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a b s t r a c t

Let G = Gn,k denote the graph formed by placing points in a square of area n according to a
Poisson process of density 1 and joining each point to its k nearest neighbours. In Balister
et al. (2005) [2] Balister et al. proved that if k < 0.3043 log n then the probability that G is
connected tends to 0, whereas if k > 0.5139 log n then the probability that G is connected
tends to 1.

We prove that, around the threshold for connectivity, all vertices near the boundary of
the square are part of the (unique) giant component. This shows that arguments about the
connectivity of G do not need to consider ‘boundary’ effects.

We also improve the upper bound for the threshold for connectivity ofG to 0.4125 log n.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let Sn denote a
√
n ×

√
n square and let Gn,k denote the graph formed by placing points in Sn according to a Poisson

process P of density 1 and joining each point to its k-nearest neighbours (in Euclidean distance) by an undirected edge.
One motivation for studying this graph comes from ad hoc wireless network theory. Imagine that we have a square

region with wireless transmitters scattered at random in it, and that each transmitter adjusts its power and/or protocol so
that it can talk its k nearest neighbours. This gives the network Gn,k. Here, unlike a model where all transmitters have the
same range (e.g., the Gilbert disc model [8]), the power of transmitters in dense regions is lower and thus contention and
interference are reduced (see e.g., [9]).

It is very natural to ask when this network is connected (allowing multiple hops). Of course for any fixed n we cannot
guarantee that the graph is connected; instead we shall consider the asymptotic behaviour of this graph as n → ∞. It is
convenient to introduce one piece of notation. For a graph property Π and function k = k(n) we say that Gn,k = Gn,k(n) has
Π with high probability (abbreviated to whp) if P(Gn,k(n) has Π) → 1 as n → ∞.

Xue and Kumar [10] proved that the threshold for connectivity is Θ(log n); more precisely they showed that if k =

k(n) > 5.1774 log n then Gn,k is connected whp, and if k = k(n) < 0.074 log n then Gn,k is whp not connected.
Subsequentwork by Balister et al. [2] substantially improved the upper and lower bounds to 0.5139 log n and 0.3043 log n

respectively. In their proof they also showed that for any k = Θ(log n) the graph consists of a giant component containing
a proportion 1 − o(1) of all vertices and (possibly) some other ‘small’ components of (Euclidean) diameter O(

√
log n) (for a

formal statement see Lemma 3).
Moreover, they showed that if k > 0.311 log n thenG has no small componentwithin distanceO(

√
log n) of the boundary

of Sn. Unfortunately, there is a gap between this bound and the lower bound of 0.3043 mentioned above. This means that
close to the threshold for connectivity the obstruction to connectivity could occur near the boundary of the square or it could
occur in the centre (their methods did rule out the possibility that the obstruction occurs in the corner of the square). This
has caused several problems in later papers (e.g., [3]) where the authors had to consider both cases in their proofs.
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Our main result is the following theorem showing that, in fact, the obstruction must occur away from the boundary of
Sn. This will simplify, and indeed already has simplified (e.g., [6,5]), subsequent work in the area as only central components
need to be considered.

Theorem 1. Suppose that G = Gn,k for some k > 0.272 log n. Then there is a constant ε > 0 such that the probability that there
exists a vertex within distance log n of the boundary of Sn that is not contained in the giant component is O(n−ε).

Remark. The distance log n to the boundary is much larger than the typical edge length and (non-giant) component sizes
which are O(

√
log n). Moreover, the theorem would still be true with log n replaced by a small power of n.

Also, the improvement itself is only of minor interest, it is the fact that the new upper bound for the existence of
components near the boundary is smaller than the general lower bound that is of importance.

Our second result is the following improvement on the upper bound for connectivity of G.

Theorem 2. Suppose that G = Gn,k for some k > 0.4125 log n. Then whp G is connected.

To illustrate Theorem 2 let D be a disc of radius r and consider the event that there are k + 1 points inside D and no
points in 3D \ D (where 3D denotes the disc with same centre as D and three times the radius). If this event occurs then the
k-nearest neighbours of any point in D also lie in D: in particular, there are no ‘out’-edges from D to the rest of the graph. If
we choose r such that 9πr2 ≈ k+ 1 (to maximise the probability of this event) then the probability of a specific instance of
this event is about 9−(k+1). Since we can fit Θ(n/ log n) disjoint copies of this event into Sn we see that if k < ( 1

log 9 − ε) log n
(for some ε > 0) then whp this event occurs somewhere in Sn and thus that G has a subgraph with no out-degree. Since
1/ log 9 ≈ 0.455 > 0.4125, Theorem 2 shows that there is a range of k for which the graph is connected whp but contains
pieces with no out-degree. (The corresponding result for in-degree was proved in [2].)

The proofs of these two theorems are broadly similar: they use the ideas from [2] but also consider points which are near
the small component but not contained in it. If one looks at the lower bound proved in [2] we see that the density of points
near the small component is higher than average. This is an unlikely event and we incorporate it into our bounds. Indeed,
the above observation that there are small pieces of the graph with no out-degree shows that any proof of Theorem 2 (or
any stronger bound)must consider points outside of a potential small component and show that they send edges in.

