) assay

HeLa cells were fixed and permeabilized as described previ-
ously [10]. After denaturation in 25% formamide at 95 �C for
3 min and placement on ice for 3 min, 6 ng/ll biotinylated AGTR1
probe was incubated with the cells in a humidified dark chamber
at 40 �C overnight. The cells were then sequentially washed with
25% formamide diluted in 0.5�SSC for 15 min, 2�SSC for 10 min,
and 4�SSC for 10 min. The hybridization signal was detected using
2.5 lg/ml FITC-avidin (Invitrogen) in 2�SSC containing 0.2% bovine
serum albumin and 0.01% Tween 20. For biotinylated AGTR1 probe,
the AGTR1-30UTR (1430–2135 bp) fragment was amplified by PCR
using AGTR1 total cDNA transcript (OriGene) as a template. The
PCR product was purified with Gel/PCR Extraction Kit (Biomiga)
and biotinylated using a Biotin-Nick Translation Kit (Roche
Diagnostics).

2.6. Fluorescence recovery after photobleaching (FRAP) experiment

HeLa cells were cultured in 20 mm glass-bottomed Petri dishes
(NEST Biotechnology) and co-transfected with ATGR1-30UTR-
MS2-GFP system plasmids and Tudor-SN shRNA or scramble
shRNA. Twenty-four hours after transfection, cells were treated
with 0.5 mM sodium arsenite (Sigma) for 30 min and kept in a
phenol red-free medium. FRAP experiments were carried out
using an Olympus FV1000 confocal microscope. Each granule
region of interest (ROI) was randomly selected in a square area,
and bleaching was performed with the 405 nm wavelength
operating at 50% laser power and 10 ls/pixel scan speed for
2.5 s. Fluorescence recovery was monitored by the FRAP analysis
tool (Olympus) at a low laser intensity every 5 s over a 200-sec
period.

2.7. Granule quantification and statistical analysis

All experiments were repeated at least three times. Approxi-
mately 100 cells per experiment were scored randomly. The
number and size of granules in the cells were measured using a



Fig. 1. Tudor-SN binds and co-localizes with AGTR1-30UTR in SG under stress condition. (A) Analysis of the Tudor-SN-AGTR1-30UTR complex profile using FPLC. Total cell
lysates from HeLa cells were fractionated on Superose 6 size exclusion columns. Every 500 ll chromatographic fraction was divided into two portions equally. Then, 250 ll
was subjected to SDS–PAGE and Western blotting with antibodies, including anti-Tudor-SN, anti-Tubulin, and anti-TIAR. The extracted mRNA from the other 250 ll was
reverse-transcribed to cDNA with oligo(dT)18 primers and then analyzed by reverse transcription-PCR assay using primers specific for the AGTR1 and GAPDH mRNA. The
chromatographic profile with the elution positions of calibrating proteins of known molecular masses (kDa) and absorbance profile at 280 nm and 254 nm were shown on
top. Five percent of the total cell lysate was included as input loading in fraction 1. (B) Tudor-SN binds AGTR1-30UTR in vivo. RIP assays were performed on HeLa cells with
Dynabeads-bound rabbit anti-Tudor-SN and rabbit IgG antibody (negative control), respectively, followed by the reverse transcription-PCR of AGTR1-30UTR (upper panel). The
enriched Tudor-SN was confirmed by the Western blotting assay using rabbit anti-Tudor-SN antibody (lower panel). Five percent of the total cell lysate was included as input.
(C) Tudor-SN co-localizes with endogenous AGTR1-30UTR in SG. HeLa cells were treated with sodium arsenite (0.5 mM), heat shock (45 �C) for 45 min or control conditions
(Normal). RNA-FISH assay was performed with 6 ng/ll biotinylated AGTR1 probe and 2.5 lg/ml FITC-avidin, as described in the Section 2 section. Scale bars, 10 lm.

