
Discrete Applied Mathematics 155 (2007) 2118–2129
www.elsevier.com/locate/dam

The stable fixtures problem—A many-to-many extension of stable
roommates

Robert W. Irving∗, Sandy Scott,1

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland

Received 25 March 2002; received in revised form 18 July 2006; accepted 16 May 2007
Available online 24 May 2007

Abstract

We study a many-to-many generalisation of the well-known stable roommates problem in which each participant seeks to be
matched with a number of others. We present a linear-time algorithm that determines whether a stable matching exists, and if so,
returns one such matching.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Stable matching problem; Many-to-many non-bipartite matching; Linear-time algorithm

1. Introduction

The stable fixtures (SF) problem is a generalisation of the stable roommates (SR) problem (a detailed treatment of
which can be found in [4, Chapter 4]) in which each participant has a fixed capacity, and is to be assigned a number of
matches less than or equal to that capacity subject to the normal stability criterion. The name derives from a possible
application in which a set of players (or teams) take part in a competition in which the fixtures, in the form of a set of
matches between players, are to be specified in advance. Each player has a specified target number of matches, and
may play against each of the others at most once. Each ranks a subset of the others—his acceptable opponents—in
order of preference. A set of fixtures is stable if there are no two mutually acceptable players, who do not form a
match, but each of whom either prefers the other to one of his prescribed matches or has fewer matches than his
capacity.

More formally, an instance of the SF problem consists of

• X = {x1, . . . , xn}, the set of players;
• for each i (1� i�n) a positive integer ci , which we refer to as the capacity of xi ; this is the maximum number of

matches that xi can have;
• a preference structure, denoted by P; this comprises a preference list Pi for each xi (1� i�n), which is a strictly

ordered subset of X\{xi}.

∗ Corresponding author.
E-mail addresses: rwi@dcs.gla.ac.uk (R.W. Irving), sas@dcs.gla.ac.uk (S. Scott).

1 Supported by University of Glasgow 2001 Postgraduate Research Scholarship.

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.05.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82074503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:rwi@dcs.gla.ac.uk
mailto:sas@dcs.gla.ac.uk

R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129 2119

If xj appears in Pi we say that xj is acceptable to xi . If xj precedes xk in Pi we say that xi prefers xj to xk . A pair
{xi, xj } is an acceptable pair if xi is acceptable to xj , and xj is acceptable to xi . Only acceptable pairs play a role in
the SF problem, so we may assume, without loss of generality, that if xj is acceptable to xi but xi is not acceptable to
xj , then xj is simply deleted from Pi , and hence that the preference lists are consistent, i.e., xj is in Pi if and only if
xi is in Pj . We denote by |Pi | the number of entries in the list Pi .

A matching M is a set of acceptable pairs {xi, xj } such that, for all i (1� i�n),

|{xj : {xi, xj } ∈ M}|�ci .

The size of M is the number of pairs in M. The members of the set M(xi) = {xj : {xi, xj } ∈ M} are referred to as
the matches of xi in M.

An acceptable pair {xi, xj } /∈M is a blocking pair for matching M, or blocks M, if

• either xi has fewer than ci matches or prefers xj to at least one of his matches in M; and
• either xj has fewer than cj matches or prefers xi to at least one of his matches in M.

A matching for which there is no blocking pair is said to be stable, and is otherwise unstable.
The case in which ci = 1 for all i is the well-known SR problem. SR was introduced by Gale and Shapley [2] in their

classical paper on the stable marriage (SM) problem. They showed that, in contrast to the case of SM, an instance of
SR may or may not admit a stable matching. Subsequently, the possibility of a polynomial-time algorithm to solve SR
was presented as an open problem by Knuth [8]. This question was resolved by Irving [5], who gave a polynomial-time
algorithm to determine whether a stable matching exists, and if so to find one such matching. Further algorithmic results
for SR were established by Gusfield [3], and these various results were collated and extended in [4].

In fact, in the classical version of SR, n is even and all preference lists are complete, i.e., xj ∈ Pi for all i, j, i �= j ,
so that if a stable matching does exist then every player is matched to exactly one other. So in this context, a matching
is a perfect matching. If n is odd and/or preference lists may be incomplete, then a stable matching, if one exists, may
or may not be perfect [4]. However, if a stable matching does exist, then every stable matching involves the same set
of players, and as a consequence, all stable matchings have the same size [4].

By contrast, in the SF problem, it is easy to construct an example to show that, even if all preference lists are complete,
a stable matching may have some players with fewer matches than their capacity. For example, consider an instance
involving four players, each of capacity 2, in which one particular player is ranked last by each of the others. It is easy
to see that the sole stable matching here has size 3, and the unpopular player has no matches. So, at least in this respect,
SF behaves somewhat differently from SR.

