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SUMMARY

Pericytes are endothelial-associated cells that con-
tribute to vessel wall. Here, we report that pericytes
may derive from direct conversion of committed
skeletal myoblasts. When exposed to Dll4 and
PDGF-BB, but not Dll1, skeletal myoblasts down-
regulate myogenic genes, except Myf5, and upregu-
late pericyte markers, whereas inhibition of Notch
signaling restores myogenesis. Moreover, when co-
cultured with endothelial cells, skeletal myoblasts,
previously treated with Dll4 and PDGF-BB, adopt a
perithelial position stabilizing newly formed vessel-
like networks in vitro and in vivo. In a transgenic
mouse model in which cells expressing MyoD acti-
vate Notch, skeletal myogenesis is abolished and
pericyte genes are activated. Even if overexpressed,
Myf5 does not trigger myogenesis because Notch
induces Id3, partially sequestering Myf5 and inhibit-
ing MEF2 expression. Myf5-expressing cells adopt
a perithelial position, as occasionally also observed
in wild-type (WT) embryos. These data indicate that
endothelium, via Dll4 and PDGF-BB, induces a fate
switch in adjacent skeletal myoblasts.

INTRODUCTION

Cells of the dorsal somites are committed to skeletal myogenesis

by signals such as Wnt and Shh that emanate from neighboring

tissues (Cossu and Borello, 1999). Some committed cells

promptly differentiate to form the myotome, whereas other

progenitors, marked by the expression of Pax3 and Pax7, prolif-

erate giving rise to all subsequent populations of embryonic,

fetal, and postnatal myogenic cells that differentiate at specific

stages of development (Buckingham and Relaix, 2007). It is still

unknown how proliferation and differentiation are asynchro-

nously regulated during development (Biressi et al., 2007a).
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However, it is generally assumed that, once committed, skeletal

myoblasts are fated to differentiate into myofibers after variable

rounds of cell divisions. Indeed, highly purified embryonic or

fetal myoblasts, once explanted in culture, readily differentiate

into oligo or multinucleated myotubes (respectively) and do

not require any instructive signal (Biressi et al., 2007b), thus

indicating that they are already committed to myogenesis.

Moreover, embryonic myoblasts are resistant to the action of

molecules such as TGF-b and BMP that rather inhibit myogene-

sis in later populations ofmyogenic cells such as fetal myoblasts.

However, it was previously demonstrated that the Notch

pathway inhibition (through Dll1 gene ablation) in the embryo

leads to a premature myogenic differentiation and depletion of

the muscle progenitor population (Schuster-Gossler et al.,

2007). Conversely, overexpression of Dll1 inhibits MyoD-medi-

ated myogenesis but does not affect Pax3 or Myf5 expression

(Delfini et al., 2000). Thus, it appears that only Notch activation

inhibits embryonic myogenesis. Interestingly, the Notch ligands

Dll1 and Dll4 are expressed by developing endothelium (Kume,

2012) together with PDGF-BB, which recruits pericytes from

the surrounding mesenchyme (Hellström et al., 1999). These

data raised the possibility that those myogenic progenitors that

are in close proximity to the developing endothelium in embry-

onic and fetal skeletal muscle may be prevented from progress-

ing toward terminal myogenesis and converted to a perithelial

fate via Notch ligands and PGDF-BB. By a combination of in vitro

and in vivo approaches, we show that this is indeed the case,

thus demonstrating that a fate switch may occur as a natural

developmental process.
RESULTS

Dll4 and PDGF-BB Inhibit Skeletal Myogenesis and
Induce Pericyte Markers in Pax3-Expressing Skeletal
Myoblasts
Embryonic myoblasts, sorted from Pax3GFP/+ E11.5 embryos

(Figures S1A and S1B available online) after removal of neural

tube and dorsal root ganglia, were cultured in standard condi-

tions (see Experimental Procedures). All of the cells expressed
Inc.
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GFP (Figure S1D, right panel), and virtually all (>95%) underwent

myogenic differentiation, generating thin oligonucleated, MyHC-

expressing myotubes (Figure 1A, upper panel). To rule out

possible contamination by neural cells, immunofluorescence

with an antibody against Sox2 was performed on Pax3GFP/+

cells, digested from the whole embryo (Figure S1E, upper panel)

or on Pax3GFP/+ cells digested from embryos whose neural

structures had been previously removed (Figure S1E, lower

panel). Sox2-expressing cells were easily detected in the prepa-

ration from the whole embryo but were completely absent in the

preparation from aneural embryos. As previously shown for

Myf5GFP/+ embryonicmyoblasts (Biressi et al., 2007b), Pax3GFP/+

cells were also found to be insensitive to many molecules such

as BMP, bFGF, and TGF-b (Figure S1C), which are known to

inhibit fetal myogenesis. However, when Pax3GFP/+ myoblasts

were cocultured with human umbilical vein endothelial cells

(HUVECs), some cells (approximately 10% of the population)

