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Extracellular vesicles (EVs) are nanometer-sizedmembranous vesicles and are involved in cell-to-cell communi-
cation. EVs contain several types of functional molecules, such as proteins, mRNAs, and microRNAs (miRNAs).
Over the past several years, EVs have emerged as potential tools for a drug delivery system (DDS) that can target
organs or cells. EVs have a function of organ tropism and are naturally occurring from cells. Therefore, EVs have
expected as naturally DDSs, which have the organ tropism and a low side effect. Actually, some reports showed
that EVs delivered drugs to specific organ. However, despite observed the organ tropism, the mechanisms of
organ tropism of EVs are still unclear. Moreover, preservation and efficient collection of EVs are desired to be in-
vestigated. Here, we provide an overview of the methods for using EVs as DDSs.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Effective therapeutic agents have been widely developed, if would
be delivered the effective therapeutic agents to the target organ.
ery Reviews theme issue on
ing, Cancer Diagnosis/Therapy,

d Cellular Medicine, National
-ku, Tokyo 104-0045, Japan.

. This is an open access article under
However, it is a problem that non-targeted drugs are inefficient and
have side effects when they are delivered systemically. The purpose of
a drug delivery system (DDS) is to deliver a drug efficiently, improve
the effect of the drug, and reduce its side effects [1]. The conventional
DDSs, such as PEG [2–4] and liposome [5], are useful in drug delivery.
However, despite the untiring efforts of researchers, the delivery to
specific organ and the side effect of DDS remain unsolved problems.

DDSs are desirable for use in cancer therapy, and extracellular vesi-
cles (EVs) have a potential to serve as natural DDSs for cells [6–9]. EVs
are formed via the endosomal system, thus resulting in multivesicular
bodies (MVBs) [10,11]. EVs aremembranous vesicles of endocytic origin
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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that are released by a variety of cell types into the extracellular space.
Another population of EVs, shedding vesicles, exosomes, tolerosomes,
and prostasomes, are formed directly through the shedding of the
cellular membrane. However, there is still confusion regarding the ter-
minology used to describe these secreted vesicles because it is difficult
to distinguish the different types of vesicles after their secretion. To
avoid confusion in the present article, we use the term “extracellular
vesicles (EVs)” as a hypernym for all types of vesicles that are present
in the extracellular space [12]. Importantly, it has been observed that
EVs have a tropism to some organs or cells. Over the past several
years, EVs have emerged as potential tools for DDSs to target organs
or cells, and promising results have been achieved by using EV-based
DDSs. Because of their biological significance, EVs have advantages
for use as DDSs. Furthermore, EV-based DDSs are expected as a low-
side-effect DDS, because EVs are naturally occurring from cells. There-
fore, EV-mediated tumor-selective drug delivery or EV-mediated
organ-selective drug delivery makes EVs an attractive DDS candidate.
On the other hand, it is not matured that the methods of encapsulation
of drugs, addition of organ tropism, preservation, and efficient collection
of EVs.

In this review, we summarize the techniques for using EVs as DDSs.
We also discuss the hurdles to be overcome to further develop EV-DDSs.

2. Techniques

2.1. Encapsulation of drugs to EVs

Drugs should be attached to or encapsulated in EVs for the vesicles to
be used as DDSs. In previous studies, microRNA (miRNA) or existing
drugs have been transfected or attached directly to EVs, fusion protein
vector has been transfected to donor cells, and methods for encapsulat-
ing existing drugs in EVs using a discharge mechanism have been
attempted (Table 1).

Humanmonocytic leukemia THP-1 cells have beenused asdonor cells
[13]. EVs were collected from THP-1 cells, which transfected chemically
modified microRNA (miR)-143 with an aromatic 3′-benzene-pyridine
analog added to the 3′-overhang region of the RNA strand. The miR-143
levels were significantly increased in the serum, tumor, and kidneys of
host animals that were injected with EVs. It has also been reported that
miR-130b could beoverexpressed in EVs fromHeLa-229 cells by transfec-
tion of the vector [14]. In another study, argonaute 2 (Ago2) and heat
Table 1
The methods of encapsulation of drugs.