Fig. 2. Tudor-SN co-localizes with AGTR1-30UTR granules using the GFP-MS2 labeling system. HeLa cells grown on glass cover slips were transfected with RFP-Tudor-SN
plasmid together with GFP-MS2 labeling system plasmids, as indicated, and either treated with 0.5 mM sodium arsenite for 1 h or left untreated (Normal). Confocal
microscopy analysis was then performed. The schematic diagram of the GFP-MS2 labeling system was shown on the top. Scale bars, 10 lm.
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blind counting method with the Image J software (National
Institutes of Health). The data are presented as the means ± S.E.
(Standard Error) or box-plots (granule size analysis) and compared
using Independent-Sample Student’s T Tests with the SPSS 16.0
software. P values less than 0.05 were considered statistically
significant.
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3. Results

3.1. Tudor-SN binds and co-localizes with AGTR1-30UTR in SG under
stress conditions

Previously, it was shown that Tudor-SN binds the 30UTR of
AGTR1 mRNA under normal conditions [19]. To gain insight into
the association between Tudor-SN and AGTR1-30UTR under stress
conditions, protein-RNA fractionation experiments were per-
formed through size exclusion approach by FPLC assay. Total cell
lysates from HeLa cells were fractionated by a Superose 6 gel
filtration column. As shown in Fig. 1A, the elution pattern of
Tudor-SN in chromatographic fractions showed a major peak at
approximately 158-669 kDa and a minor peak at higher molecular
masses (slightly below 2000 kDa). Moreover, the major peak
largely overlapped with that of the SG protein components,
including TIAR and Tudor-SN. Tubulin protein was distributed
throughout the chromatographic fractions. Furthermore, both
peaks of Tudor-SN co-eluted with AGTR1 mRNA, but not GAPDH
mRNA. The result in Fig. S1 showed that Tudor-SN protein fails
to colocalize with the PB-specific protein DCP1a, confirming that
Tudor-SN is one type of SG-specific protein, in agreement with
the data of Weissbach, R. [7]. These findings suggest that
Tudor-SN-AGTR1 mRNA binding is associated with SG biogenesis.
Fig. 3. Kinetic experiments on the co-localization of Tudor-SN and AGTR1-30UTR granules
AGTR1-30UTR in live cells. HeLa cells were transfected with the RFP-Tudor-SN and GFP-M
live cell system in the presence of 0.1 mM sodium arsenite. Scale bars, 10 lm.
We then performed RIP assays to confirm the interaction
between Tudor-SN and AGTR1-30UTR under stress conditions. As
shown in Fig. 1B, the anti-Tudor-SN antibody could efficiently
precipitate with the AGTR1-30UTR (lane 3), but not the control
anti-IgG antibody (lane 2), which indicated that Tudor-SN readily
interacts with the 30UTR of AGTR1 in vivo under stress. Further-
more, we also detected the in vivo colocalization of Tudor-SN
and AGTR1-30UTR by RNA FISH with a FITC-labeled AGTR1 probe
and in an IF assay using anti-Tudor-SN antibody. As shown in
Fig. 1C, both endogenous Tudor-SN protein and AGTR1-30UTR
mRNA predominantly accumulated in SG under stress. The above
findings indicate that Tudor-SN associates with and targets AGTR1
mRNA in the SG structure.

