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Quantum chemical reaction graphs defined on multidimensional potential energy hypersurfaces 

are embedded on two-dimensional orientable surfaces. Topological invariants of these graphs and 

those of the embedding two-dimensional surfaces can characterize various families of chemical 

reactions. Several examples are given for embeddings of reaction graphs of chemical conforma- 

tional processes. 

1. Introduction 

In chemistry it has been a long established practice to represent molecules by 

graphs, with the constituent atoms and the interconnecting bonds taking the roles 

of vertices and edges, respectively. Whereas such representations contain a great 

amount of chemical information, and are of considerable value, nonetheless, they 

are in general insufficient to account for energy differences between various 

chemical species, and for the energies of activation required for a chemical reaction. 

Information on the energy variation of individual molecules during a chemical reac- 

tion is fundamentally important for a reliable prediction of favoured reaction 

mechanisms. In the last decade major advances have been made in the quantum 

chemical calculation of the energies of molecules, and now it is possible to evaluate 

the energy content of medium size molecules in any nuclear configuration occuring 

during a chemical change. Our purpose is to discuss a graph-theoretical representa- 

tion of the energy function of molecules. With the recent spectacular advances in 

computer technology the quantum chemical calculation of molecular energy as the 

function of atomic arrangements is rapidly becoming a routine task, and the pro- 

posed graph-theoretical framework is expected to reveal some of the regularities and 

general trends within families of chemical reactions. 

Graph theory is a powerful mathematical discipline for a concise description of 

the most essential interrelations among entities from which a given physical system 

is composed [for selected applications in the field of the natural sciences, see, e.g., 
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[l, 2,5,6,9,10,11,17,19,20]. Chemistry, more specifically, the interrelations among 

chemical reactions, is a field where typically a very large number of entities 

(chemical species) may be involved. The complexity arises in part from the large 

number of possible interconversions among chemical species, as well as from the 

complicated manner in which the individual transformations occur. Thus graph 

theory is an ideal tool for the analysis of chemical reactions. 

The energy content of chemical species and the energy variation during the course 

of chemical reactions fundamentally influence the stability and the very existence 

of molecules. Energy is one of the most fundamental quantum mechanical obser- 

vables, and contemporary analysis of chemical reactions involves, almost without 

exception, a study of energy relations and energy profiles. Within a semi-classical 

model the energy content of molecules depends on the mutual position of the nuclei 

that can be characterized either by a set of Cartesian coordinates, or by a set of inter- 

nal coordinates, such as bond distances, bond angles and torsional angles. (Note 

that there are three coordinates for each nucleus, that is, for N nuclei altogether 3N 

coordinates, however, in the absence of external electromagnetic or other fields, 

three translational and three rotational degrees of freedom of the molecule as a 

whole can be eliminated, hence one has only 3N- 6 dimensions for N > 2). In 

general, the energy functional of a molecule of N nuclei can be represented as a 

(3N-6)-dimensional energy hypersurface E(K) over a nuclear configuration space 

A4 defined in terms of a suitable set of ‘internal’ coordinates. Points along such 

potential energy hypersurfaces can be calculated using quantum chemical methods, 

and the analysis of such energy hypersurfaces leads to a detailed understanding of 

chemical processes and possibly to the discovery of new reactions (see, e.g., 

[3,4,12,13,14,15,16,18,21,22,23]). 

Take a fixed collection of N nuclei and consider all possible molecules which can 

be composed from them. For simplicity, we may assume that all these molecules are 

in their most stable (lowest) electronic state, although this restriction is not essential. 

(For a recent review of the concepts of reaction topology, see [23].) Considering all 

possible relative positions of these nuclei, it is evident that all these molecules corres- 

pond to some domains of the lowest energy hypersurface E(K), defined over a 

(3N-6)-dimensional nuclear configuration space M. Stable molecular arrange- 

ments, e.g., a single stable molecule of N nuclei, or two non-interacting stable 

molecules of Nt and N2 nuclei, where N, + N2 = N, correspond to (3N-6)-dimen- 

sional basins called catchment regions of energy minima of the hypersurface. The 

ith catchment region and the ith minimum are denoted by C(O,i) and K(O,i), 
respectively. Stable molecules or molecular systems can be thought of as formal 