Drugs Donor Cell of EVs

miRNAs miR-143 (chemical modified) THP-1 (human monocytic leukemia c
miR-130b HeLa-229

siRNA BACE1 siRNA Primary dendritic cells harvested fro
murine bone marrow

Drugs Vesicular stromatitis virus G
protein (VSV-G)

HEK293T

Paclitaxel, doxorubicin U-87 MG (human brain neuronal
glioblastoma–astrocytoma)
bEND.3 (brain endothelial cell)

Doxorubicin U937 (human monocytic cell)
Raw264.7 (mouse macrophage)

JSI-124 (an activator of
transcription 3 inhibitor)

EL-4 (mouse lymphoma cell)

Curcumin Mouse brain endothelial cell
Catalase Raw264.7

Doxorubicin Mouse immature dendritic cells
Cisplatin Me30966 (human metastatic melano
Paclitaxel SR4987 (established from BDF/1 mic

from bone marrow cells)
shock protein 90a (HSP90a) were enriched in miR-130b-packaging EVs.
These proteins protect against degradation. Furthermore, Lattanzi et al.
reported that a mutant of the HIV-1 Nef protein, Nefmut, was efficiently
incorporated with foreign proteins in EVs when fused with the proteins
at its C-terminus [15]. Nefmut-fused foreign protein expression vector
was transfected to 293T cells. Furthermore, the authors showed that
vesicular stomatitis virus G protein (VSV-G) fusion Nefmut EVs have
potential as an EV-based vaccine.

Some groups have demonstrated that paclitaxel or doxorubicin
binds with EVs when they are incubated at 37 °C [16,17]. Human
U937 monocytic cells and mouse Raw264.7 macrophages have been
used as donor cells of EVs [17]. In that study, collected EVswere incubat-
edwith 400 μg/mL doxorubicin for 2 hrs at 37 °C andwere then injected
intravenously into mice. This report showed that doxorubicin was in-
corporated into the EVs and that these EVs accumulated in mouse
colon adenocarcinoma CT26 cells in vivo. However, the EVs also accu-
mulated in the liver. In other reports, curcumin or an activator of tran-
scription 3 (Stat3) inhibitor, JSI124, was mixed with mouse lymphoma
cell-line EL-4-derived EVs at 22 °C and bound to the EVs [18,19]. EVs
have also been collected from a mouse brain endothelial cell line by
curcumin treatment (7.5 μM) for 72 hrs [20]. One study investigated
four different methods for incorporating catalase into EVs from a Raw
264.7 macrophage cell line [21]. Method I involved incubation at room
temperature (RT) for 18 hrs with or without saponin; Method II in-
volved freeze–thaw cycles that were repeated three times at −80 °C
and at room temperature; Method III was sonication (500 v, 2 kHz,
20% power, 6 cycles by 4 s pulse/2 s pause); and Method IV was extru-
sion, in which a catalase mixture with EVs was extruded (10 times)
through an avanti lipids extruderwith a 200-nm-diameter pore. The au-
thors reported that sonication was the result of the high loading effi-
ciency and high stability of catalase. Electroporation has been used to
load doxorubicin [22] and small interfering RNA (siRNA) [23] into EVs.