The key step is to split into two regimes depending on whether there is a point ‘close’ to the small component. If there is
no such point then the ‘excluded area’ from the small component is quite large (which is unlikely), whereas if there is such
a point then it must have a small k-nearest neighbour radius (which is also unlikely).

Related Models

Next we mention some related models and discuss their similarities and differences. There are many variants one could
consider, although the model chosen in this paper is the most standard. The first is that we could work in some other region
than the square such as the disc. More generally we could fix some convex region and consider taking larger and larger
scalings of that region. These models would all exhibit exactly the same behaviour as in the square. Indeed, heuristically,
since all edges areO(

√
log n) in length the boundarywould be almost flat (as the area of the region n tends to infinity) except

at a finite number of ‘corners’. Techniques similar to those in [2] would then yield the result. (We do not believe that anyone
has written out the proof in detail however.)

Another variant is to consider the n points placed uniformly at random (rather than Poisson distributed with mean
number of points n). The connectivity threshold for this model would be the same as for the model we consider. Indeed,
conditioned on the number of points in a Poisson process, those points are placed uniformly at random. Moreover, since
a Poisson random variable is heavily concentrated about its mean the two models are almost identical; see e.g. [4] for the
analogous result for normal Erdős–Rényi random graphs. The nice feature about the Poisson process is that disjoint regions
are independent: in the uniform case they are only ‘nearly independent’ and this makes the calculations more intricate.

Finally, we can define the directed graph G⃗n,k where each is point is joined by a directed edge to its k nearest neighbours.
Thus Gn,k is the graph formed by taking G⃗n,k and replacing each directed edge by an undirected edge. We could consider the
connectivity of the directed graph G⃗n,k itself (as was done in [2]). Alternatively, we could form a different undirected graph
Hn,k from G⃗n,k by only placing an edge xy in H if both x⃗y and y⃗x are edges in G⃗ (we do not believe that the connectivity of this
model has been considered although it is trivially k = Θ(log n)).

Both these models are significantly different from the model we consider: indeed in [2] Balister et al. proved that the
threshold for connectivity in G⃗n,k is at least 0.7209 log n and obviously the threshold for Hn,k is at least as high.

Outline of paper

The layout of the paper is as follows.We start by introducing some notation. Then in Section 3wemake some preliminary
observations about the problem and we recall the known results that we shall use later in the paper.

In Section 4 we prove Theorem 2, and then in Section 5 we prove Theorem 1. Although the two proofs are similar we
prove Theorem2 first as the absence of boundary effectsmakes the proof simpler andmore natural in this case.We conclude
with a discussion of some applications of this work and some open problems.
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2. Notation

We start with some notation. For any two points x, y ∈ R2 we denote the (Euclidean) distance between them by d(x, y).
For any point x ∈ R2 and real number r let D(x, r) denote the closed disc of radius r about x. We shall also use the term
half-disc of radius r based at x to mean one of the four regions obtained by dividing the disc D(x, r) in half vertically or
horizontally.

For a set A in Sn let |A| denote the (Lebesgue) measure of A, and #A denote the number of points of P in A. For any x ∈ R2

let d(x, A) denote the distance from x to A, that is d(x, A) = infy∈A d(x, y). For any real number r let A(r) be the r-blowup of
A defined by

A(r) = {x ∈ R2
: d(x, A) < r}.

Note that we do allow A(r) to contain points outside of Sn.
We use the term Poisson point-set tomean a set of points of Sn chosen at random according to a Poisson process of density

one. We shall use the term point-set to mean a specific instance of a Poisson point-set; however we shall ignore point-sets
with infinitely many points (as the collection of such point-sets has measure zero). For any point-setP we let Gk(P ) denote
the k-nearest neighbour graph formed from the point-set P . More precisely for each point x ∈ P let r be the distance to its
kth nearest neighbour and join x by an undirected edge to all the points of P ∩ D(x, r).

Finally, whenever we use the term diameter we shall alwaysmean the Euclidean diameter: we do not use graph diameter
at any point in the paper.

3. Preliminaries

We shall wish to consider ‘typical’ point-sets and the ‘typical’ way the corresponding graphs are disconnected. In order
to make this precise we start with some definitions.

Definition 1. Suppose that P is a point-set, that G = Gk(P ) is the corresponding graph, and that c ≥ 1 is a real number.
The point-set P is c-good if the following three conditions hold:

1. No two points of P at distance more than c
√
log n are joined in G,

2. Every pair of points of P at distance at most 1
c

√
log n are joined in G,

3. Every half-disc of radius c
√
log n based at a point of P that is contained entirely in Sn contains a point of P other than

the base-point.

Definition 2. Suppose that P is a point-set and G = Gk(P ) is the corresponding graph and that c is a real number.

1. A component of G is c-small if it has Euclidean diameter at most c
√
log n.

2. A component of G is a c-central component if it contains no vertex within distance c
√
log n of the boundary of Sn.

3. A component of G is a c-non-corner component if at most one side of Sn is within distance c
√
log n of a vertex of the

component.