‘residents’ of such multidimensional catchment regions. It is also evident, that all 

chemical reactions involving precisely this set of nuclei and no electronic excitation, 

correspond to transformations along the energy hypersurface E(K), that is, to for- 

mal displacements from one domain of the hypersurface to another. Transition 

structures, also referred to as ‘transition states’, occurring in chemical transforma- 

tions between two stable arrangements, correspond to (3N-7)dimensional ‘moun- 
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tain ridges’, i.e., (3N-7)-dimensional catchment regions C(l, i) of saddle points 

K(l, i) of one negative canonical curvature. In the above notation the first index in 

the parentheses, generally denoted by Iz, is the number of negative eigenvalues of 

the Hessian matrix at the critical point K(A, i) of E(K), also called the critical point 

index, whereas i is an index of ordering. A general (3N-6-A)-dimensional catch- 

ment region of a critical point K(A, i) of E(K), is denoted by C(n, i). These catch- 

ment regions generate a partitioning and a topology on the potential energy 

hypersurface, and provides an assignment of chemical species to domains of the 

hypersurface, or equivalently, to those of the nuclear configuration space M. 

Here M is a metric space, and a general quantum chemical reaction graph on 

E(K) is defined as an intersection graph of the catchment regions and their closures, 

where the closure refers to the metric of M. The chemically most useful reaction 

graphs G(1’, r), 1’ < A< A”, are restricted to stable molecules and proper transition 

structures, i.e., to the cases of ,J = 0 and A = 1. (Note that in some related studies 

the G(A,i) notation has been used for a coordinate neighbourhood of catchment 

region C(& i). In the present study letter G always represents a graph.) These catch- 

ment regions constitute the vertex set of the reaction graph G(0, I)=( V,E), 

I/= {C(O,i)} u {C(l,i)} 

whereas the edge set 

(1) 

E = { [C(A, i), C(A’, i’)] :Jz/‘(i, i’) = l} 

is defined in terms of the strong neighbour relation [13]: 

(2) 

Jy”(i, i’) = 
1 if [C(A, i) fl C(n: i’)] U ]C(n, i) n c(n: if)] + 0, 

0 otherwise. 
(3) 

The above definition is motivated by the direct involvement of formal transition 

structures in actual chemical transformations, and by the fact that two stable 

chemical species may undergo direct interconversions into each other by more than 

one reaction mechanism, that is, involving different transition structures [ 131. 

Embeddings of the graph G(O,l) on an orientable surface 

Even those reactions of chemical interest which involve small molecules corres- 

pond to rearrangements of approximately five to ten atoms, hence the associated 

potential energy hypersurfaces have typical dimensions in the range of 3 x 5 - 6 = 9 

to 3 x 10 - 6 = 24. A typical chemical reaction of organic chemistry may easily in- 

volve ten times more nuclei, and the dimensions of the relevant energy hypersurfaces 

may be several hundreds. It is of evident advantage to reduce the dimension of such 

problems, and embedding the corresponding reaction graphs on two dimensional 
surfaces can considerably simplify the analysis. 

We may assume that the reaction graph G(0, 1) of an arbitrary potential energy 
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hypersurface E(K) of n dimensions is drawn on a two-dimensional sphere S2, 

possibly with some of its edges crossing one another. Following the method describ- 

ed on page 116 of [6], one can attach a handle to the sphere S2 at each crossing and 

allow one of the crossing edges to go over the handle and the other under it. By this 

technique each such crossing can be eliminated and in the process the sphere S2 is 

transformed into an orientable surface of genus g, where g is the number of handles 

required. If the embedding is carried out with the minimum number g of handles, 

then all faces of the graph on the orientable surface are simply connected. For this 

orientable surface the generalized Euler relation holds: 

V-E+F=2-2g (4) 

where V, E, and F are the number of vertices, edges, and faces of the embedded 

reaction graph, respectively. 

Characterization of embedded reaction graphs 

There are several topological invariants of a reaction graph G embedded on orien- 

table surfaces, and we shall consider four such invariants: 

(i) the genus g=g(G) described above, 

(ii) the thickness t = t(G), the minimum number of planar subgraphs whose 

union is G, 

(iii) the coarseness c=c(G), the maximum number of edge-disjoint nonplanar 

subgraphs of G, 

(iv) the crossing number x=x(G), the minimum number of pairwise edge in- 

tersections when G is drawn in the plane. 

For a discussion of graph-theoretical properties of these invariants see [6, p. 1161, 

whereas concerning invariants of toroidal graphs see [7] and [8]. 

Some of the topological invariants are determined fully by the topology of the 

orientable surface itself, e.g., the genus g, whereas the determination of some others 

(notably, the crossing number x) requires the graph itself and cannot be deduced 

from the topological properties of the surface. 