were found to express alkaline phosphatase (AP), a pericyte

marker (Figure S1E, lower-right panel). Because it is known

that endothelial cells are able to recruit pericytes and produce

Notch ligands and PDGF-BB (Scehnet et al., 2007; Hellström

et al., 1999), we cultured Pax3GFP/+ myoblasts in dishes coated

with the Notch ligand Dll4 in the presence of PDGF-BB. Under

these conditions, skeletal myogenesis was almost completely

(<5% of MyHC+ cells) inhibited (Figure 1B, upper panel, and Fig-

ure 1F). Within 12 hr, Dll4 and PDGF-BB induced expression of

pericyte markers such as AP, RGS5, and NG2, which were prac-

tically undetectable in nontreated control cells by quantitative

PCR (qPCR) (Figure 1F), immunofluorescence (with the excep-

tion of rare NG2+ cells in control cells: Figures 1B–1D, middle

panel, and 1F), or western blot analysis (Figure 1E). Among other

pericyte markers, PDGF receptor b (PDGF-Rb) transcript

(mRNA), which is also expressed in myoblasts, was upregulated

2-fold after exposure to Dll4 and PDGF-BB (Figure 1F). Both

qPCR and western blot analysis revealed an enhanced expres-

sion of Myf5, at variance with all the other myogenic markers

tested, which were strongly downregulated (Figures 1E and

1F). Exposure to Dll4 and PDGF-BB did not interfere with the

low level of apoptosis usually observed in embryonic myoblasts

(<5%; data not shown). However, treated cells, at variance with

control cells, continued to proliferate (Figure S1G). Dll4 and

PDGF-BB-dependent inhibition of myogenesis was found to be

irreversible after subculture in fresh, control medium. In contrast,

the block of Notch signaling with L-685,458, a g-secretase inhib-

itor (that hampers proteolytic activation of Notch receptors, thus

preventing nuclear translocation of its intracellular domain) (De

Strooper et al., 1999) in Pax3GFP/+ Dll4 and PDGF-BB-treated

cells, led to a rapid andmassive (>80%) myogenic differentiation

(Figures 1A–1D, lower panel, and 1F) and silencing of pericyte

genes (Figures 1B and 1C, lower panel, 1F). When compared

with bona fide NG2+/PECAM� pericytes sorted from wild-type

(WT) aneural embryos, Pax3GFP+ myoblasts, exposed to Dll4

and PDGF-BB, were found to express comparable and in

some cases even higher levels of the pericyte markers analyzed

(Figure 1G). All the experiments described above were conduct-

ed by exposing cells to Dll4 and PDGF-BB, and L-685,458 for the

phenotype reversion. In order to test the role of each of these

factors, we repeated the experiment using the two molecules

separately or in combination. Figures S2A–S2D show that
Develo
PDGF-BB alone did not induce AP expression but potentiated

its activation when administered together with Dll4 that was

active also when administered alone. To test the specificity of

Dll4, we repeated the same experiment using other Notch activa-

tors such as Dll1 and Jagged1. As expected, Pax3GFP/+-ex-

pressing myoblasts did not differentiate in the presence of Dll1

and Jagged1. However, under these conditions, treated cells

did not activate expression of pericyte markers (Figures S2E

and S2F), indicating that the observed effect is specific for Dll4

and not redundant among the other Notch ligands tested. In

order to test whether Dll4 exerts this effect on every mesoderm

cell type, we similarly treated 10T1/2 fibroblasts. qPCR (Fig-

ure S3B) and immunostaining for AP (Figure S3A) revealed no

activation of pericyte markers in fibroblasts exposed to Notch

ligand Dll4 and PDGF-BB, indicating that recruitment to a peri-

cyte fate, though probably shared by other cell types, is not an

unspecific response of any cell to Dll4 and PDGF-BB.

Dll4 and PDGF-BB-Treated Myoblasts Associate with
Endothelial Cells to Form Vessel-like Networks In Vitro
and In Vivo
We then tested the ability of myoblasts exposed to Dll4 and

PDGF-BB to form vessel-like structures in vitro and in vivo.