We shall need a few results from the paper of Balister et al. [2]. Since our notation is slightly different we quote them
here for convenience. The first is a slight variant of Lemma 6 of [2] which follows immediately from the proof given there
(see also Lemma 1 of [3]). It says that we cannot have two components neither of which is small.

Lemma 3. For fixed c > 0 and L, there exists c1 = c1(c, L) > 0, depending only on c and L, such that for any k ≥ c log n, the
probability that Gn,k contains two components each of (Euclidean) diameter at least c1

√
log n is o(n−L).

The second bounds the probability of a small component near one side, or two sides of Sn; it is explicit in the proof of
Theorem 7 of [2].

Lemma 4. Suppose that k = Θ(log n). The probability that there is a small component containing a vertex within log n of one
boundary of Sn is O(n

1
2 +o(1)5−k) and the probability that there is a small component containing a vertex within log n of two sides

of Sn is O(no(1)3−k).

(Note that Theorem 1 improves the first of the bounds in Lemma 4.)
The final result follows easily from concentration results for the Poisson distribution (see e.g. [1]) andmost of it is implicit

in Lemma 2 of [2].

Lemma 5. For any fixed c and L there is a constant c2(c, L) such that for any k with c log n < k < log n the probability that a
Poisson point-set P is not c2-good is o(n−L).

We shall also use the isoperimetric inequality in the plane in the following form (this is a precise statement of the fact
that a disc is the shape of a given area with the smallest boundary; alternatively it can be viewed a trivial consequence of
the Brunn–Minkowski inequality; see e.g., [7])
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Lemma 6. For any λ > 0 the subset A of the plane of area λ that minimises the area of the r-blowup A(r) is the disc of area λ.

A simple reflection argument shows that a similar result holds in the half-plane E+ = {(x, y) ∈ R2
: y ≥ 0}.

Lemma 7. For any λ > 0 a subset A of the half plane E+ of area λ that minimises the area of the intersection of the r-blowup
A(r) and E+ is the half-disc of area λ centred at the origin.

Next we prove a simple but technical lemma, which we shall use several times in the proofs of Theorems 1 and 2. It
bounds the probability of certain (collections of) point-sets.

Lemma 8. Suppose that A, B, C are three sets in Sn with |A| ≤ |C | and |B| ≤ |C | then

P(#A ≥ k, #B ≥ k, #(A ∩ B) = 0 and #C = 0) ≤


4|A| |B|

(|A| + |B| + |C |)2

k

.

Proof. Suppose the event occurs. Let A′
= (A \ B) \ C, B′

= (B \ A) \ C, C ′
= C ∪ (A ∩ B), and U = A ∪ B ∪ C = A′

∪ B′
∪ C .

We see that A′, B′ and C ′ are pairwise disjoint so |U| = |A′
| + |B′

| + |C ′
| and, since #(A ∩ B) = 0, that #A′

≥ k,#B′
≥ k. We

have

P(#A ≥ k, #B ≥ k, #(A ∩ B) = 0 and #C = 0) = P(#A′
≥ k, #B′

≥ k and #C ′
= 0)

=


l≥k,m≥k

P(#A′
= l, #B′

= m and #U = l + m)

=


l≥k,m≥k

P(#A′
= l, #B′

= m | #U = l + m)P(#U = l + m)

≤ max
l≥k,m≥k

P(#A′
= l, #B′

= m | #U = l + m)

(the final line follows since


l≥k,m≥k P(#U = l + m) ≤ 1).
We have |A′

| ≤ |A| ≤ |C | ≤ |C ′
| so |A′

| ≤
1
2 |U| and similarly B′

≤
1
2 |U|. Hence, for l,m ≥ k,

P(#A′
= l, #B′

= m | #U = l + m) =


l + m

l


|A′

|

|U|

l 
|B′

|

|U|

m

≤ 2l+m


|A′
|

|U|

l 
|B′

|

|U|

m

≤ 22k


|A′
|

|U|

k 
|B′

|

|U|

k

=


4|A′

| |B′
|

|U|2

k

=


4|A′

| |B′
|

(|A′| + |B′| + |C ′|)2

k

.

Finally, observe that |A′
| ≤ |A| ≤ |C | ≤ |C ′

| and |B′
| ≤ |B| ≤ |C | ≤ |C ′

| imply that

4|A′
| |B′

|

(|A′| + |B′| + |C ′|)2
≤

4|A| |B′
|

(|A| + |B′| + |C ′|)2

≤
4|A| |B|

(|A| + |B| + |C ′|)2

≤
4|A| |B|

(|A| + |B| + |C |)2

which completes the proof. �

We conclude this section by introducing the idea of a tessellation. We will be considering tessellations of Sn with square
tiles of some side length s, say. In order to relate a graph Gk(P ) to the tessellation we make the following definition.