The SR problem is a generalisation of the SM problem, in the sense that, for any instance of SM there is an instance
of SR involving the same players for which exactly the same matchings are stable [4]. The many-to-one generalisation
of SM, the so-called Hospital-Residents (HR) problem, together with its important practical applications, has been
extensively studied—see, for example, [4,11]. Recently Baı¨ou and Balinski [1] have shown that the many-to-many
extension of SM can be solved in O(n2) time, where n is the size of the larger set. The SF problem is simultaneously a
generalisation of all of these others, and therefore has considerable theoretical interest as ostensibly the most general
of all stable matching problems.

Here we present an extension of Irving’s SR algorithm which, for a given instance of the SF problem, determines
if a stable matching exists, and if so finds one such matching, all in O(m) time, where m is the sum of the lengths
of the preference lists. As in the SR case, the SF algorithm is split into two phases, discussed in Sections 2 and 3,
respectively. In Section 4 we consider the implementation and complexity of the algorithm, and in Section 5 we present
our conclusion and some open problems.

2. Phase 1 of the algorithm

The first phase of the algorithm closely resembles the first phase of the SR algorithm [5], in that, conceptually, it
involves a sequence of bids from one player for another (usually referred to as ‘proposals’ in the SM context). These
bids enable the construction of a set S of potential matched pairs, and also allow the identification of some pairs that
cannot belong to any stable matching, and which are therefore deleted from the preference structure. By the deletion of
a pair {xi, xj }, we mean the removal of xi from Pj and of xj from Pi . Henceforth we denote by P the current preference

2120 R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129

Fig. 1. Algorithm SF-Phase1.

structure, noting that this changes during the algorithm as a result of deletions. We say that {xi, xj } is in P if xi is in Pj

(or, equivalently, xj is in Pi since preference structures are always consistent.)
The set S consists of ordered pairs (xi, xj), and is initially empty. For each player xi we define two sets Ai and Bi

as follows:

Ai = {xj : (xi, xj) ∈ S},
Bi = {xj : (xj , xi) ∈ S}.

In terms of bids, Ai represents the set of players for whom xi has made a bid that has not (yet) been rejected, while Bi

represents the set of players who have bid for him and whom he has not rejected. If xj ∈ Ai (or equivalently, xi ∈ Bj)
at some point during the algorithm’s execution, then we say that xj is, at that moment, a target for xi and xi is a bidder
for xj . We denote |Ai | and |Bi | by ai and bi , respectively, so ai is the current number of targets of xi , and bi the current
number of bidders for xi .

Each successive bid is made by some player xi who has fewer targets than his capacity; xi will bid for the first player
xj in Pi who is not already among his targets, and as a result (xi, xj) is added to S and xj becomes a target of xi . If it
is still the case that bj < cj , i.e., xj has fewer bidders than his capacity, then no further action results. However, if (i)
bj = cj or (ii) bj = cj + 1, the only other possibilities, then in the ranking of xj ’s bidders induced by Pj , the bidder
ranked in position cj , say xk , is identified, and all the pairs {xl, xj }, such that xj prefers xk to xl , are deleted. These
deletions might include one pair in S, namely in case (ii) above, and if so this pair is deleted from S—it represents the
rejection of xl’s bid by xj for the xl in question—and as a result, xl is no longer a bidder for xj and xj is no longer a
target for xl . An immediate invariant is that, for each i, the set Ai consists of the first ai players in Pi . This phase of the
algorithm terminates when, for all i, ai = min(ci, |Pi |).

The algorithm, which we refer to as Algorithm SF-Phase1, is displayed in Fig. 1.
Algorithm SF-Phase1 is non-deterministic but, as with other proposal-based algorithms for solving variants of the

SM problem, this non-determinism has no effect on the outcome. We shall call the preference structure resulting from
the execution of phase 1 the phase 1 preference structure, denoted by P 1. For a given player xi , we denote xi’s list in
P 1 by P 1

i . We also denote by S1, A1
i and B1

i the sets S, Ai and Bi , and a1
i , b1

i the values of ai , bi , respectively, for each
i, on termination of SF-Phase1.

We are now in a position to draw some conclusions from the outcome of Algorithm SF-Phase1. To this end, we
define the terms stable pair to be a pair {xi, xj } that belongs to some stable matching, and stable match of a player xi

to be a player xj such that {xi, xj } is a stable pair.

Lemma 2.1. If {xi, xj } is not in P 1 then {xi, xj } is not a stable pair.