Interestingly, it has been reported that melanoma cells treated with
the anticancer drug cisplatin eliminated the cisplatin through EVs [24].
Secreted EVs were found to contain cisplatin, and the cisplatin concen-
tration was higher in an acidic environment because EV secretion
from cells increased the pH levels. Additionally, Pascucci et al. suggested
that mesenchymal stromal cells (MSCs) could be used as drug packag-
ing cells for EVs [25]. SR4987 established from bone marrow cells of
BDF/1 mice was cultured for 24 hrs in a culture medium containing
2000 ng/mL of paclitaxel. After 48 hrs, the conditioned medium was
Methods References

ell) Transfection of expression vector [13]
Transfection of expression vector [14]

m Electroporation (encapsulated) [23]

Transfection of HIV-1 Nef protein-fused foreign
protein expression vector

[15]

Cells were incubatied at 37 °C, 2 hrs with drugs.
(incorporate in EVs)

[16]

Cells were incubatied at 37 °C, 2hrs with drugs.
(incorporate in EVs)

[17]

Cells were incubated at 22°C with drugs.
(bind to EVs)

[18,19]

Cells were treatment with drug for 72 hrs. [20]
(1) Incubation at room temperature for 18 hrs
with or without saponin
(2) freeze–thaw cycle (three times at −80°C and
room temperature)
(3) sonication
(4) extrusion

[21]

Electroporation [22]
ma) Cells were treatment with drug in acidic pH condition. [24]
e Cells were treatment with drug for 24 hrs. [25]



Table 2
Organ tropism by EVs component.

Component on EVs Tropism References

iRGD peptide (CRGDKGPDC)
* Transfection of Lamp2b-fused
foreign protein expression vector

Tumor (αV-integrin) [22]

Rabies viral glycoprotein (RVG) Brain [23,26]
Folate receptor-α Brain (astrocytes, neurons) [27]
M2 macrophage (differentiated
from Raw 264.7 cells)

Homing to inflamed
brain tissues

[28]

Tspan8 Rat aorta endothelial cells
Rat lymph node stroma cells
Bone marrow cells
Lymph node cells
CD54+ leukocytes

[29,30]

Tspan8-β4 Rat lung fibroblasts
Rat lymph node stroma cells
Lymph node cells
CD54+ leukocytes
Peritoneal exudate cells
Kidneys
Pancreas

[29,30]

Tspan8 containing the N-terminal
region of CD9

Rat aorta endothelial cells
Rat lymph node stroma cells
CD44+ leukocytes

[29,30]

Unmodified EVs from rat pancreatic
adenocarcinoma cell line
(BSp73AS)

Rat lung fibroblasts
Rat lymph node stroma cells

[29,30]
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collected, and EVs were purified by ultracentrifugation. The concentra-
tion of paclitaxel in EVs was 11.68 ng/mg per EV protein. Importantly,
when human pancreatic adenocarcinoma CFPAC-1 cells were treated
with EVs containing paclitaxel, EVs that contained paclitaxel showed
antitumor activity.

2.2. The organ tropism of EVs

Tumor tropism is important for the use of EVs as tumor therapies
(Table 2). In this section, the techniques of organ tropism of EVs are
summarized.