Definition 3. Suppose that A is a set of tiles and that P is a point-set. We say that P is disconnected on A if Gk(P ) contains
a component F such that

1. every vertex of F is in a tile of A
2. every tile of A contains a vertex of F .
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Now,wemay choose the size of the tiles in the tessellations (i.e. s) aswewish. Obviously the smaller the tiles are themore
information they give us about P . However, as s decreases we get more andmore possible sets A (in the above definition). It
is natural to choose s to be of the same scale as the events that we are interested in: namely a small constant times

√
log n.

Thus we consider s = ε
√
log n for some fixed ε > 0.

There are two reasons that this is a good size. First, in a c-good point-set a point in one tile can only be joined to points
in at most a constant number of other tiles (e.g., in at most 4c2/ε2 other tiles). Second, by making ε sufficiently small we
can make the size of a tile much smaller than the k-nearest neighbour distance (which for a c-good point-set is between
c
√
log n and 1

c

√
log n).

In the proofs of both Theorems 2 and 1 we shall use a tessellation with ε =
1

20 000c . The exact value is not important,
anything smaller than this would also be fine, it was just chosen as being sufficiently small to obtain sufficient accuracy in
the bounds (reducing ε further would give a negligible improvement to our bounds).

4. Central components

In this section we prove Theorem 2. Our initial aim is to prove that, for some constant c , the probability that P is c-good
and that Gk(P ) contains a small central component tends to zero.

Lemma 9. Suppose that c > 0 and that Sn is tessellated with square tiles of side length s < 1
20 000c

√
log n. Further suppose that

A is a collection of tiles of Sn containing no tile within c
√
log n of the boundary of Sn. The probability that a Poisson point-set P

is c-good and that P is disconnected on A is O(11.3−k).

Proof. Suppose that P is a point-set that is c-good and that F is a component of Gmeeting every tile in A.
The proof of this lemma naturally divides into three steps. In the first step we define some regions based on the

component F some of which must contain many points and some which must be empty. In the second step we bound the
areas of these regions. In the final step we bound the probability that these regions do indeed contain the required number
of points.
Step 1: Defining the regions. We use the following hexagonal construction which was introduced by Balister et al. in [2]. Let
H be the circumscribed hexagon of the points of F obtained by taking the six tangents to the convex hull of F at angles 0
and ± 60° to the horizontal, and let H1, . . . ,H6 be the regions bounded by the exterior angle bisectors of H as in Fig. 1. Let
P1, . . . , P6 be the points of F on these tangents, and let D1, . . . ,D6 denote the k-nearest neighbour discs of P1, . . . , P6. For
1 ≤ i ≤ 6 let Ai = Di ∩ Hi. Let A0 be the set Di ∩ H with the smallest area. We see that for each 1 ≤ i ≤ 6 the set Ai contains
no points of P . Also A0 contains k + 1 points all of which must be in F . Since F ⊂ A, it follows that A′

= A0 ∩ A contains at
least k + 1 points of P .

We also wish to take account of points near to but not contained in F . Let P ∈ F and Q ∈ G \ F be vertices minimising the
distance between F and G \ F . Let r0 = d(P,Q ) and r = r0 −

√
2s. Since, we are assuming that every square of A contains a

point in F we see that A(r) \ A contains no point of P . Indeed, suppose there is a point of P in A(r) \ A. Then this point is in
G \ F and is within r0 of some point of F which contradicts the definition of r0.

Obviously the points Q and P are not joined so, in particular, the k points nearest to Q must all be nearer to Q than P is.
Moreover, since Q is the point closest to F , we see that these k points must all be further away from P than Q is. Combining
these we see that these k points lie in the set B = D(Q , r0) \ D(P, r0): see Fig. 2.

Summarising all of the above, we see that A′ and B each contain at least k points and A(r) \ A and
6

i=1 Ai are both empty.
Observe that the intersection A′

∩ B contains no points. Indeed, suppose that x ∈ P is in A′
∩ B. Since x is in A′ it would be

in F (recall A′ is part of the k-nearest neighbour disc of one of the Pi) and, since x ∈ B, we have d(x,Q ) < r0 contradicting
the definition of the pair P,Q . However, A(r) and

6
i=1 Ai will overlap significantly. Thus we will use Lemma 8 to form two

separate bounds, one based on A(r) \ A being empty and one based on
6

i=1 Ai being empty.
Step 2: Bounding the area of the regions.

First we bound |
6

i=1 Ai|. Since the point-set is c-good each disc Di has radius at most c
√
log n. By hypothesis every point

Pi is in a tile of A and so is at least c
√
log n from the boundary of Sn. In particular Di is contained in Sn for each i. Now, since

the reflection of the regionH1 about the tangent through P1 containsH , we see that |D1 ∩H1| ≥ |D1 ∩H|. A similar argument
applied to each of the regions Di ∩ Hi shows that |Di ∩ Hi| ≥ |Di ∩ H| for each 1 ≤ i ≤ 6. Hence, |Ai| ≥ |A0| for 1 ≤ i ≤ 6.
Since the Hi and therefore the Ai are disjoint, we have 6

i=1

Ai

 =

6
i=1

|Ai| ≥ 6|A0| ≥ 6|A′
|.

The sets B and A(r) both depend on r so it is convenient to write r in terms of |A′
| by letting x = r/(

√
|A′|/π).