3.2. Tudor-SN co-localizes with AGTR1-30UTR granules using a GFP-
MS2 labeling system

To monitor the aggregation of AGTR1-30UTR granules in living
cells, we labeled the AGTR1-30UTR using the GFP-MS2 labeling
system, which is useful for visualizing the real-time motion of
single mRNA molecules [36]. As shown in the schematic diagram
of Fig. 2, we tethered the targeting AGTR1-30UTR fragment with
24 copies of the bacteriophage MS2 stem loops to generate the
pT7-AGTR1-30UTR-24�MS2 plasmid, which can bind multiple
in live cells during stress. The movement of Tudor-SN granules was correlated with
S2 labeling system plasmids, as indicated, and monitored using OLYMPUS IX81-CSU
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GFP-tagged bacteriophage MS2 coat proteins (GFP-MS2) with a
strong affinity, encoded by the pMS2-GFP plasmid. Hence, the
localization and movement of AGTR1-30UTR in live cells can be
tracked. pT7-AGTR1-30UTR-24�MS2, pMS2-GFP and RFP-tagged
Tudor-SN plasmids were transiently co-transfected into HeLa cells.
As expected, the AGTR1-30UTR fragment (green) co-localized with
Tudor-SN (red) in arsenite-treated cells (Fig. 2A). In contrast, under
normal conditions, a weak signal was detected in the cytoplasm
and a strong signal was detected in the nucleus, due to the NLS
(nuclear localization signal) element harbored in the pMS2-GFP
plasmid. To verify the specific recognition of Tudor-SN with the
AGTR1-30UTR in vivo, HeLa cells were co-transfected with pMS2-
GFP plasmid and RFP-tagged Tudor-SN plasmid, together with
pT7-AGTR1-30UTR or pT7-24�MS2. As shown in Fig. 2B–D, neither
lacking AGTR1-30UTR reporter nor lacking the 24�MS2 stem loop
repeats exhibits cytoplasmic foci, but the foci instead remain
localized to the nucleus. Tudor-SN specifically interacts with the
AGTR1-30UTR, but not the poly(A) tail, because Tudor-SN did not
colocalize with pT7-24�MS2, which only contains the poly(A) tail
Fig. 4. The knockdown of Tudor-SN impairs the formation of GFP-tagged AGTR1-
30UTR granules. (A) HeLa cells were transfected with the Tudor-SN siRNA or
scramble siRNA as control. After 48 h, the total cell lysates from transfected cells
were subjected to SDS–PAGE and then blotted with anti-Tudor-SN (upper panel) or
anti-b-actin antibody as a control (lower panel). (B) Band density was digitized
using the TotalLab software, and the expression level of Tudor-SN was normalized
against the b-actin protein. An independent-sample Student’s T Test was performed,
and significant differences are indicated as follows: P < 0.05. (C) HeLa cells were
co-transfected with pT7-AGTR1-30UTR-24�MS2/pMS2-GFP, Tudor-SN siRNA, or
scramble siRNA as control. Image data were collected by confocal microscopy. Scale
bars, 10 lm. (D) The granule size was analyzed and displayed as a box-plot.
Independent-Samples Student’s T Test was performed using SPSS16.0. The signif-
icant difference was indicated: P < 0.01. (E) The number of AGTR1 granules per cell
was also measured by Image J. The cells were divided into four categories of granule
number per cell: 0–5, 5–10, 10–20 and >20.
(Fig. 2D). In addition, the data in Figs. S2 and S3 indicate that
AGTR1-30UTR is co-localized with another SG-specific protein, TIAR,
but not the PB-specific protein DCP1a under stress conditions,
confirming that these AGTR1-30UTR granules are SG-specific, but
not PB-specific. Live-cell imaging revealed the dynamic association
of RFP-tagged Tudor-SN protein and GFP-tethered reporter AGTR1-
30UTR granules during cellular oxidative stress, but no interaction
was observed with control plasmids (Fig. 3). These data indicate
that the SG recruitment of the AGTR1 transcript is accompanied
by the formation of Tudor-SN granules.

3.3. Tudor-SN plays an important role in the assembly of AGTR1-30UTR
granules

Nascent SGs are small and then progressively fuse into larger
foci [9]. Dynamic packaging of the cellular mRNA transcript by
stress-related proteins is essential for the remodeling and
recruitment of cytoplasmic mRNP complexes into SGs [1–6]. We
previously demonstrated that the knockdown of Tudor-SN does
not inhibit the formation of SG but instead retards the aggregation
of small SGs into large SGs [10]. Tudor-SN is likely to be important
for the assembly of AGTR1-30UTR-containing SGs. We analyzed the
number and size of AGTR1-30UTR granules when the endogenous
Tudor-SN protein was knocked down by siRNA treatment. As
shown in Fig. 4A and B, the transfection of Tudor-SN siRNA
significantly reduced the expression of Tudor-SN protein by
approximately 70% (P < 0.05), compared with the scramble siRNA,
but had no effect on the abundance of b-actin. Moreover, the
knockdown of Tudor-SN significantly reduced the size of
AGTR1-30UTR granules in single cells (Fig. 4C–E, P < 0.01), while
the proportion of cells containing >20 foci was also decreased
(Fig. 4D, from 26% to 10%), suggesting that the knockdown of
Tudor-SN hindered the emergence of AGTR1-30UTR granules and
led to a decrease in both the number and size of AGTR1-30UTR
granules. These data indicated that Tudor-SN is essential for SG
recruitment of target AGTR1 mRNA.