One study reported that an integrin-specific iRGD peptide
(CRGDKGPDC) is able to bind to αV-integrin [22]. In that experiment,
the authors used an MDA-MB-231 tumor treatment. The iRGD peptide
that fused with a membrane protein (Lamp2b) in EVs had the potential
to deliver treatment specifically to a tumor in vitro and in vivo. Several
reports have given EVs tropism to the brain through the transfection
of surface proteins to donor cells. Alvarez-Erviti et al. established a
delivery system to mouse brains [23,26]. Self-derived dendritic cells
(DCs) were used as EV donors because of their effects on reducing
immunogenicity, one of the reasons that EVs are a candidate for a low
side effect DDS. DCswere transfectedwith expression vector containing
a Lamp2b gene and a neuron-specific rabies viral glycoprotein (RVG)
peptide gene, and secreted EVs were corrected from the supernatant.
To use the siRNA delivery system, BACE1 siRNA was included using an
electroporation method. BACE1 is important for Alzheimer's disease
pathogenesis. These Lamp2b-RVG-expressed and BACE1-siRNA-
containing EVs were injected intravenously. Importantly, these EVs
downregulated BACE1 protein in cortical tissue in vivo. A pre-
experiment using GAPDH siRNA significantly downregulated GAPDH
protein in the striatum, midbrain, and cortex. Furthermore, folate
receptor-α (FRα) was reported to be one of the molecules responsible
for brain parenchyma tropism [27]. Rat choroid plexus Z310 cells
were transfected with FRα expression vector. Then, FRα was enriched
in the EV fraction. When intraventricularly injected into mice, FRα-
positive EVsmight initially be taken upby astrocytes and then delivered
to neurons. The authors argue that this function might be a transport
medium for micronutrients. A glial cell-line derived neurotropic factor
(GDNF)-overexpressing Raw 264.7 macrophage was used in the
treatment of Parkinson's disease in a 6-hydroxydopamine-induced
Parkinson's disease model [28]. EVs from a GDNF-overexpressing Raw
264.7 macrophage contain a high amount of GDNF, which can promote
the regeneration of neurodegenerative disorder neurons and protect
these cells from toxic injuries. Raw 264.7 macrophages were differenti-
ated to an M2 regenerative subtype. Importantly, systemically injected
GDNF-overexpressing M2 macrophages were homed to and mediated
neuroprotection in brain tissues. The authors suggested that drug-
secreting organ homing cells are useful for drug delivery and can be
used as carriers for delivery of anticancer drugs to the brain.

Other studies have attempted to instill organ tropism. Rana et al. re-
ported that tetraspanin EVs contribute to target cell selection [29,30].
The rat pancreatic adenocarcinoma line BSp73AS (AS) was used as a
donor cell and was transfected with Tspan8, Tspan8-β4, or AS-Tspan8/
CD9n (Tspan8 containing the N-terminal region of CD9) expression
vector. These tetraspanin-overexpressing cells were cultured and EVs
were collected from the supernatant. The EV uptake differed depending
on the EV-recipient cell. EVs containing Tspan8 and Tspan8/CD9n
preferentially bound to rat aorta endothelial cells and rat lymph node
stroma cells (LnStr); unmodified EVs and EVs containing Tspan8-β4
bound preferentially to rat lung fibroblasts (Fb) and LnStr. EVs contain-
ing Tspan8 bound preferentially to bone marrow cells and lymph node
cells. EVs containing Tspan8-β4 bound to lymph node cells. As an
example of the dependency of the recipient cell, EVs Tspan8/CD9n
were preferentially taken up by CD44+ leukocytes, whereas EVs
containing Tspan8 and Tspan8-β4 were mostly incorporated into
CD54+ cells. Of note, EVs containing Tspan8-β4 bound efficiently to
peritoneal exudate cells, kidneys, and the pancreas in vivo [29].

Direct injection is an effective method of EVs delivery, not systemi-
cally injection. EVs containing prostate-specific antigen (PSA) and pros-
tatic acid phosphatase (PAP), which are tumor-associated antigens,
were used in prostate cancer treatment by subcutaneous injection
[31]. EVs containing tumor-associated antigen were increased the PSA
and PAP IgG2a/IgG1 ratio, which is Th1-biased immune response,
suggesting that this therapy induced against the tumor antigen in
each model. Another group reported that EVs binding curcumin
inhibited LPS-induced brain inflammation. Intranasally injected EVs
were taken up in the brains of mice through microglial cells [18]. In
this study, EVs from EL-4 were taken up by both microglial cells
(approximately 60%) and non-microglial cells (approximately 40%).
Furthermore, Stat3 inhibitor JSI-124-binding EVs inhibited glioblastoma
GL26 growth [18].

2.3. Techniques used for collection, measurement of concentration, and
preservation of EVs

Because EVs are heterogeneous, a specific population of EVsmust be
collected to be used appropriately. Moreover, the methods of efficient
collection of EVs are desired. Previous reports have mainly used the
ultracentrifugation method [22,26,32–35] and FACS methods [36,37]
for collecting EVs. However, bulk EVs were collected using these
methods. Nordin et al. compared EVs that were collected using ultrafil-
tration with those collected using ultracentrifugation [38]. Importantly,
it was reported that the in vivo biodistribution of EVs was different
between the methods. These observations suggested that bulk EVs are
heterogeneous populations and that there is a need to collect a specific
population of interest.