These invariants characterize the complexity of the family of chemical reactions 

admitted by the potential energy hypersurface E(K). Although the invariants 

themselves are rigorously defined, they do not correspond directly to common 

chemical concepts. Nonetheless, these invariants do indicate some of the qualitative 

features of the given family of chemical reactions. 

A large crossing number x indicates that there are many interconversion processes 

involving relatively few molecules. 

If a large crossing number x occurs in combination with a relatively small genus 

g, this is an indication that the assignment of interconversions to chemical species 

is not random, and interconversions admit a classification; the classes can be 

associated with individual handles on the orientable surface. 
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The thickness t can be taken as the number of (possibly overlapping) molecular 

families where within each family the number of interconversion processes is 

relatively small as compared to the number of molecules, and their assignment to 

molecule pairs is not very different from random. 

The coarseness c, on the other hand, indicates the number of disjoint families of 

chemical species which are interrelated to one another within a family by a large 

number of different reactions. These families can then be taken as semi-autonomous 

reaction families on the original potential energy hypersurface E(K). 

Embeddings and invariants of conformational processes 

Conformational processes can be regarded as special chemical reactions, which 

are 

(i) monomolecular processes, 

(ii) rearrangements in which no chemical bonds are formed or broken. 

For a general potential energy hypersurface E(K) conformational domains of the 

nuclear configuration space A4 can be confined to various level sets 

F(A) = {K:KEM,E(K)<A}, (5) 

i.e., to families of those points K of A4 where the energy is less than some energy 

bound A. For a conformational problem A is usually chosen below the lowest 

dissociation energy of a molecule. If the level set F(A) is disconnected, then we con- 

sider its connected components separately. Each connected component is a separate 

conformational domain of M. 

In most conformational problems it is relatively easy to assign the most important 

conformational rearrangements to chemically indentifiable internal coordinates of 

the molecule, e.g., to angles of bond rotations or to angles of pyramidal inversions, 

etc. This fact often leads to some simplifications. 

For simplicity, we shall choose chemical examples where between each two stable 

conformers there exists at most one direct conformational transformation. Hence, 

instead of graphs G(0, 1) it will be sufficient to consider the simplest reaction graphs 

G(0) defined by the neighbour relation [13] 

1 1 
Jv(i, i’) = 

if c(O, i) n c(O, i’) # 0, 

0 otherwise. 

where i # i’. 
Consider the example of m-xylene derivatives, where both methyl groups of the 

m-xylene molecule contain one large substituent L, and there is another substituent 

2 in ring position 2 (see Fig. 1). The conformational polyhedron of this problem, 

restricted to the case where energy bound A is lower than that required for free rota- 

tions of the substituted Me groups, has been discussed in [14]. 
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Fig. 1. The two-dimensional conformational problem of a family of substituted m-xylene derivatives. 

Full 2n rotations along angle coordinates ,8, and pz are hindered. 

Here we shall use the same chemical example with some modifications to illustrate 

an embedding of a reaction graph and the use of invariants. 

A schematic potential surface of this (essentially two-dimensional) conforma- 

tional problem is shown in Fig.2. If the energy bound A corresponds to the solid 

contour line, drawn with the heavy line, then the corresponding level set F(A) con- 

tains five minima ml, . . . , m5, four saddle points ss, . . . , sg and the corresponding 

parts of their respective catchment regions. Minimum m5 is the lowest minimum. 

The energy maxima are denoted by capital M. For F(A) one obtains the reaction 

graph G(0) of edges shown by solid lines in Fig. 3. If one takes a somewhat higher 

energy bound A’ shown by the dashed line in Fig. 2, then graph G’(O), is obtained, 

which contains, in addition to the edges of G(O), the edges shown by the dashed lines 

in Fig. 3. A further increase in the energy bound to the value A” leads to the level 

set F(A”), shown by the dotted contour line in Fig.2. By periodicity of rotation 

angles p, and & the opposite boundary line segments of F(A”) are equivalent and 

one obtains graph G”(O), containing all solid, dashed and dotted edges of Fig.3. 

The simplest of these graphs is the planar G(O), a star, K,,,, which belongs to 

energy bound A. For all planar graphs, the invariants are g = 0, x = 0, t = 1 and c = 0. 

Thus this holds for both the star G(0) = K,,, and the wheel G’(O)= IV,. However, 

the complete graph G”(0) = K, is nonplanar and the relevant invariants are g = 1, 

x= 1, t=2 and c= 1. 