R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129 2121

Proof. Suppose, for a contradiction, that {xi, xj } is a stable pair that is not in P 1. Let M be a stable matching
containing the pair {xi, xj }, and suppose that {xi, xj } was the first stable pair to be deleted during a particular execution
E of SF-Phase1. Suppose further, without loss of generality, that the deletion of {xi, xj } took place when some
player xk bid for xi . Then xi must at that point have had ci − 1 existing bidders whom he preferred to xj , say
xi1 , . . . , xici−1 , and he must also prefer xk to xj . Let U be the set {xi1 , . . . , xici−1 , xk}. Not all of the players in U can
be matches of xi in M, for xj /∈ U is one such match. So choose xl ∈ U such that {xi, xl} /∈M. Suppose xl prefers
all of his matches in M to xi . Then for xi to have become a target of xl during E, some stable pair (involving xl)
must already have been deleted, contradicting the assumption that {xi, xj } was the first such deletion. It follows that
xl prefers xi to at least one of his matches in M, and we know that xi prefers xl to xj , a contradiction of the stability
of M. �

The following corollary is immediate.

Corollary 2.1. Any player xi for whom |P 1
i | = 0 has no stable matches.

Some further lemmas record various properties of stable matchings, should any exist.

Lemma 2.2. If (xi, xj) ∈ S1 and (xj , xi) ∈ S1 then {xi, xj } is in every stable matching.

Proof. Suppose that (xi, xj) ∈ S1 and (xj , xi) ∈ S1, and that M is a stable matching such that {xi, xj } /∈M. The fact
that (xi, xj) ∈ S1 implies that xj is among the first ci entries in P 1

i , and likewise (xj , xi) ∈ S1 implies that xi is among
the first cj entries in P 1

j . By Lemma 2.1, xj cannot have a match in M who is not in P 1
i , so either he has fewer than

ci matches, or has a match to whom he prefers xj . A similar observation applies to xj , and it follows that {xi, xj } is a
blocking pair for M—a contradiction. �

Lemma 2.3. For all i (1� i�n), a1
i = min(ci, |P 1

i |) = b1
i .

Proof. By definition,ai=min(ci, |P 1
i |) for all i is the termination condition ofSF-Phase1. It is clear that

∑
a1
i =

∑
b1
i ,

since each pair in S1 contributes exactly one to each of these sums. If, for some k, a1
k �= b1

k then either a1
k < b1

k or
a1
k > b1

k . In the former case, we let index i be k. In the latter case, because of the equal sums, there must be some t �= k

such that a1
t < b1

t , and in that case we let index i be t. So we can assume, without loss of generality, that a1
i < b1

i . It
follows from the algorithm that b1

i �ci , since whenever bi becomes greater than ci , xi rejects one of his bidders. Hence
a1
i < ci , so that a1

i = |P 1
i |. For each xj ∈ B1

i , by definition we have (xj , xi) ∈ S1, and so xi ∈ P 1
j , and xj ∈ P 1

i by

consistency. It follows that b1
i = |B1

i |� |P 1
i | = a1

i , a contradiction. �

Lemma 2.4. Let xi be a player for whom |P 1
i |�ci . Then in every stable matching, the matches of xi are precisely the

players xj in P 1
i .

Proof. By Lemma 2.1, no player who is not in P 1
i can be a stable match of xi . Also, for every xj in P 1

i , we must have
(xi, xj) ∈ S1, otherwise a1

i �= min(ci, |P 1
i |), and the termination condition for SF-Phase1 is not satisfied. Since

a1
i = b1

i , by Lemma 2.3, and since the only candidates for the set B1
i are the ai entries on P 1

i , it follows that all of these
entries are in B1

i , and therefore (xj , xi) ∈ S1 for all xj in P 1
i . The result follows from Lemma 2.2. �

Lemma 2.5. Any player xi for whom |P 1
i |�ci must have exactly ci matches in any stable matching.

Proof. It must be the case that a1
i = ci , otherwise the termination condition a1

i = min(ci, |P 1
i |) would not be satisfied,

and therefore, by Lemma 2.3, b1
i = ci also.

Suppose that B1
i = {xi1 , . . . , xici

}. Then for each j (1�j �ci) xi appears in the first cij positions in P 1
ij

. If, in a
matching M, xi has fewer than ci matches then, in particular, one of xi1 , . . . , xici

, say xik , is not a match. So {xi, xik }
blocks M, a contradiction. �

2122 R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129

Fig. 2. The outcome of SF-Phase1 for an example instance.

We denote min(ci, |P 1
i |) by di , and refer to this as the degree of player i. Note that the degree of a player is a property

of the problem instance; it does not change its value in the course of the algorithm.

Theorem 2.1. (i) The number of matches for a given player xi is the same in all stable matchings, namely di .
(ii) All stable matchings for a given instance of the SF problem have the same size.

Proof. (i) This follows at once from Corollary 2.1 and Lemmas 2.4 and 2.5.
(ii) This is an immediate consequence of part (i). �

Corollary 2.2. For a given instance of the SF problem, if
∑

di is odd, then there is no stable matching.