HUVECs cultured alone in Matrigel usually form an unstable

network that disappears after a few days (Nakatsu et al.,

2003). In contrast, when we sorted bona fide pericytes (NG2+/

PECAM) from aneural GFP+ mouse embryos and combined

them with HUVECs in an in vitro Matrigel sandwich, they formed

vessel-like networks that were stable for many days. Virtually all

GFP+ cells were closely associated with HUVECs assuming

a clear perithelial position (Figures 2A–2C and S4G–S4J). The

same approach was repeated with untreated Pax3GFP/+ cells,

some of which initially (within the first 12 hr) associated to the

HUVEC endothelial network (Figures S4A–S4C) and assumed

a perithelial position; however, after additional 24 hr, the majority

of the population rapidly differentiated into thin oligonucleated

myotubes, indicating that they undergo skeletal myogenesis

also under this experimental condition (Figures 2D–2F) and

contribute to the disassembly of the endothelial network that

had formed after 12 hr (Figures S4A–S4C). Only when Pax3GFP/+

cells had been previously treated with Dll4 and PDGF-BB and

cultured in Matrigel together with HUVECs (identified in Figures

2H, 2I, 2K, 2L, and 2N, by BV9 human-specific anti-VE-cadherin

in red), they closely associated to them in a perithelial position

and formed a vessel-like network that remained stable for up

to 2 weeks (Figures 2J–2L and S4D–S4F). The same effect was

observed when a Matrigel plug was implanted subcutaneously

into nudemice: after 2 weeks, a large vessel network, connected

with the host vasculature, had developed (Figure 2M). Immuno-

fluorescence analysis confirmed close association of Dll4 and

PDGF-BB-treated, Pax3GFP/+ myoblasts with HUVECs labeled

by an anti-BV9 antibody (Figure 2N), thus demonstrating that

the vessel-like structures formed in the Matrigel plug consist of

both endothelium and myoblast-derived pericytes, that contri-

bute to network stability. To confirm that HUVEC-derived Dll4

was responsible for pericyte recruitment, we silenced in vitro

Dll4 expression, testing four specific shRNAs and selecting the

most efficient (shRNA4) for in vivo experiments (Figures S5A

and S5B). Under these conditions, HUVECs were no longer
pmental Cell 24, 586–599, March 25, 2013 ª2013 Elsevier Inc. 587



Figure 1. Dll4 and PDGF-BB Inhibit Skeletal Myogenesis and Induce Pericyte Markers

(A–C) Immunofluorescence analysis of markers expressed by purified Pax3GFP/+ embryonic myoblasts (E11.5) in control culture condition (Control, A–C, upper

panel) and after treatment with Dll4 and PDGF-BB (Treated, A–C, middle panel) and of treated cells after exposure to g-secretase inhibitor (L-685,458), a Notch

inhibitor (Reverted, A–C, lower panel). Cells were stained with a anti-MyHC (red), AP (green), NG2 (violet) antibodies, and Hoechst (blue). Scale bars, 100 mm (B

and C) and 50 mm (A).

(D) Phase-contrast analysis of AP reaction (violet) of control (upper panel), treated (middle panel), and reverted cells (lower panel). Scale bar, 50 mm.

(E) Western blot analysis of myogenic (Pax3, Myf5, MyHC) and pericyte (PDGF-R, NG2, AP) markers expressed by control (C) and treated (T) cells. b-Tubulin

(b-TUB) was chosen as a normalizer.

(legend continued on next page)
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able to consistently recruit pericytes, though few cells still asso-

ciated to them in an unstable network visible at 12 hr (Figures

S4K and S4L) but were no longer present at later times. As

a matter of fact, 2 weeks after the implant into a nude mouse

of a Matrigel plug of shRNADll4HUVECs and Dll4 and PDGF-

BB-treated Pax3GFP+ cells, there was no detectable vessel

formation inside the plug (Figure S5B).

Dll4 and PDGF-BB Also Convert Myf5-Expressing
Myogenic Cells
Although Pax3 expressionmarks skeletal muscle commitment in

the embryo, cells entering the myogenic differentiation pathway

activate bHLH such as Myf5 and/or Myod (Buckingham and

Relaix, 2007). Therefore, we investigated whether Dll4 and

PDGF-BB might also convert Myf5-expressing cells that

have progressed toward myogenic differentiation more than

Pax3+ cells. To this aim, we sorted Myf5GFP/+ embryonic

(E11.5) and fetal (E16.5) myoblasts, from the Myf5GFP/+ trans-

genic mouse by FACS (Figure 3A). Under the same experimental

conditions previously employed for Pax3GFP/+-expressing

myoblasts, both embryonic (Figure 3A, left columns) and fetal

(Figure 3B, left columns) Myf5GFP/+-expressing myoblasts were

no longer able to differentiate into skeletal myotubes and acti-

vated expression of AP (right columns of both Figures 3A and

3B). qPCR revealed that pericyte genes were activated in both

myoblast populations, although not all at the same extent than

in Pax3GFP/+ myoblasts: as an example, RGS5 was much more

robustly upregulated in fetal myoblasts only, whereas increase

in NG2 expression was modest in both Myf5GFP/+ populations

(Figure 3C). This suggests that cells at a more advanced stage

of the myogenic differentiation pathway can still be converted

to a pericyte fate.