The embeddings of graphs G(0) = K,,, and G’(0) = W, at energy bounds A and 

A’, respectively, can be done on a sphere, but the embedding of G”(0) = KS requires 

at least one handle, i.e., a torus. A change from a planar graph to a nonplanar one 

as energy bound A’ is increased to A”, brings about significant changes in the in- 

variants. 

Let us assume now that substituent L contains a group that is capable of a 

pyramidal inversion. We shall also assume that the two conformers arising when 
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LEVEL SETS FOR ENERGY BOUNDS A,A’ AND A” 

“0 60 120 180 240 300 360 

& 

Fig. 2. Conformational level sets F(A), F(A’) and F(A”) of the accessible nuclear geometries of the m- 

xylene derivative problem at energy bounds A, A’ and A”, respectively. Energy contours at the above 

energy bounds are denoted by heavy solid line, dashed line and dotted line, respectively. Minima, saddle 

points and maxima are denoted by m, s and M, respectively. 

other conformational motions are frozen are of about equal stability. Furthermore, 

we assume that the energy barrier to this pyramidal inversion is high, and it can oc- 

cur at some energy bound A”‘, slightly higher than A”, only if the two substituted 

methyl groups are in the vicinity of their lowest minimum conformation m5. 
Since the above conformational problem is essentially three-dimensional, energy 

being the fourth dimension, it is impossible to represent this potential hypersurface 

pictorially. However, the graph-theoretical description and embeddings of this pro- 

blem are easily visualizable. The corresponding reaction graph G”‘(0) is shown with 

solid lines in Fig.4, where the two KS components are drawn so as to give the 

GRAPHS G(O), G’(O) AND G”(0) 

ml 
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Fig. 3. Reaction graphs G(O), G’(0) and G”(0) of level sets F(A), F(A’) and F(A”), are shown with solid, 

solid + dashed, and solid + dashed + dotted lines, respectively. 
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Fig. 4. 
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If substituent L of the m-xylene derivative contains a group capable of pyramidal inversion, sub- 

some energy constraints (see text), then the conformational reaction graphs G”‘(0) and G”“(0) are 

obtained, containing the solid edges and all edges, respectively. 

smallest crossing number x for G”‘(O). The two subfamilies of minima associated 

with the two possible conformations of the L group are shown as the vertices of one 

K, component with no primes and those of the other with primes, respectively. The 

energy conditions on this family of conformational changes imply that the two sub- 

families, associated with the two conformations of the L group, are joined only 

though the boundary of catchment regions C(O,5) and C(O,5’) of minima rrz5 and 

m;, respectively. Elimination of the msm; edge leads to a chemically significant 

partitioning of G”‘(0) into two blocks. Elimination of edge m,m; corresponds to 

an A”+A” lowering of the energy bound, whereas the two K, blocks obtained at 

energy A” correspond to two ‘autonomous’ conformational subsets of the potential 

energy hypersurface E(K), one for each of the two possible conformations of group 

L. Evidently, the theorem of Battle, Harary, Kodoma and Youngs [6,p. 1191 ap- 

plies, and the genus g(G”‘(0)) depends only on the genus g(&) of its two KS blocks. 

If at a higher energy bound A"" the additional m, ++m;, m5- rn[ and ml *m; 
direct conformational interconversions also become possible, then the graph G”“(0) 

is obtained, that includes, in addition to the edges of G”‘(0) also those shown by dot- 

ted lines in Fig. 4. The A"'+A"" energy increase does not change the graph in- 

variants, and g = 2, t = 3, c = 2 and x = 2 for G”“(0) as well as for G”‘(O). If, however, 

the energy bound is further increased allowing for further direct conformational in- 

terconversions involving m5 or rn; (the energetically most favourable conforma- 

tions), then this energy change inevitably leads to changes in the values of at least 

some of the invariants. 

Summary 

For the analysis of the most essential interrelations among reactions occuring 

along multidimensional potential energy hypersurfaces a simple graph-theoretical 

embedding technique is proposed. An energy criterion is used which restricts the 

embeddings and the analysis to the chemically important low energy regions of the 
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potential energy hypersurface. Such embeddings can always be accomplished on 

two-dimensional, orientable surfaces, and this reduction of dimension allows one 

to easily visualize relations among complicated reaction mechanisms. Topological 

invariants of the reaction graphs and their embedding surfaces provide characteriza- 

tion of various families of chemical reactions. 
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