Proof. By Theorem 2.1 (i), this sum is double the size of a stable matching, since it counts every matched pair exactly
twice. �

Example. The original and phase 1 preference structures for an example instance are displayed in Fig. 2, together with
the set S1. Player xi’s preference list is represented in the form xi : (ci) Pi .

It may be verified that
∑

di = 14, so that Corollary 2.2 does not apply in this case. We can conclude that,
if a stable matching exists, then it must have size 7. We can make the following additional observations
from P 1:

• player x10 has an empty list and must therefore be unmatched in every stable matching;
• players x6 and x7 have only each other on their lists and so are matched only with each other in every stable

matching;
• player x6, who has a capacity of 2, cannot attain that capacity in any stable matching;
• by Lemma 2.2, players x1 and x2 must be matched in every stable matching.

Of course, we do not yet know whether a stable matching exists for this instance—we shall see later that at least one
such matching does exist.

For what follows, we need one further result concerning the outcome of SF-Phase1.

Lemma 2.6. If di < ci , dj < cj and {xi, xj } is not in P 1, then {xi, xj } cannot be an acceptable pair.

Proof. Let us assume that di < ci , dj < cj , and (xi, xj) is not in P 1. Then if {xi, xj } is an acceptable pair, it must have
been deleted during the execution of SF-Phase1, say when some player xk became a bidder for xi . At that point, xi

must have had ci bidders. Subsequently, xi can lose a bidder only on gaining another one, so he can never again have
fewer than ci bidders. Hence |S1

i |�ci , so that di = min(ci, |S1
i |) = ci , a contradiction. �

R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129 2123

3. Phase 2 of the algorithm

Our starting point for phase 2 of the algorithm is the set S1 and preference structure P 1 constructed by phase 1. The
essence of phase 2 is the further development of the set S of potential matched pairs, and the further reduction of the
preference structure P. Ultimately, we may find that one of the preference lists, say Pi , has its length reduced below the
degree di of xi , which is a signal that no stable matching exists. Otherwise, the set S eventually becomes symmetric,
i.e., (xi, xj) ∈ S ⇔ (xj , xi) ∈ S, in which case the pairs in S constitute a stable matching.

We use the symbol P to represent the (changing) preference structure, starting with P = P 1. For phase 2, the set
S = S(P) is defined in terms of P as follows:

S(P) = {(xi, xj) : xj is in the first di positions in Pi}.
We call a preference list Pi in P short if |Pi | < di , and long if |Pi | > di . (Note that in case |P 1

i | = di it follows that
|P 1

i |�ci , and this is covered by Lemma 2.4.)
The sets Ai and Bi , with sizes ai and bi , respectively, are defined as before, namely

Ai = {xj : (xi, xj) ∈ S(P)},
Bi = {xj : (xj , xi) ∈ S(P)}.

Note that Ai and Bi depend on S, which in turn depends on P, but we suppress this dependence in the notation for
brevity. We continue to refer to Ai as the set of targets for xi , and Bi as the set of bidders for xi . The set Ai consists of
the first di players in the list Pi .

In addition, we denote by xl(i) the last player in Pi , and by xf (i) the first player, if any, in Pi who is not in Ai , in
other words, the player in position di + 1 in Pi . The player xf (i) is defined only for players xi with a long preference
list. For obvious reasons, we refer to xl(i) as the worst bidder for xi , and xf (i) as the next target for xi .

Throughout phase 2, the preference structure P and its associated set S(P) have certain crucial properties, which are
encapsulated in the following definition.

A preference structure P is called stable if
SPS1: for all i (1� i�n), ai = bi(=di);
SPS2: for all i (1� i�n) such that Pi is non-empty, xl(i) ∈ Bi ;
SPS3: an acceptable pair {xi, xj } is not in P if and only if xi prefers xl(i) to xj or xj prefers xl(j) to xi .

The following lemma shows that phase 2 of the algorithm begins with a stable preference structure.

Lemma 3.1. The phase 1 preference structure P 1, with its associated set S1, is a stable preference structure.

Proof. Property SPS1 is immediate from Lemma 2.3. If di = |P 1
i |, then property SPS2 follows from the fact that all of

the players in P 1
i are in Bi , and otherwise from the fact that all successors in P 1

i of the least preferred member of B1
i

are explicitly deleted during SF-Phase1. Finally, Property SPS3 is a consequence of the fact that a pair {xi, xj } is
deleted during SF-Phase1 only if xi prefers his current ci th choice bidder to xj or xj prefers his current cj th choice
bidder to xi , and in either case, the bidder in question becomes the last entry in the preference list. �

The next lemma characterises the preference structure on termination of phase 2 in the case where a stable matching
exists.