Committed Skeletal Myoblasts Can Be Converted to
Pericytes during In Vivo Development in a Transgenic
Mouse Model
RosaNICD transgenic mice (Murtaugh et al., 2003) express the

Notch intracellular domain (NICD) and thus activate the Notch

pathway after Cre recombination. To mimic the same condition

we had created in vitro, we crossed RosaNICD with MyoDiCRE

mice (Kanisicak et al., 2009) so that only cells that express

MyoD also activate Notch. Although it is well known that Notch

inhibits in vitro myogenesis (Kopan et al., 1994), we investigated

whether Notch activation would induce also in vivo a fate switch

of myoblasts toward a pericyte phenotype. As expected, E9.5

double-transgenic embryos appeared similar to WT embryos

(data not shown), consistent with the notion that the early

myotome is formed under the transcriptional control of Myf5,

before MyoD activation (Cossu et al., 1996). On the other hand,

at E11.5, MyoDiCRE:ROSANICD mutant embryos appeared to be
(F) Quantitative real-time PCR analysis of relative mRNA expression of MyoD, My

bars), treated cells (T, gray bars), and in cells treated for the same time with Dll4

different time points (12, 24, and 36 hr) of culture. Cells treated additionally with

they had been treated with the Dll4 and PDGF-BB, i.e. 12, 24, and 36 hr more a

as mean ± SEM.

(G) Quantitative real-time PCR performed on bona fide pericytes versus converte

express the same markers as converted myoblasts, although converted myobla

*p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005, one-way ANOVA, ns, not s

Develo
smaller compared to WT and showed a modest edema (Fig-

ure 4A). At this stage of development, expression of myogenic

markers (black bars in quantitative real-time PCR panel, Fig-

ure 4B) MyHC and MyoD appeared slightly reduced (though

differences were not statistically significant), whereas there

were no significant variations of pericyte marker expression

(white bars in qPCR panel, Figure 4B) with the exception of

a modest upregulation of AP (Figure 4B). Also, western blot anal-

ysis did not show major differences (Figure 4C) between the WT

and MyoDiCRE:ROSANICD mutant embryos. At the histological

level, no major differences were observed (Figure 4D, top

images), but immunofluorescence analysis revealed a reduced

number of MyHC-expressing cells in the proximal region of the

limbs (arrows in Figure 4D, bottom images), although the

myotomes appeared to be similar. At this stage, too few cells

have terminally differentiated in order to detect MyHC by

western blot analysis in extracts of total embryos (Figure 4C).

Immunofluorescence analysis at a higher magnification of

trunk mesoderm revealed many cells expressing Myf5 and

smooth a actin (SMA; a protein expressed at this stage both in

smooth and skeletal myoblasts; Babai et al., 1990; Herman and

D’Amore, 1985) in both WT and MyoDiCRE:ROSANICD embryos

(Figure 4E, bottom images); on the contrary, widespread expres-

sion of AP was only detected in MyoDiCRE:ROSANICD embryos,

and not in WT (Figure 4E, top images), where it usually appears

only around small vessels at E13.5 (unpublished data). At

E13.5, the abnormal phenotype was more evident in mutant

embryos (Figure 4F). Histological analysis did not reveal major

differences (Figure 4I, top images).On theother hand,differences

in gene and protein expression were now remarkable and

statistically significant (Figures 4G and 4H); MyHC+ fibers

appeared to be strongly reduced in themutant embryo (Figure 4I,

bottom images). Confocal microscopy confirmed a close

association of cells coexpressingMyf5 andAP,with the endothe-

liumofmedium- and small-size vessels (Figure 4J, arrow in upper

panel). At E16.5, mutant fetuses were severely compromised

showing a prominent edema (Figure 5A) and a dramatically

reduced skeletal muscle differentiation (Figure 5D) confirmed

by qPCR (Figure 5B) and western blot (Figure 5C) analyses.