Since B = D(Q , r0) \ D(P, r0) a simple calculation shows that |B| =


π
3 +

√
3
2


r20 . Since P is c-good, r0 > 1

c

√
log n and

hence, by hypothesis, r0 > 20 000s. Thus

r = r0 −
√
2s > r0(1 − 10−4).
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Fig. 1. The circumscribed hexagon H and associated regions.

Fig. 2. The component F and the points P and Q . The k nearest neighbours of Q must all lie in the region D(Q , r0) \ D(P, r0).

Hence,

|B| =


π

3
+

√
3
2


r20 ≤


π

3
+

√
3
2


x2|A′

|

π(1 − 10−4)2
< 0.61x2|A′

|.

Finally we bound A(r). Let D and D′ be balls of area |A| and |A′
| respectively. Since A contains no tile within c

√
log n of

the boundary of Sn, the half-disc of radius c
√
log n about the right-most point of F is contained entirely in Sn and, since the

configuration is c-good, must contain a point of P . In particular r < r0 ≤ c
√
log n, and so A(r) is contained in Sn. By the

isoperimetric inequality (stated as Lemma 6) in the plane

|A(r) \ A| ≥ |D(r) \ D|,

and it easy to see that |D(r) \ D| ≥ |D′

(r) \ D′
|. Since D′ is a ball of radius

√
|A′|/π,D′

(r) is a ball of radius
√

|A′|/π + r =

(1 + x)
√

|A′|/π , and we have

|D′

(r) \ D′
| = ((x + 1)2 − 1)|A′

|.

Step 3: Bounding the probability of such a configuration.We have seen that if P contains such a component F then there exist
regions as defined in Step 1. These regions are determined by 14 (not necessarily distinct) points: the six points defining the
sides of the hexagonal hull, their six kth nearest neighbour points and the points P andQ ; that is, if there is such a component
F then there are 14 points of P defining regions A′, B, A1, . . . , A6 and A(r) with #A′

≥ k,#B ≥ k, #(A′
∩ B) = 0, and both

#
6

i=1 Ai = 0 and #(A(r) \ A) = 0. Moreover, if the configuration is c-good all of these points must lie within c
√
log n of A.
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Let Z be the event that there are 14 points of P all within c
√
log n of A defining regions with the above properties. We

have

P(there exists F and the configuration is c-good) ≤ P(Z and the configuration is c-good)
≤ P(Z).

We bound the probability that Z occurs (note that we are no longer assuming that the configuration is c-good). Fix a
particular collection of 14 points of P and let Z ′ be the event that these particular points witness Z . Note, since we are
assuming these 14 points all lie with c

√
log n of A, the corresponding regions all lie entirely within Sn.

We apply Lemma 8 to the sets A′, B together with each of
6

i=1 Ai and A(r) \ A.
First we form the bound based on #

6
i=1 Ai = 0. We have |A′

| ≤ |
6

i=1 Ai| and, provided x < 3.13, we have |B| ≤

0.61x2|A′
| < 6|A′

| ≤ |
6

i=1 Ai| so Lemma 8 applies. Thus we see that

P(Z ′) ≤

 4|A′
| |B|

|A′| +

 6
i=1

Ai

+ |B|
2


k

≤


4 · 0.61x2

(7 + 0.61x2)2

k

.

Second we form a bound based on #(A(r) \ A) = 0. This time |B| ≤ 0.61x2|A′
| ≤ ((x + 1)2 − 1)|A′

| ≤ |A(r) \ A| and,
provided that x >

√
2 − 1, we have |A(r) \ A| ≥ |A′

| so the conditions of Lemma 8 are satisfied. Thus

P(Z ′) ≤


4|A′

| |B|
(|A′| + |A(r) \ A| + |B|)2

k

≤


4 · 0.61x2

((x + 1)2 + 0.61x2)2

k

.

It is easy to check that the maximum of the minimum of these two bounds occurs when they are equal, i.e., when
x =

√
7 − 1; at this point they are α−k for some α > 11.3. Therefore P(Z ′) ≤ α−k.

Since all 14 pointsmust liewithin c
√
log n of A there areO((log n)14)ways of choosing them.Hence, the expected number

of 14 point sets for which Z ′ occurs is O((log n)14α−k) = O(11.3−k). Thus P(Z) = O(11.3−k) and the proof of the lemma is
complete. �

Lemma 10. Suppose that c > 1 is a constant and that k = k(n) > 0.4125 log n. Then the probability that a Poisson point-set
P is c-good and that Gk(P ) contains a c-small 2c-central component is o(1).

Proof. Let E denote the collection of point-sets P which are c-good and for which Gk(P ) contains a c-small 2c-central
component.

Tile the square Sn with squares of side length 1
20 000c

√
log n. Suppose thatP ∈ E . Let F be a c-small 2c-central component

of Gk(P ) and let A be the collection of tiles that contain a point of F . By definition P is disconnected on A.
Since F is a 2c-central component, A contains no tile within c

√
log n of the boundary of Sn. Moreover, since F is c-small

it has diameter at most c
√
log n so all tiles of A lie within c

√
log n of each other.