3.4. Tudor-SN affects the recovery kinetics of SGs

SGs are proposed to be the site where the local concentration of
proteins and mRNAs is increased in response to environmental
stress [1,6,7]. SGs are not stable structures that often exchange
dynamically with the surrounding cytosol. Different SG components
show different aggregation kinetics [7,37–39]. To quantitatively
analyze the role of Tudor-SN in the association/dissociation
dynamic properties of AGTR1-30UTR granules in living cells under
stress, we performed the FRAP assay, which has frequently been
utilized to detect the recovery kinetics of fluorescent protein
labeled components [7,38]. Because the combination of the MS2-
GFP labeling system and the FRAP assay can be used to analyze
the kinetics of targeting RNAs [39], we photo-bleached the nascent
AGTR1-30UTR labeled with MS2-GFP to analyze its exchange kinetic
in HeLa cells with Tudor-SN knockdown. HeLa cells were transfec-
ted with pGenesil-DsRed-Tudor-SN-shRNA plasmid or pGenesil-
DsRed-scramble-shRNA as the negative control, and Western blot
and IF assays were then performed. The transfection efficiency of
shRNA was determined by the expression of DsRed. The Western
blot results (Fig. 5A and B) showed that the level of endogenous
Tudor-SN protein but not b-actin protein was significantly reduced
(upper panel) by the Tudor-SN shRNA treatment (lower panel)
compared with the scramble shRNA group. Moreover, as shown
in Fig. 5C, the IF signal (red) from the Tudor-SN protein was signif-
icantly reduced with Tudor-SN shRNA in the DsRed-positive cell
(green), but not with scramble shRNA. Next, an analysis of the
aggregation kinetics of AGTR1-30UTR granules was performed using
the FRAP assay when Tudor-SN was knocked down. HeLa cells



Fig. 5. Tudor-SN is important for AGTR1-30UTR granule aggregation kinetics. FRAP analysis of GFP-tagged AGTR1-30UTR with endogenous Tudor-SN was sufficiently down-
regulated with RNA interference. (A) HeLa cells were transfected with the pGenesil-DsRed-Tudor-SN-shRNA plasmid (Tudor-SN shRNA) or the pGenesil-DsRed-scramble-
shRNA plasmid (scramble shRNA) as the negative control. Total cell lysates from Tudor-SN shRNA- or scramble shRNA-treated HeLa cells were subjected to SDS–PAGE and
then blotted with anti-Tudor-SN (upper panel) or anti-b-actin antibody as a control (lower panel). (B) Band density was digitized using the TotalLab software, and the
expression level of Tudor-SN was normalized against b-actin. An independent-sample Student’s T Test was performed, and significant differences are indicated as follows:
P < 0.05. (C) Transfected cells were fixed and stained with rabbit anti-Tudor-SN antibody and Alexa Fluor 488-coupled donkey anti-rabbit IgG antibody. Confocal microscopy
analysis was then performed. Scale bars, 10 lm. (D) HeLa cells were co-transfected with Tudor-SN shRNA, scramble shRNA, and ATGR1-30UTR-MS2-GFP system plasmid, as
indicated. After treatment with 0.5 mM sodium arsenite for 0.5 h, the FRAP assay was performed. The fluorescence signals from selected granules in DsRed-positive cells were
irradiated with 50% power of the 405 nm laser, and recovery was recorded for 200 s. An independent-sample Student’s T Test was performed, and significant differences are
indicated as follows: P < 0.01. Scale bars, 10 lm. (E) Imaging data of FRAP analysis is shown.
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were co-transfected with the ATGR1-30UTR-MS2-GFP system
plasmid together with Tudor-SN shRNA or scramble shRNA as a
control and then treated with 0.5 mM sodium arsenite. Individual
regions containing GFP-tagged ATGR1-30UTR granules in the
DsRed-positive cell were photobleached with a high-power laser.
Remarkably, as shown in Fig. 5C and D, when Tudor-SN was
knocked down, AGTR1-30UTR demonstrated a slower recovery rate
(t1/2 = 16.77 ± 1.94 s) and less complete recovery (�56.8%) com-
pared with the control group (t1/2 = 9.96 ± 0.78 s, �74.2% recovery)
(Fig. 5D, P < 0.01), suggesting that Tudor-SN is necessary for the
efficient cytoplasmic movement of exogenous AGTR1-30UTR under
stress conditions. In addition, as shown in Fig. S4, the knockdown
of Tudor-SN fails to induce the aggregation of AGTR1-30UTR under
normal conditions, confirming that the role of Tudor-SN on
AGTR1-30UTR granule aggregation is dependent on an environmen-
tal stress. These quantitative kinetic data provide insights that
Tudor-SN serves as an indispensable component to facilitate SG
aggregation by interacting with SG-related mRNPs and modulating
their kinetic nature under environmental stress.