EV concentration is also an important factor in DDS use. The existing
drug concentration or miRNA can be measured with a fluorescence
spectrophotometer or through real-time PCR. In another study, Rupert
et al. used label-free, surface-based sensing with surface plasmon
resonance (SPR) to determine the concentration of EVs in solution
[39]. Accurate and standardized quantification of such EVs was also
required. Maas et al. compared different methods for determining EV
concentration, including nanoparticle tracking analysis (NTA), tunable
resistive pulse sensing (tRPS), and high-resolution flow cytometry
(hFC) [40]. The measurable concentration range of NTA was 9.0 × 107
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particles/mL to 2.9×109 particles/mL. In contrast, the tRPSwasdifferent
between the particle size and concentration (203 nm beads were
analyzed at 9.1 × 107 particles/mL to 2.9 × 109 particles/mL, whereas
115 nm particles were analyzed at 3.6 × 108 particles/mL to 2.3 × 1010

particles/mL). However, hFC allows for accurate quantification at
lower particle concentrations (4.6 × 106 particles/mL to 7.3 × 107

particles/mL). The concentration of EVs can be accurately measured
using each of the different methods, although the authors suggested
that (1) particles with low fluorescence intensity may not be detected
and (2) the removal of unbound fluorescent dye is important when
using the hFC technique.

A previous report studied appropriate methods of EV preservation,
comparing urinary EVs collected and preserved at 4°C, −20°C, and
−80°C [41]. An appropriate method for preserving EVs for a DDS has
not been established.

3. Cancer therapy

3.1. Primary tumor therapy

iRGD-Exos-doxorubicin suppressed breast tumor growth in an
MDA-MB-231 tumor-bearing nude mouse model [22]. EVs were
injected into mice intravenously and accumulated in tumor tissue.
This result suggested that EVs containing doxorubicin inhibited tumor
growth.

Interestingly, Yang et al. performed drug delivery to the brain using a
zebrafish brain tumor model [16]. They reported that endothelial brain
cell line bEND.3-derived EVs could accumulate in the brain and brain
tumor tissue across the blood–brain barrier (BBB). In another study,
curcumin-primed EVs from a mouse brain endothelial cell line were
used to treat endothelial cell dysfunction during hyperhomocysteine-
mia in vitro [20]. Curcumin-primed EVs have the potential to alleviate
endothelial dysfunction. Another study reported that miR-9 in mesen-
chymal stem cell–derived EVs became chemosensitive in glioblastoma
multiforme cells [42].

3.2. Immunotherapy

Raposo et al. first reported that B lymphocyte–derived EVs induced
antigen-specific MHC class II–restricted T-cell responses [43]. Since
then, it has been reported that tumor-peptide pulsed DC–derived EVs
have potential with respect to cancer immunotherapy because they
suppress tumor growth [44]. Wolfers et al. reported that tumor-
derived EVs containing a tumor antigen may have activated a tumor
immune response [45]. Tumor-derived EVs were taken up with DCs
and activated DCs induced CD8+T-cell-dependent antitumor effects.
Another study reported that Gp120 stimulates Gp120-specific CTL
responses and then long-term cancer immunity against Gp120-
expressing B16 melanoma in vivo [46]. It has also been reported that
EVs from the rat pancreatic adenocarcinoma cell line BSp73ASML
(ASML) have potential use as an adjuvant therapy in immunotherapy
[47]. EVs from ovalbumin (OVA)-pulsed DCs induced efficient CD4+

Th cell-independent CD8+ CTL responses in vivo [46,48,49]. Further-
more, it has been suggested that vaccination with a tumor antigen con-
taining EVs activated an antitumor response against OVA-transfected
BL6-10 melanoma cells. An EV vaccine derived from colorectal cancer
has also been reported. In that study, EVs from NB4 cells, a human
acute promyelocytic leukemia cell line, activated CTLs through DC
activation [50].