Similarly to what was observed in vitro, Myf5 expression ap-

peared increased by 3-fold (Figure 5B) and was clearly detected

by immunofluorescence, whereas it appeared fainter in WT

embryos where expression is known to decrease at this stage

of development (Ott et al., 1991). Mutant embryos also overex-

pressed other pericyte markers such as the PDGF-Rb that we

found to be sometimes coexpressed with AP in immu-

nofluorescence analyses (Figures S6C and S6D). Dll4 expression

was markedly increased in mutant fetuses being localized in

vessels and also, at a very high level, in mononucleated cells

not associated to vessels (Figure S6E), only few of which
f5, MyHC, myogenin, NG2, RGS5, AP, and PDGF-R b in control cells (C, black

and PDGF-BB and then with L-685458 (R, white bars). Cells were analyzed at

Notch inhibitor (L-685,458) were treated with the inhibitor for the same time

fter Notch activation (thus 24, 48, and 72 hr in total after). Data are expressed

d myoblasts. Results show that sorted pericytes (NG2+/PECAM� population)

sts express pericyte markers at higher levels than bona fide pericytes.

ignificant. See also Figures S1–S3.
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Figure 2. Angiogenesis Assay In Vitro and In Vivo

(A–C) In vitro Matrigel sandwich (in vitro assay) containing a mixture of HUVECs and bona fide pericytes NG2+/PECAM� sorted from Homo-GFP (Hadjantonakis

et al., 1998) E11.5 mouse embryos. (A) Phase contrast of HUVECs mixed with pericyte control cells. (B and C) HUVECs mixed with pericyte GFP+ stained with

anti-GFP antibody (green).

(legend continued on next page)
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expressedMyf5 (Figures S6A and S6B). The nature of these cells

remains to be investigated.

From E16.5 to E18.5, alterations in development were exacer-

bated in the mutant embryo, lung formation was compromised,

and the edema became even more severe (Figure 5F). Newborn

mice were smaller, edematous, less vascularized, and did not

breathe. They died immediately after birth. A similar phenotype

has been reported for the Myf5/MyoD double-mutant embryos

(Rudnicki et al., 1993). Histological and immunofluorescence

analysis revealed dramatic differences in skeletal muscle

formation with few residual muscle fibers in the mutant fetus

(Figure 5I). Myf5 expression remains at very high levels (Figures

5G and 5H), whereas, as mentioned, it decreases further in

WT fetuses; similarly, pericyte markers were expressed at high

levels (Figures 5G and 5H). Moreover, we observed a high

number of Myf5-expressing cells closely associated to vessels

(Figure 5J, right panel). These results confirm that Notch acti-

vation in myogenic cells is able, also in vivo, to suppress myo-

genesis and activate the expression of pericyte genes, very often

in Myf5-expressing cells.

Direct Conversion of Myoblast to Pericytes Also Occurs
at Low Frequency in WT Embryos
The phenotype described above reflects an abnormal activa-

tion of Notch in myogenic progenitors in vivo. We wondered

whether Notch activation might enhance a phenomenon of

fate shift that may infrequently occur during normal embryogen-

esis, especially in those cells at the border of two different

anlagen and thus exposed to similar concentrations of signals

dictating different fates (Bianco and Cossu, 1999). To test this

possibility, we examined WT fetuses at E16.5 using different

immunofluorescence probes. Figures 6A–6C show a longitudinal

section of a blood vessel (identified by staining with SMA;

green in Figure 6A) where a single Myf5-expressing nucleus

(red in Figure 6B) was clearly detected. Figure 6D shows a trans-

versal section of a medium-size vessel, double stained for the

endothelial marker PECAM (red) and the pericyte marker NG2

(magenta) where two Myf5-expressing cells (arrows pointing to

green nuclei) were clearly detected in a perithelial position, within

the vessel wall. Moreover, by crossing MyoDiCRE mice with

Rosa-LacZ floxed (Figure 6E) or RosaEYFP (Figures 6F–6H),

we could detect at a low frequency (i.e., one example per five

203 microscopic fields) areas where LacZ or GFP-expressing

cells (hence, derived from MyoD-expressing progenitors) were

clearly detected inside the vessel wall (arrows in Figures 6E,
(D–F) In (D), Hoechst staining of HUVECsmixed with untreated Pax3GFP+ embryon

human nuclei. In (E), cells are stained with anti-GFP antibody (green) that marks so

(violet) that marks differentiated embryonic myotubes. This culture lasts between

(G–I) Matrigel sandwich containing Pax3GFP/+ cells, previously treated with Dll4

of the area indicated by the arrow. Phase-contrast analysis (G) shows a stable end

cadherin BV9 antibody (red) to stain HUVECs and with anti-GFP antibody (gre

identified by the arrow.