Lemma 3.2. Let P be a stable preference structure in which, for all i (1� i�n), |Pi | = di . Then the set S = S(P) is
symmetric, i.e., (xi, xj) ∈ S ⇔ (xj , xi) ∈ S; furthermore, the set of unordered pairs represented by S forms a stable
matching.

Proof. Suppose that (xi, xj) ∈ S. This implies that xj ∈ Pi , and by the consistency of P, that xi ∈ Pj . The fact that
|Pj | = dj , together with property SPS1, implies that all of the players in Pj are in Aj , and so in particular pi ∈ Aj ,
hence (pj , pi) ∈ S.

2124 R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129

Define the matching M = {{xk, xl} : (xk, xl) ∈ S}. Let {xi, xj } be an acceptable pair that is not in P. Then, by
property SPS3, either xi prefers xl(i) to xj or xj prefers xl(j) to xi . It follows that xi prefers all of his matches in M
to xj , or xj prefers all of his matches in M to xi . So the only way that {xi, xj } can block M is if each has fewer
matches than his capacity. Since, by Theorem 2.1(i), xi and xj have di and dj matches, respectively, in M, this implies

that di < ci and dj < cj . Hence, by definition, di = |P 1
i | and dj = |P j

1 |, so the acceptable pair {xi, yj } must have been
deleted by Algorithm SF-Phase1, and so is not in P 1, in contradiction of Lemma 2.6. �

The key to the further reduction of the preference structure is the concept of a rotation, similar to that introduced by
Irving [5] for the SR algorithm. Relative to a preference structure P, a rotation is a sequence of ordered pairs

� = ((xi0 , xj0), (xi1 , xj1), . . . , (xir−1 , xjr−1)),

where, for each k (0�k�r − 1),

xik = xl(jk) and xjk+1 = xf (ik),

with k + 1 evaluated modulo r. So xik is xjk
’s worst bidder, and xjk+1 is xik ’s next target. For each k, we say that xik ,

xjk
and the pair (xik , xjk

) are in the rotation �.

Example. In the example illustrated in Fig. 2, it may be verified that, for the preference structure P 1, � = ((x4, x3),

(x3, x9), (x5, x1), (x2, x4)) is a rotation, in fact, as it turns out, the only rotation.

The intuition underlying the concept of a rotation is as follows. If � = ((xi0 , xj0), . . . , (xir−1 , xjr−1)) is a rotation,
then suppose that, for some k (0�k�r − 1), xik ’s bid for xjk

were to be rejected. Then xik would bid for xjk+1 , causing
xik+1 ’s bid for xjk+1 to be rejected. Hence rejections and new bids would follow all the way round the cycle. For each
k, we refer to xik as the new bidder for xjk+1 .

Lemma 3.3. Let P be a stable preference structure in which some player xi has a long preference list. Then there is
at least one rotation in P.

Proof. We denote by V (P) the set of players with long preference lists, i.e., the players xi for whom |Pi | > di . For a
player xi ∈ V (P), let xj = xl(i), so that (xi, xj) /∈ S. Player xj is also in V (P), for (xi, xj) /∈ S implies that there is
some k such that (xj , xk) /∈ S, otherwise it could not be the case that aj =bj , and this is all that is required to ensure that
xj ∈ V (P). Hence such an xk is defined, and by the same argument, xk ∈ V (P). Since such an xk exists, xf (j) =xf (l(i))

exists, and we will assume for the rest of the proof thatxk = xf (j).
Let D(P) be a directed graph with a node for each player xi in V (P). For each node xi in D(P), let there be an

outgoing edge to the node xf (l(i)), which, as we have seen, is well defined and in V (P). Because every node in D(P)

has out-degree 1, D(P) must contain at least one cycle. Suppose that the nodes in such a cycle are xj0 , . . . , xjr−1 in that
order. Then, since xjk+1 =xf (l(jk)) for 0� i�r−1, k+1 taken modulo r, it follows that �=((xi0 , xj0), . . . , (xir−1 , xjr−1)),
is a rotation in P, where xik = xl(jk) for all k. �

The proof of Lemma 3.3 provides a means of finding a rotation in a stable preference structure P: starting from any
player xi who has a long preference list, traverse the unique path in D(P) from the node xi until some node is visited
twice. If � is the rotation generated by this traversal, we say that xi leads to � in P. If xi leads to � in P, but the node
xi is not itself in the cycle, then the path in D(P) from the node xi to the first node in the cycle is called a tail of the
rotation. For � = (xi0 , xj0), . . . (xir−1 , xjr−1), we refer to {xi0 , . . . , xir−1} as the bidder set and {xj0 , . . . , xjr−1} as the
target set of �. It is easily verified that xik �= xil and xjk