Thus, each point-setP ∈ E is disconnected on some set of tiles Awhere A contains no tilewithin c
√
log n of the boundary

of Sn and all tiles of A lie within c
√
log n of each other. Let A be the collection of such sets of tiles A.

Next we bound the number of such sets A (i.e. we bound |A|). There are O(n) choices for the first tile in A and then all
other tiles lie within distance c

√
log n of that first tile. Hence, there are only 4(c2 log n/s2) other tiles that can be in A. Since

4(c2 log n/s2) is just a (large) constant the total number of such sets A is O(n); i.e., |A| = O(n).
Finally, for any fixed set A ∈ A Lemma 9 says that the probability P is disconnected on A is O(11.3−k). Thus,

P(P ∈ E) ≤


A∈A

P(P is disconnected on A)

= |A|O(11.3−k)

= O(n11.3−k)

= o(1)

where the final line follows since k > 0.4125 log n. �

Proof of Theorem 2. By hypothesis we have k > 0.4125 log n. Also, we may assume that k < 0.6 log n since we already
know that Gn,k is connected whp if k ≥ 0.6 log n. Let c = max{c1(0.4125, 0), c2(0.4125, 0), 1} where c1 and c2 are as given
by Lemmas 3 and 5 respectively.

If G = Gk(P ) is not connected then (at least) one of the following must occur:
1. G is not c-good,
2. G contains (at least) two components neither of which is c-small,
3. G contains a c-small component that is not 2c-central,
4. G is c-good and contains a c-small component that is 2c-central.
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Fig. 3. The circumscribing set H and associated regions.

Since c > c2(0.4125, 0), Lemma 5 implies that the probability of Condition 1 is o(1). Similarly, since c > c1(0.4125, 0),
Lemma 3 shows that the probability of Condition 2 is o(1). Since k > 0.4125 log n > 1

log 25 log n, Lemma 4 implies the
probability of Condition 3 is o(1). Finally, since k > 0.4125 log n Lemma 10 implies that the probability of Condition 4 is
o(1).

Combining all these we see that the probability that G is not connected is o(1); i.e., G is connected whp. �

5. Boundary components

In this section we prove Theorem 1. Much of this is the same as the proof of Theorem 2 so we shall concentrate on the
differences. This time our initial aim is to prove that the probability that P is c-good (for some c) and contains a small edge
non-corner component tends to zero.

Lemma 11. Suppose that c > 0 and that Sn is tessellated with square tiles of side length s < 1
20 000c

√
log n. Further suppose that

A is a collection of tiles of Sn such that at most one side of Sn is within distance c
√
log n of a tile in A. The probability a Poisson

point-set P is c-good and that P is disconnected on A is O((6.3)−k).

Remark. Obviously this lemma is only of interest for sets A near the boundary of Sn, since otherwise Lemma 9 is stronger.

Proof. The proof divides into the same three steps as Lemma 9.
Step 1: Defining the regions. As before suppose that F is a component of Gmeeting every tile in A. Let E be the (almost surely
unique) side of Sn closest to F .

This time let H be the region bounded by the four interior sides of the circumscribed hexagon of the points of F obtained
by taking four of the tangents to the convex hull of F at angles 90° and ±30° to E, together with E as in Fig. 3. Let H1, . . . ,H4
be the regions bounded by the exterior angle bisectors of H together with the line E. Let P1, . . . , P4 be the points of F on
these tangents, and let D1, . . . ,D4 denote the k-nearest neighbour discs of P1, . . . , P4. For 1 ≤ i ≤ 4 let Ai = Di ∩ Hi. Let A0
be the set Di ∩ H with the smallest area and write A′ for the set A0 ∩ A. Exactly as before we see that for 1 ≤ i ≤ 4 the set Ai
contains no points of P , and that A′ must contain at least k + 1 points of P .

As before let P ∈ F andQ ∈ G\F be verticesminimising the distance between F andG\F , r0 = d(P,Q ) and r = r0−
√
2s.

Again, since F meets every tile of Awe see that A(r) \ Amust be empty. Also, as before, the set B = (D(Q , r0) \ D(P, r0)) ∩ Sn
must contain at least k points.

Step 2: Bounding the area of the regions. First we bound |
4

i=1 Ai|. Since the point-set P is c-good, each disc Di has radius at
most c

√
log n so meets no side of Sn apart from possibly E. Thus, we have |Di ∩ Hi| ≥ |Di ∩ H| for each 1 ≤ i ≤ 4, so we see

that |Ai| ≥ |A0|. As before the Hi and therefore the Ai are disjoint so 4
i=1

Ai

 ≥ 4|A0| ≥ 4|A′
|.

As before let x = r/
√

|A′|/π and exactly as in the proof of Lemma 9 we have |B| < 0.61x2|A′
|.

Finally we bound A(r) \ A. Consider the point of F furthest from E and the half-disc of radius c
√
log n about that point

facing away from E. Since no point of F is within c
√
log n of any side of Sn apart from E, this half-disc is entirely inside Sn.