3.3. Clinical trials

Clinical trials using EVs have been reported, with several types of
clinical trials undertaken to investigate cancer therapy [51]. EVs from
plants containing curcumin are used in colorectal cancer therapy. How-
ever, these EVs were found to deliver curcumin to both healthy and
malignant colon tissues. EVs from grapes are used to prevent oralmuco-
sitis associated with chemoradiation in cases of head and neck cancer.
Furthermore, it has been reported that EVs from DCs have been used
to deliver a vaccine as part of immunotherapy in cases of unresectable
non-small-cell lung cancer [52]. In another study, EVs from autologous
DCs were used in the vaccination of metastatic melanoma patients
[53]. It has also been reported that EVs from ascites were used for im-
munotherapy in colorectal cancer in combination with granulocyte–
macrophage colony-stimulating factor (GM-CSF) [54]. However,
Gundogan et al. suggested that clinical translation is limited by the
lack of appropriate, scalable, and both cost- and time-effective nano-
technologies for the purification and loading of EVs [51,55].

On the other hand, a side effect is one of the important problem as
DDS. However, it has never discussed about side effects. Dommelen
et al. proposed that proteomic analysis of EVs is important, because it
prevents from potential unwanted side effects, such as “spread of onco-
genes, prions, inflammatory cytokines or viral particles” [55].
4. The biodistribution of EVs

Many researchers had observed the tropism of EVs in vivo. On the
other hand, although EVs have unique proteins, researchers have not
elucidated the mechanisms of clearance and biodistribution of unmod-
ified tumor-derived EVs. Several groups have demonstrated that
primarily unmodified tumor-derived EVs were incorporated into the
liver [17,32,33,56].

One report on EV labeling observed the biodistribution of EVs con-
taining gaussia luciferase (gLuc)-lactadherin, [33]. A gLuc-lactadherin
fusion protein expression vectorwas transfected to the B16–BL6murine
melanoma cell line. Importantly, the results indicated that lactadherin
has a tendency to concentrate in EVs; its level was approximately
10,000 times higher compared with the vector that did not contain
lactadherin protein. In that study, EVs containing gLuc-lactadherin
were injected intravenously (i.v.) and distributed mainly to the liver
and then the lungs. In contrast, EVs from human embryonic kidney
(HEK) 293T cellswere observed to have the highest signal in the spleen;
in that case, EV signal was also high in the liver, lungs, and kidneys [57].
HEK293T cells were transfected with a gaussia luciferase gene, and EVs
were then collected from the supernatant using ultracentrifugation.
These EVs were injected into mice, and their biodistribution was
observed. Importantly, lower signals were observed in the brain,
heart, andmuscle. Another report has shown that the EV biodistribution
was different when using two different collection methods [38]. EVs
collected by ultracentrifugation accumulated mainly in the liver, but
the accumulation of EVs was also observed in the lungs, spleen, and
kidneys. Conversely, EVs collected by ultrafiltration with subsequent
liquid chromatography accumulated in the lungs to a slightly lesser
extent than did the EVs collected by ultracentrifugation. EVs collected
by ultrafiltration with subsequent liquid chromatography also accumu-
latedmainly in the liver. The biodistribution of EVs from several types of
cells has also been observed [58]. HEK293T-derived EVs were injected
into mice intravenously. EVs accumulated mainly in the liver, spleen,
gastrointestinal tract, and lungs. It was observed that EVswere accumu-
lated dose-dependently in each organ. The biodistribution of EVs from a
muscle cell line; C2C12, a melanoma cell line; B16F10; and primary
immature bone marrow–derived DCs were also observed in mice. The
biodistribution of EVs from these cells were mostly consistent with
the biodistribution of HEK293T-derived EVs. However, it has been
reported that HEK293T-derived EVs were accumulated in tumor tissue
and that the EV accumulation was 3% of the total tissue fluorescence
in vivo. Furthermore, it was observed that EVs from mesenchymal
stem cells accumulated in the kidneys of mice with acute kidney injury
[59]. However, the accumulation of EVswasmainly observed in the liver
and spleen. EVs containing RVG from DCs accumulated in the brain,
heart, and muscle, compared with EVs that did not contain RVG. Those
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EVs containing RVG were modified because RVG has an affinity to the
nicotinic acetylcholine receptor.