�= xjl
whenever k �= l (but the bidder set and target set need

not be disjoint, as in our example, where players x3 and x4 are in both sets).
If � = ((xi0 , xj0), . . . , (xir−1 , xjr−1)) is a rotation in a stable preference structure P, and xjk

is a player in the target
set of �, we denote by xg(jk) the least favoured member of the set (Bjk

∪ {xik−1})\{xik }, and refer to xg(jk) as xjk
’s

next-worst bidder.
We denote by P/� the preference structure obtained from P by deleting, for 0�k�r − 1, all pairs {xjk

, xl} such
that xjk

prefers his next-worst bidder xg(jk) to xl . One consequence is that xi’s worst bidder is removed from his list,

R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129 2125

Fig. 3. The effect of rotation elimination.

Fig. 4. Algorithm SF-Phase2.

and his next-worst bidder becomes his worst bidder as a result. The process of replacing P by P/� is referred to as
eliminating rotation �. �

Example. For the example instance illustrated in Fig. 2, the effect of eliminating the rotation � = ((x4, x3), (x3, x9),

(x5, x1), (x2, x4)) is shown in Fig. 3.
Note that there have been deletions from the preference lists of all of the players involved in the rotation.

In phase 2 of the algorithm the preference structure is reduced by successive elimination of rotations. The starting
point is the phase 1 preference structure P 1, which we know is stable. Throughout the reduction, provided no player’s
preference list becomes short (i.e., contains fewer entries than his degree), the current preference structure will be
shown to be stable, so that Lemma 3.3 applies throughout, and the reduction process can continue as long as some
player has a long preference list. We will also show that, if a stable matching does exist for the instance, then there is
always at least one such matching embedded in each of the stable preference structures that is generated.

Phase 2 of the algorithm is summarised in Fig. 4.

Lemma 3.4. Let � be a rotation in a stable preference structure P. Then, if P/� contains no short list, P/� is itself a
stable preference structure.

Proof. If P ′ = P/� contains no short list we need to show that the required three properties are satisfied by P ′. For
brevity, we denote the sets associated with S(P ′) by A′

i and B ′
i , of sizes a′

i and b′
i , respectively.

2126 R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129

Property SPS1. By definition, a′
i = di , since P ′

i is not a short list. It remains to show that b′
i = di . As observed

earlier, pairs deleted from P on eliminating � are of the form {xl, xj }, where xj is in the target set of � and xj prefers
his next-worst bidder to xl . This applies to only one pair of S(P), namely {xl(j), xj }. Hence xl(j) is the only element
of Bj that is not in B ′

j . However, if xi is xj ’s new bidder, then xi is in B ′
j but not in Bj , and xi is the only player with

this property. Hence b′
j = bj = dj as required.

Property SPS2. Because of the deletions specified when � is eliminated, the last entry in P ′
i is either the same

as in Pi or, if xi is in the target set of �, it is his next-worst bidder. This player is in B ′
i , so the required property

holds.
Property SPS3. Let {xi, xj } be an acceptable pair that is not in P ′. If {xi, xj } is not even in P then the result is

immediate. Otherwise {xi, xj } must have been deleted because, say, xi prefers his next-worst bidder to xj . But this
is his worst bidder in P ′, so the required property follows. Conversely, the only acceptable pairs deleted when � is
eliminated are precisely pairs for which the required condition is satisfied. �

We are now in a position to prove the final lemma required to establish the correctness of algorithm SF-Phase2.

Lemma 3.5. If there is a stable matching contained within a stable preference structure P, and if � is a rotation in P,
then there is a stable matching contained within P/�.

Proof. Let M be a stable matching contained within P, and suppose that �=((xi0 , xj0), . . . , (xir−1 , xjr−1)) is a rotation
in P.

Case (i): for some k (0�k�r − 1), {xik , xjk
} /∈M. We can assume, without loss of generality, that {xi0 , xj0} /∈M.

Suppose that {xj1 , xl} ∈ M for some xl such that xj1 prefers his next-worst bidder to xl . Since {xi0 , xj0} /∈M, since xj0

is a target of xi0 , and since xi0 has exactly di0 stable matches in M, by Lemma 2.5 and the fact that Pi0 is a long list,
we must have {xi0 , xk} ∈ M for some xk who is not a target of xi0 .

Subcase (ia): {xi0 , xj1} ∈ M. Since there are two non-bidders, xl and xi0 , who are matched with xj1 in M, there must
be some bidder other than xi1 , say xm, who is not matched with xj1 in M. So xj1 prefers xm to xl , one of his matches
in M, and, since xm must have dm matches in M, he prefers xj1 , one of his targets, to one of those matches. Hence
{xj1 , xm} blocks M.