(J–L) Immunofluorescence of a 2 week stable endothelial network in a Matrigel sa

then mixed with HUVECs. Cells were labeled with Hoechst (blue), GFP (green), a

(M) Scheme of an in vivo Matrigel plug: a mixture of Dll4-PDGFBB treated Pax3

taneously into nude mice. (right panel) The right image shows gross anatomy of

(N) Confocal analysis of representative cryostat sections of the Matrigel plug

Pax3GFP/+ cells are stained with anti-GFP (green), whereas HUVECs for BV9 (red

Scale bars, 50 mm. See also Figures S4 and S5.
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6G, and 6H) even though not all the nuclei had adopted the

typical elongated pericyte morphology. Low magnification

(Figure 6F) shows that immunofluorescence labeling was

correct and that the large majority of endothelial cells (red)

were intermixed with myogenic cells as expected. Moreover, in

MyoDiCRE:RosaEYFP mice, we could detect several YFP+ cells

surrounding the endothelial layer of a medium-size artery, within

the NG2+ cells (Figures 6I and 6J). At a higher magnification

(Figures 6K and S7), confocal analysis revealed several Myf5-ex-

pressing cells (arrows) also expressing AP (identified by a red

fluorescent substrate) Together, these data indicate that skeletal

myoblasts may occasionally adopt a pericyte fate also during

normal embryogenesis.

Notch-Induced ID3 andMEF2 Inhibit Myf5 and Its Ability
to Activate Myogenesis
Dll4 expression in vitro and NICD activation in vivo upregulate

Notch3 and Notch1 expression that, in myogenic cells, leads

to a strong downregulation of myogenic markers such as

MyoD (one well-known Notch target) and Myosin expression

(Kopan et al., 1994). Unexpectedly, Myf5 expression was

robustly upregulated, possibly as an attempt to compensate

for the absence of MyoD. However, despite its high level of

expression (Figures 1, 3, 4, and 5), Myf5 was not sufficient to

drive terminal myogenic differentiation (see above). By qPCR,

we first confirmed (Langlands et al., 1997) that in response to

Dll4 and PDGF-BB, also Pax3GFP/+ myoblasts upregulate the

expression of Id3, Notch3, Twist, and Lunatic Fringe (Figures

7A–7D). Thus, it is possible that Notch-induced upregulation

of Id3 and Twist may interfere with Myf5 activity (Langlands

et al., 1997). Indeed, Myf5 protein forms a complex with Id3

(the most upregulated member of the Id family after Notch acti-

vation) and, thus, may become unable to bind the myogenin

promoter and trigger myogenesis. Therefore, coimmunoprecipi-

tation was performed in E16.5 WT embryos and E16.5

MyoDiCRE:ROSANICD, which revealed binding of the two proteins

Myf5 and Id3, thus providing one possible explanation for the

inability of Myf5 to activate myogenesis (Figure 7F). Neverthe-

less, a ChIP analysis revealed that Myf5 was still able to bind

to the myogenin promoter, most likely because the Id3 seques-

tration of Myf5 was only partial, given its overexpression (Fig-

ure 7E). On the other hand, MEF2 was correctly expressed in

WT embryos but undetectable in mutant embryos (Figure 7G)

as already reported by Wilson-Rawls et al. (1999), and therefore,

even if Myf5 is partially able to bind the myogenin promoter, the
ic myoblasts. It is possible to detect white dots that represent LamA/C-positive

rted Pax3GFP/+ myoblasts. In (F), cells are stained also with anti-MyHC antibody

12 and 24 hr, then myogenic cells differentiate.

and PDGF-BB then mixed with HUVECs. Inset shows higher magnification

othelial network, which has been stained (H and I) with human-specific anti-VE-

en) that stains Pax3GFP/+ cells. Inset shows higher magnification of the area

ndwich containing Pax3GFP/+ cells, previously treated with Dll4 and PDGF-BB

nd anti-BV9 (red) antibodies.
GFP/+ cells plus HUVECs embedded into Matrigel has been implanted subcu-

freshly removed Matrigel plug, 2 weeks after implantation.

containing a mixture of Dll4 and PDGF-BB-treated Pax3GFP/+ and HUVECs:

).
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Figure 3. Dll4 and PDGF-BB Inhibit Fetal Skeletal Myogenesis and Also Induce Pericyte Markers

(A) Immunofluorescence analysis of embryonic Myf5GFP+. Differentiated cells are stained with anti-MyHC antibody (red) and Hoechst (blue). As described above

for the Pax3GFP/+ cells, sortedMyf5GFP/+ plated onDll4 and PDGF-BB (Treated) do not differentiate (left column) and express Alkaline Phosphatase (right column).

(B) Immunofluorescence analysis on fetal Myf5GFP/+. Differentiated cells are stained with MyHC (red) and Hoechst (blue). Inhibition of fetal myogenesis is almost

total and after exposure to Dll4 and PDGF-BB (left column) they express Alkaline Phosphatase at high level (right column).