Thus, since the point-set is c-good this half-disc must contain a point ofP (which is obviously not in F ). Therefore, as before,
r < r0 ≤ c

√
log n. Thus A(r) ∩ Sn = A(r) ∩ E+ where E+ denotes the half-plane bounded by E that contains Sn.



M. Walters / Discrete Applied Mathematics 160 (2012) 2037–2047 2045

This time let D and D′ be half-discs of area |A| and |A′
| respectively centred on E. Then, by the isoperimetric inequality in

the half-plane E+ (Lemma 7)

|(A(r) ∩ E+) \ A| ≥ |(D(r) ∩ E+) \ D| ≥ |(D′

(r) ∩ E+) \ D′
|.

Now D′ is a half-disc of radius
√
2
√

|A′|/π and D′

(r) ∩ E+ is a half-disc of radius
√
2
√

|A′|/π + r = (1 + x/
√
2)

√
2|A′|/π , so

this time we have

|(D′

(r) ∩ E+) \ D′
| = ((1 + x/

√
2)2 − 1)|A′

|.

Step 3: Bounding the probability of such a configuration.
Wehave seen that if there is such a component F then there exist regions as defined above. These regions are determined

by 10 points: the four points defining the four tangents, their four kth nearest neighbour points and the points P and
Q ; that is, if there is such a component F then there are 10 points of P defining regions A′, B, A1, . . . , A4 and A(r) with
#A′

≥ k,#B ≥ k,#(A′
∩ B) = 0, and both #

4
i=1 Ai = 0 and #((A(r) ∩ Sn) \ A) = 0. Again, if the configuration is c-good, all

of these 10 points must lie within c
√
log n of A.

Similarly to before, let Z be the event that there are 10 points ofP all within c
√
log n of A defining regions with the above

properties. Again

P(there exists F and the configuration is c-good) ≤ P(Z and the configuration is c-good)
≤ P(Z)

so, as before, we bound P(Z).
Fix a particular collection of 10 points and let Z ′ be the event that these 10 points witness Z . Note, since we are assuming

these 10 points all lie with c
√
log n of A, the regions A′, A1, . . . , A4 all lie entirely within Sn. By definition, B and (A(r) ∩ Sn)\A

also lie in Sn.
Again we apply Lemma 8 to the sets A′, B together with each of

4
i=1 Ai and (A(r) ∩ Sn) \ A. This time, however, neither

bound will be valid for large x so we form a third bound based just on the two sets A′ and (A(r) ∩ Sn) \ A.
As before we base the first bound on #

4
i=1 Ai = 0. We have |A′

| ≤ |
4

i=1 Ai| and, provided x < 2.56, we have
|B| ≤ 0.61x2|A′

| < 4|A′
| ≤ |

4
i=1 Ai| so Lemma 8 implies

P(Z ′) ≤

 4|A′
| |B|

|A′| +

 4
i=1

Ai

+ |B|
2


k

≤


4 · 0.61x2

(5 + 0.61x2)2

k

.

The second bound based on #((A(r) ∩ Sn) \A) = 0 is also very similar to before. However, this time the middle inequality
in

|B| ≤ 0.61x2|A′
| ≤ ((1 + x/

√
2)2 − 1)|A′

| ≤ |(A(r) ∩ Sn) \ A|

is not valid for all x, but it is valid for all x < 12. Also provided that x > 2 −
√
2, we have |(A(r) ∩ Sn) \ A| ≥ |A′

| so for
2 −

√
2 < x < 12 the conditions of Lemma 8 are satisfied. Thus

P(Z ′) ≤


4|A′

| |B|
(|A′| + |(A(r) ∩ Sn) \ A| + |B|)2

k

≤


4 · 0.61x2

((1 + x/
√
2)2 + 0.61x2)2

k

.

Since neither bound applies for large x we form a third bound based on the two sets A′ and (A(r) ∩ Sn) \ A. We know A′

contains at least k points and (A(r) ∩ Sn) \ A is empty. This has probability at most

P(Z ′) ≤


|A′

|

|A′| + |(A(r) ∩ Sn) \ A|

k

≤
1

(1 + x/
√
2)2k

which is less than 80−k for all x ≥ 12.
As before the maximum of the minimum of the first two bounds occurs when they are equal at x =

√
2(

√
5− 1); at this

point they are α−k for some α > 6.3. Moreover the third bound is tiny in comparison. Thus, in all cases, P(Z ′) ≤ α−k for
some α > 6.3.

Since all 10 points must lie within c
√
log n of A there are O((log n)10) ways of choosing them. Hence, similarly to before,

the expected number of 10 point sets for which Z ′ occurs is O((log n)10α−k) = O(6.3−k). Hence P(Z) = O(6.3−k) and the
proof of the lemma is complete. �

Lemma 12. Suppose that c > 1 is a constant and that k = k(n) > 0.272 log n. Then the probability that a Poisson point-set P
is c-good and that Gk(P ) contains a c-small 2c-non-corner component that contains a point within log n of a side of Sn is o(n−ε)
for some ε > 0.
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Proof. Let E denote the collection of point-sets P which are c-good and for which Gk(P ) contains a c-small 2c-non-corner
component that contains a point within log n of a side of Sn.