Subcase (ib): {xi0 , xj1} /∈M and {xi0 , xk} ∈ M for some xk lower in xi0 ’s list than xj1 . Then xi0 prefers xj1 to one
of his matches in M, and prefers xi0 , one of his targets, to xl , one of his matches in M. Hence {xi0 , xj1} blocks M.

So all entries in Pj1 worse than xj1 ’s next-worst bidder can be deleted without deleting any pairs of M. In so doing,
{xi1 , xj1} is deleted, so this pair is not in M, and the same argument can be repeated (r − 1 times) to show that � can
be eliminated without deleting any pairs of M. Thus M is contained in P/�.

Case (ii): for all k (0� i�r − 1), {xik , xjk
} ∈ M. We show that if M′ is obtained from M by replacing {xik , xjk

} by
{xik , xjk+1} for all k (k + 1 taken modulo r), then M′ is also a stable matching.

Firstly, M′ is a matching, since each player has the same number of matches in M′ as in M.
Secondly, we have to show that M′ is contained in P/�. None of these new pairs {xik , xjk+1} is deleted when � is

eliminated. Suppose that some other pair in M is deleted. The only pairs deleted are of the form {xjk
, xl}, where xjk

prefers his next-worst bidder to xl . If {xjk
, xl} ∈ M for such an xl , then xl cannot be a bidder for xjk

. Hence some
bidder for xjk

other than xik , say xr , is not matched in M with xjk
, since both the number of bidders and the number of

matches must be equal to the degree djk
. It follows that xjk

prefers xr to at least one of his matches in M. Also, xjk
is

among the first dr entries in xr ’s list in P, so xr prefers xjk
to one of his matches in M (which must number dr). Hence

{xjk
, xr} is a blocking pair for M, a contradiction.

Finally, we have to show that M′ is stable. If there is a blocking pair for M′ then one or both members of the pair
must have a match in M′ who is less desirable than his worst match in M, otherwise the pair blocks M also. The only
players for whom this is the case are those in the bidder set of �, so suppose that the blocking pair is {xik , xm} for some
k and m. Furthermore, for xik to have a match in M′ that is worse than any of his matches in M, it must be the case
that xik is matched in M with all of his targets in P, and that xik prefers xm to his next target xjk+1 , but not to any of his
existing targets. Player xm cannot be xjk

, because xjk
prefers all the players in his preference list in P/�, and hence all

his matches in M, to xik . The remaining possibility is that xm lies in xik ’s preference list between his last target in P
and xjk+1 . But then the pair {xik , xm} is not in P, and by property SPS3, this can only be because xm prefers xl(m), and
therefore all of his matches in M′, to xik . �

R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129 2127

Fig. 5. Elimination of a further rotation to give a stable matching.

Fig. 6. An SF instance for which no stable matching exists.

Theorem 3.1. Algorithm SF-Phase2 correctly identifies whether a stable matching exists for an SF instance, and
returns such a matching when one does exist.

Proof. Corollary 2.2 establishes that no stable matching can exist if
∑

di is odd. Otherwise, Lemmas 3.3–3.5 justify
the successive elimination of rotations. Lemma 3.5 shows that, if a short list occurs, then there cannot be a stable
matching, whereas if there is a stable matching then one such matching is returned by the algorithm. �

As with the classical SR problem [5], in cases where more than one stable matching exists, the particular stable
matching returned by SF-Phase2 for an instance of SF depends on the set of rotations eliminated.

Example. Recall that Fig. 3 shows the preference structure after the elimination of one rotation for our example SF
instance. Fig. 5 displays this structure P again. There is only one rotation in P, namely �′ =((x5, x2), (x4, x9), (x3, x8)).
When this rotation is eliminated we obtain the new stable preference structure P/�′, shown on the right in Fig. 5, which
is a stable matching.

Example. As a second example, this time one for which no stable matching exists, consider the preference structure
P shown in Fig. 6. In this case SF-Phase1 results in no deletions from the structure. In SF-Phase2, there are
two rotations in P, namely �1 = ((x1, x3), (x2, x1), (x3, x2)) and �2 = ((x4, x6), (x5, x4), (x6, x5)). Elimination of �1
results in short lists for x1, x2 and x3, so there can be no stable matching. (Of course a similar conclusion follows if we
eliminate �2 instead, as this yields short lists for x4, x5 and x6.)

4. Implementation and analysis

We now show that the SF algorithm can be implemented in such a way as to have O(m) worst-case complexity for
an instance involving preference lists with total combined length m.