(C) Quantitative real-time PCR analysis of myogenic (MyoD, Myf5, MyHC) and pericytes markers (AP, PDGF-B RGS5 and NG2) of Dll4 and PDGF-BB treated

embryonic and fetal Myf5GFP+ positive myoblasts compared to embryonic Pax3GFP/+ positive myoblasts.

Data are expressed as mean ± SEM. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005, ns: not significant one-way ANOVA. Scale bars, 50 mm.
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absence of the coactivator MEF2 prevents myogenin transcrip-

tional activation, thus blocking myogenesis (Figure 7H).

DISCUSSION

Pericytes are still poorly defined cells that express a number of

markers, none of which is unique, and, moreover, not all markers

are expressed simultaneously in the same cell, making their

identification in vivo and their prospective isolation a difficult

task (Armulik et al., 2011). Also, their origin is complex because

they may derive from neural crest, paraxial, and lateral meso-
592 Developmental Cell 24, 586–599, March 25, 2013 ª2013 Elsevier
derm (Dı́az-Flores et al., 2009). They are recruited by endothelial

cells through a PDGF-BB/PDGF-Rb loop but can also derive

from proliferation of pre-existing pericytes and, moreover, from

endothelial-to-mesenchymal transition (Endo-MT) (DeRuiter

et al., 1997; Zeisberg et al., 2007).

In contrast, myogenic cells have been thoroughly character-

ized and are unequivocally identified by the expression of

a number of unique (MyoD, Myf5, MRF4) or restricted (Pax3,

Pax7) transcription factors (Rudnicki et al., 2008). In contrast,

their surface markers are often shared with other cell types

and many, intriguingly, with pericytes. Notch and its ligands
Inc.



Figure 4. Analysis of Mutant and Control Embryos: E11.5 and E13.5

(A) Morphology of WT embryos compared to MyoDiCRE:ROSANICD embryos at E11.5.

(B) Quantitative real-time PCR analysis of the expression of myogenic and pericyte markers of MyoDiCRE:ROSANICD compared toWT embryos. Values are plotted

as percentage (%) of control. Data are represented as mean ± SEM. ns, not significant. Unpaired t test.

(legend continued on next page)
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play multiple roles in tissue development and regeneration (An-

dersson et al., 2011; Dahlqvist et al., 2003). In the case of

growing blood vessels, Dll4 and PDGF-BB expressed by tip

cells, respectively, bind Notch and PDGF-Rb on surrounding

mesoderm cells in order to regulate vessel growth and matura-

tion (Hellström et al., 1999). In developing skeletal muscle, meso-

derm tissue containsmany skeletal myoblasts at different stages

of proliferation, commitment, and differentiation, intimately

associated with the growing vessel that in the adult will form

a fine capillary network around each muscle fiber.

In this work, we show that already-committed skeletal

myoblasts, if exposed to recruiting signals from the endothelium,

can change their fate and enter the pericyte lineage. Indeed,

whereas embryonic myoblasts are insensitive to most mitogens

(Biressi et al., 2007b), they are inhibited only by Notch ligands.

Interestingly, all the Notch ligands tested (Dll1, Dll4, and

Jagged1) are able to suppress expression of myogenic genes

(with the notable exception of Myf5). However, only Dll4 acti-

vates pericyte genes in committed Pax3+ myoblasts and also

in Myf5 or MyoD-expressing myoblasts, although with a slightly

different pattern. Moreover, myogenic cells exposed in vitro to

Dll4 and PDGF-BB adopted a perithelial position stabilizing

vessel-like networks of endothelial cells both in vitro and in vivo,

whether the untreated cells are not able to stabilize and endothe-

lial network. Silencing of Dll4 in HUVECs blocks this effect thus

providing evidence that also this ligand is required for pericyte

recruitment, at least under these experimental conditions.

Finally, if NICD is activated during embryonic development

exclusively in MyoD-expressing cells, these cells downregulate

myogenic gene expression, again with the exception of Myf5,

and activate genes encoding for pericyte markers. Additionally,

whenever myoblasts are located close to a vessel, they adopt

a perithelial position while still maintaining a strong Myf5 expres-

sion. Under these experimental conditions, we observed the

activation of a ‘‘pericyte fate’’ in most myogenic cells. This event

is infrequent but not extremely rare also during normal embryo-

genesis, where both Myf5 and MyoD-expressing cells can be

found associated to the vessel wall. Thus, it appears that endo-

thelial cells can convert myogenic cells to pericytes, likely

through Dll4 and PDGF-BB. These molecules likely act on cells

in closest proximity to growing vessels. This also could explain
(C) Western blot analysis of myogenic (Myf5, MyHC) and pericyte (NG2, AP) mark

shown as individual bands here and in Figure 5 because protein extracts from W

proteins loaded (30 mg) was the same.