As before we tile the square Sn with squares of side length 1
20 000c

√
log n. Suppose that P ∈ E . Let F be a c-small 2c-non-

corner component of Gk(P ) that contains a point within log n of a side of Sn and let A be the collection of tiles that contain
a point of F . By definition P is disconnected on A.

Since F is a 2c-non-corner component, at most one side of Sn is within c
√
log n of a tile of A. Moreover, since F contains

a point within log n of a side of Sn, A contains a tile within log n of a side of Sn. As before, since F is c-small it has diameter at
most c

√
log n so all tiles of A lie within c

√
log n of each other.

Thus, each point-set P ∈ E is disconnected on some set of tiles A which satisfies:

1. A includes a tile within log n of a side of Sn,
2. at most one side of Sn is within distance c

√
log n of A,

3. all tiles of A lie within c
√
log n of each other.

Let A be the collection of such sets of tiles A.
As beforewe bound the number of such sets A. Since the area of the region in Sn within log n of a side of Sn isO((log n)

√
n)

and each tile has areaΘ(log n) there are O(
√
n) choices for the tile in A that is within log n of a side of Sn. Again all other tiles

liewithin distance c
√
log n of that first tile and so there are only 4(c2 log n/s2) other tiles that can be in A. Since 4(c2 log n/s2)

is just a (large) constant the total number of such sets A is O(
√
n); i.e., |A| = O(

√
n).

Finally, for any fixed set A ∈ A Lemma 11 says that the probability P is disconnected on A is O(6.3−k). Thus,

P(P ∈ E) ≤


A∈A

P(P is disconnected on A)

= |A|O(6.3−k)

= O(
√
n 6.3−k)

= o(n−ε)

for some ε > 0 (where the final step follows since k > 0.272 log n). �

Proof of Theorem 1. By hypothesis we have k > 0.272 log n. Also, we may assume that k < 0.6 log n since we already
know that Gn,k is connected whp if k ≥ 0.6 log n. Let c = max{c1(0.25, 1), c2(0.25, 1), 1} be as given by Lemmas 3 and 5.

Suppose that G = Gk(P ) has a vertex within log n of the boundary of Sn that is not in the unique giant component. Then
(at least) one of the following must occur:

1. G is not c-good,
2. G contains (at least) two components neither of which is c-small,
3. G contains a c-small component that is not 2c-non-corner,
4. G is c-good and contains a c-small component that is 2c-non-corner.

Since c > c2(0.25, 1), Lemma5 implies that the probability of Condition 1 is o(n−1). Similarly, since c > c1(0.25, 1) Lemma3
shows that the probability of Condition 2 is o(n−1). Since k > 0.272 log n = Ω(log n), Lemma 4 implies the probability of
Condition 3 is o(n−0.25). Finally, since k > 0.272 log n Lemma 12 implies that the probability of Condition 4 is o(n−ε) for
some ε > 0.

Combining all thesewe see that the probability that G has a vertexwithin log n of the boundary of Sn that is not contained
in the giant component is o(n−ε′

) for some ε′ > 0 as required. �

Conclusions

In this paper we have proved two results about the behaviour of the small components in the graph Gn,k, and we
have shown that bounds for this type of question can be substantially improved by considering edges coming in to the
potential small component in addition to those leaving it. Moreover, we have given a reasonably general method (i.e., using
isoperimetric inequalities) for proving bounds using these ‘in’-edges.

Extensive numerical simulations were done in [2] and these provide strong evidence both for the fact that boundary
components are not the obstruction to connectivity (i.e., Theorem 1) and that the threshold for connectivity is close to the
lower bound of 0.3043 log n (Theorem 2 is a step towards this lower bound).

As we have seen the obstruction to connectivity is the existence of a small central component. There are several natural
questions one can ask about these components. For example, how are small components located: are they typically well-
separated? The following theorem of Falgas-Ravry [5] has answered this question in the affirmative provided that the
probability that G is connected is not too small.

Theorem 13. Suppose that γ > 0 and k = k(n) is such that

P(G is connected) = Ω(n−γ ).

Then whp, there do not exist two small components within distance of O(
√
log n) of each other.
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We remark that he used Theorem 1 of this paper to ignore components near the boundary of Sn.
There are several other questions about these small components that remain open.

Question 1. How many vertices do small components contain?

It is immediate from Lemma 6 of [2] (quoted as Lemma 3 of this paper) that all small components contain O(k) vertices. If
the lower bound construction of Balister et al. in [2] is extremal then, as the authors remark there, all small components
would contain k + O(1) vertices.

Question 2. Are all the small components convex in the sense that all points of P within the convex hull of a small component
are actually part of the small component?

Finally, in the introduction we mentioned the related model of the graph Hn,k (where edges are present only if both
directed edges are).

Question 3. What is the threshold for connectivity in the graph model Hn,k?

As mentioned before it is clear that the threshold is k = Θ(log n) but we believe no non-trivial bound has been proved.
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