In phase 1 of the algorithm, deletion of a pair {xi, xj } can be achieved in constant time by holding a separate
ranking array for each player such that, in the array for xi , position j holds the index of the position that xj occupies

2128 R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129

in Pi . This means that, when player xj is deleted from the list of player xi , xi can be deleted from xj ’s list using
one look-up of the ranking array. This second part of the deletion is achieved in constant time if the preference lists
are stored in an indexed, doubly linked structure. The number of deletions is bounded by m, the total length of the
preference lists, as is the number of bids. At the point at which a player xi receives a bid for the ci th time it is simple
to ascertain which element in Pi represents the least favoured of his ci bidders. Thereafter, when a player xi receives
a further bid, the ci th ranked of all of his bidders can be found by stepping backwards in Pi from the last entry to
the next bidder found. The total number of such backward steps is bounded by m, so phase 1 certainly has worst-case
complexity O(m).

For phase 2 of the algorithm a stack is used to house a path traced out in the directed graph D(P). When a node is
reached that is already on the stack, a rotation has been found and it may be recovered by popping the stack as far as the
first occurrence of that node. The rotation may then be eliminated by deleting the necessary pairs, and each deletion is
a constant time operation, as has been noted above. Each successive rotation search begins from the end of the previous
tail, so each pair encountered is a new pair. This ensures that the same, potentially long, tail will not be traversed more
than once. Since the stack must be empty at the end of the execution of the algorithm (it only ever contains players
who have long lists) the number of push and pop operations is the same. Further, at least one pair is deleted every time
a pop operation is performed, so the number of pop (and hence push) operations cannot exceed m, and since every
operation associated with finding a rotation and deleting a pair can be achieved in constant time, it follows that the
whole algorithm is O(m).

Finally, since the SM problem is a special case of the SF problem, and since there is an �(m) lower bound for SM
[9], the SF algorithm is asymptotically optimal.

5. Conclusion and open questions

In this paper we have introduced the SF problem, and described our motivation for studying it. We have established
that there is an O(m) algorithm for determining if an instance of SF admits a stable matching, and if it does, to find
one such matching. However, a number of open questions remain, including the following.

Open question 1. For an instance of SF in which the preference lists are complete, what is the smallest possible size
of a stable matching (expressed in terms of the size of the instance, n, and the capacities)?

Open question 2. Is there any analogue of the “medians” result for the SR problem, namely that the so-called median
of any 3 stable matchings is itself a stable matching [4]?

Open question 3. In an instance of SF in which players are allowed to express indifference between two or more
other players, there are a number of possibilities for defining a blocking pair, leading to the notions of weak stability,
strong stability and super-stability [6,7]. For weak stability SF is NP-complete, as a consequence of the corresponding
result for SR [10]. For super-stability, Scott [12] has described a polynomial-time algorithm that builds on the algorithm
presented in this paper. It is open as to whether there exists a polynomial-time algorithm to solve SF in the case of
strong stability.

Acknowledgement

The authors gratefully acknowledge the helpful comments of the referees, which led to substantial improvements on
an earlier version of the paper.

References

[1] M. Baı¨ou, M. Balinski, Many-to-many matching: stable polyandrous polygamy (or polygamous polyandry), Discrete Appl. Math. 101 (2000)
1–12.

[2] D. Gale, L.S. Shapley, College admissions and the stability of marriage, Amer. Math. Monthly 69 (1962) 9–15.
[3] D. Gusfield, The structure of the stable roommate problem—efficient representation and enumeration of all stable assignments, SIAM J.

Comput. 17 (4) (1988) 742–769.
[4] D. Gusfield, R.W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT Press, Cambridge, 1989.
[5] R.W. Irving, An efficient algorithm for the “stable roommates” problem, J. Algorithms 6 (1985) 577–595.
[6] R.W. Irving, Stable marriage and indifference, Discrete Appl. Math. 48 (1994) 261–272.
[7] R.W. Irving, D.F. Manlove, The stable roommates problem with ties, J. Algorithms 43 (2002) 85–105.

R.W. Irving, S. Scott / Discrete Applied Mathematics 155 (2007) 2118–2129 2129

[8] D.E. Knuth, Stable marriage and its relation to other combinatorial problems, in: CRM Proceedings and Lecture Notes, vol. 10, American
Mathematical Society, Providence, RI, 1997.

[9] C. Ng, D.S. Hirschberg, Lower bounds for the stable marriage problem and its variants, SIAM J. Comput. 19 (1990) 71–77.
[10] E. Ronn, NP-complete stable matching problems, J. Algorithms 11 (1990) 285–304.
[11] A.E. Roth, M.A.O. Sotomayor, Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis, Cambridge University Press,

Cambridge, 1990.
[12] S. Scott, A study of stable marriage problems with ties, Ph.D. Thesis, University of Glasgow, Department of Computing Science, 2005.

	The stable fixtures problem---A many-to-many extension of stable roommates
	Introduction
	Phase 1 of the algorithm
	Phase 2 of the algorithm
	Implementation and analysis
	Conclusion and open questions
	Acknowledgement
	References