Intriguingly, it has also been observed that EVs have a tropism to
bone marrow [49,50], the lungs [33,57,60–62], brain [57,62–64],
lymph nodes [64,65], and tumors [17]. Intratumoral injection of EVs
allowed for more efficient uptake by tumor cells compared with
liposomes [56]. However, no report has clearly determined the mecha-
nism responsible for organ tropism in EVs. Importantly, Zomer et al.
reported that tumor cell-derived EVs were directly taken up by tumor
cells using the Cre-LoxP system in vivo [66]. Cre recombinase (Cre)-
expressing MDA-MB-231 breast cancer cells secrete Cre-containing
EVs. When Cre-containing EVs incorporated by reporter cells and Cre
in EVs had enzyme activity, reporter cells changed reporter gene ex-
pression from DsRed to eGFP. Surprisingly, reporter cancer cells incor-
porated Cre-containing EVs both by direct injection and co-transplant
with Cre-expression cancer cells in vivo. Furthermore, Cre-containing
EVs were incorporated by reporter cancer cells from orthotropic
transplanted Cre-expressing cancer cells to opposite site transplanted
reporter cancer cells in vivo. This methods can be used to elucidate the
transport and organ tropism mechanisms of EVs in vivo.

As described in Section 2.2, the tropism of EVs is provided by
modification of EVs-surface proteins. In this section, we discussed the
biodistribution of EVs, which is observed many researchers. These
tropism mechanisms of EVs have not been uncovered; however, it is
possible that the mechanisms of EVs tropism can apply to DDSs.

5. Future perspectives

Through the untiring efforts of researchers, EVs are being explored
as potent therapeutics because of their efficient transfer of proteins,
mRNA, miRNA, and existing drugs in selective targets. To apply EVs as
a DDS, it is important to (1) attach or encapsulate a “drug” to EVs,
(2) preserve the EVs, and (3) establish organ tropism. Some methods
for encapsulating drugs to EVs have been developed; oligonucleotide-
based drugs are especially useful when they are transfected to EVs
because oligonucleotides, such as miRNA, are a major component of
EVs. EVs seem to be enclosed oligonucleotide-based drugs by using
transfection methods to donor cells. In contrast, no suitable methods
of preserving EVs as a DDS have been reported. Furthermore, no study
has clearly targeted intact EVs to cancer cells or target organs. As
mentioned previously, with respect to EV biodistribution, most EVs
accumulate in the liver in vivo. Although some reports have shown
that EVs accumulate in the bone marrow, lungs, brain, lymph nodes,
and tumor tissue, these reports have not provided sufficient evidence
supporting specific organ tropism. Therefore, previous reports have
generally used bulk EVs, and not those purified with EV markers. It
has been reported that EVs containing RVG have a tropism to the
brain. This result suggests that the modification of EV membrane
proteins provides organ tropism. For these reasons, it is important to
find the proteins that are responsible for natural organ tropism in EVs.
Moreover, despite the general understanding that EVs derived from
cells have this organ tropism, there is no quantitative or qualitative
analysis on the classification of EVs. Further studies are needed for the
proper application of EVs as a DDS, with a particular focus on the
mechanisms responsible for organ tropism in EVs.
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