4. Discussion

The posttranscriptional regulation of gene expression in
eukaryotes involves several regulatory processes, such as mRNA
nucleo-cytoplasmic export, cellular localization, translation regula-
tion, and mRNA turnover, and often requires the interaction
between RNA-binding proteins and conserved structural elements
located in the 30UTR of the mRNA molecule [40]. Several connec-
tions between Tudor-SN and 30UTRs have been reported: (1)
Tudor-SN in rice binds the 30UTR of prolamine RNAs and is
involved in RNA transport and localization in rice endosperm
during rice seed development [24,25]. (2) Human Tudor-SN also
interacts with the 30UTR of the DENV (dengue virus) genome
and is involved in virus replication [26]. (3) Tudor-SN binds
SG-associated AGO2 protein and has been identified as a core com-
ponent of RISC, which targets the 30UTR of mRNA substrates [41].
These data favor the idea that 30UTR binding is likely to be a type
of approach for multifunctional Tudor-SN to modulate the
cytoplasmic fate of specific mRNAs. Here, we present evidence that
Tudor-SN binds and co-localizes with AGTR1-30UTR in SG under
stress conditions. Tudor-SN is also required for the efficient aggre-
gation and recovery kinetics of AGTR1-30UTR granules. These data
indicate that Tudor-SN is likely to act as a key positive regulator
for the recruitment of specific bound mRNA cargoes into insoluble
SGs under stress and to modulate the increased flow of AGTR1
mRNA that accompanies stress.

As the RNA-binding protein, Tudor-SN promotes the stabiliza-
tion of certain mRNAs during stress. For example, Tudor-SN in
Arabidopsis stabilizes the level of stress-responsive mRNAs encod-
ing secreted proteins [23]. Tudor-SN enhances the expression of
AGTR1 by decreasing the rate of mRNA decay in non-stressed cells,
However, Tudor-SN does not mediate the posttranscriptional
regulation of AGTR1 mRNA in response to atorvastatin, estrogen,
insulin, or Ang II [19]. Although GAPDH was reported to increase
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AGTR1 expression via the binding of AGTR1-30UTR in response to
H2O2 [31], we still lack evidence that human Tudor-SN modulates
the retention or stability of AGTR1-30UTR mRNA in SG structures
during stress. In addition, AGTR1-30UTR binds several other
RNA-binding proteins as well, including calreticulin [30], AUF1
[32], GAPDH [31], and HuR [33,34]. Interestingly, HuR and
calreticulin were confirmed to be SG components [42,43]. We also
observed the binding of Tudor-SN and HuR/calreticulin (data not
shown), suggesting that the post-transcriptional regulatory
process of AGTR1 mRNA might be dependent on the existence of
the SG-associated protein complex containing Tudor-SN, HuR,
and calreticulin or binding with the 30UTR.

PB (Processing Body), another stress-associated cytoplasmic
foci structure, contains microRNA (miRNA)-mediated RNA interfer-
ence (RNAi) effectors and mRNA decapping machinery, which is
involved in mRNA repression and degradation [3–7]. SG and PB
share some common components and exhibit intricate connections
on mRNA metabolism [3–7,44]. Translationally inactive mRNA
within the SG can be delivered to PB for degradation [6,7,44].
Regarding AGTR1, we fail to observe the localization of AGTR1 in
the PB structure. However, we still cannot rule out the possibility
of AGTR1 degradation in the PB due to the limit of treatment time
or drug concentration.

The AGTR1 protein is recognized by Ang II, a peptide hormone,
and plays a pathophysiological role in atherosclerosis, hyperten-
sion, cardiac hypertrophy, kidney injury, and heart failure
[28,29,45,46]. It was reported that the expression of Tudor-SN in
rats is increased in response to H2O2-induced oxidative stress
[21] or high glucose treatment [22]. The up-regulation of
Tudor-SN in rats under hyperglycemic conditions leads to an
increased level of AGTR1 protein expression and is involved in
the modulation of glomerular injury [22]. Very recently, we
demonstrated that Tudor-SN is essential for the adipogenesis
[47]. It is possible that Tudor-SN functions in the pathophysiology
of glucolipid metabolism-related diseases, such as atherosclerosis,
by modulating the mobility or aggregation kinetics of AGTR1-
containing SG under high glucose stress conditions, which merits
further study.
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