(D) H&E on transversal sections of WT and MyoDiCRE:ROSANICD embryos (upper

embryos, stained with anti-MyHC (red) and anti-PECAM (green) antibodies. Scal

(E) Immunofluorescence analysis of serial transversal sections of hindlimb of the em

PECAM (violet) antibodies in the upper part of the panel; in the lower part, sectio

antibodies. Inset shows higher magnification of the area defined by the rectangle

(F) Morphology of MyoDiCRE:ROSANICD mice and WT embryos at E13.5.

(G) Quantitative real-time PCR analysis of relative mRNA expression ofmyogenic (

AP, PDGF-R) in WT and MyoDiCRE:ROSANICD. Data are presented as mean ± SE

(H) Western blot analysis of myogenic (Myf5, MyHC) and pericyte (NG2, AP) mar

(I) H&E on transversal sections of MyoDiCRE:ROSANICD embryos at E13.5 (upper

embryos, stained with anti-MyHC (red) and anti-PECAM (green) antibodies, resp

(J) Immunofluorescence analysis of serial transverse sections of hindlimb of emb

(violet) antibodies in the upper part of the panel; in the lower part, sections are stai

Inset shows higher magnification of the area defined by the rectangle. Scale bar

See also Figures S6 and S7.
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why in mutant embryos, only a fraction of the Myf5+/AP+ cells

adopt a perithelial position.

Of the two molecules involved, Dll4 appears to be the main

actor because it can activate AP in vitro in the absence of

PDGF-BB and because in the in vivo experiments, the endoge-

nous levels of PDGF-BB were not altered. On the other

hand, PDGF-BB is known to stimulate myoblast proliferation

(Yablonka-Reuveni et al., 1990) and also recruitment of meso-

derm cells by the endothelium (Hirschi et al., 1998), consistent

with its ability to enhance Dll4 effect but not to replace it.

At the molecular level, Dll4 and PDGF-BB activate different

intracellular pathways that likely result in a cooperative effect

on the resulting ‘‘pericyte’’ phenotype. Interestingly, it was

reported that Notch activation leads to increased PDGF-Rb in

smooth muscle cells (Jin et al., 2008), similar to what we observe

in skeletal myoblasts, and this may represent a mechanism

reinforcing the action of Dll4 in this myoblast to pericyte

conversion.

The fact that myogenic identity is not erased is in agreement

with a recent report showing that activation of Notch in embry-

onic cells expressing Myf5 blocks myogenesis but not the

developmental progression of the various myogenic populations

(Mourikis et al., 2012). In our case, we observed that, in vitro,

g-secretase inhibition restores terminal myogenic differentiation;

moreover, Myf5 continues to be expressed in vitro and in vivo

at higher levels than WT, even though it fails to drive terminal

differentiation. Notch downstream effectors Hairy and Hes1

are known to activate myogenic bHLH inhibitors such as Twist

and Id (Tapanes-Castillo and Baylies, 2004; Reynaud-Deonauth

et al., 2002). We confirm here that these genes are indeed upre-

gulated in myogenic cells exposed to Dll4. Among these, Id3, the

most strongly upregulated, sequesters Myf5, likely reducing its

ability to bind the myogenin promoter, which still occurs but is

ineffective owing to simultaneous inhibition of MEF2 expression

(Gagan et al., 2012; Wilson-Rawls et al., 1999).

We recently showed that differentiating myofibers are able

to recruit pericytes to a myogenic fate in vitro (Ugarte et al.,

2012), in vivo (Dellavalle et al., 2011), and upon transplantation

(Dellavalle et al., 2007; reviewed in Tedesco and Cossu, 2012),

supporting the possibility of lineage promiscuity in solid

mesoderm development. In addition, endothelial, smooth, and
ers expressed by WT and MyoDiCRE:ROSANICD embryos at E11.5. Samples are

T and mutant embryos were run on distinct gels even though the amount of

panel); immunofluorescence analysis of serial transversal sections of the same

e bars, 50 mm.

bryos stained in (D) with anti-Myf5 (green) antibody, AP reaction (red) and anti-

ns are stained with anti-Myf5 (green), anti-SMA (red), and anti-PECAM (violet)

. Scale bars, 100 mm.

i.e., MyoD,Myf5, MyHC, andmyogenin) and pericytemarkers (i.e., NG2, RGS5,

M. *p < 0.05, **p < 0.005, ****p < 0.00005, unpaired t test.

kers expressed by WT and MyoDiCRE:ROSANICD embryos at E13.5.

panel); immunofluorescence analysis of serial transversal section of the same

ectively, on WT and MyoDiCRE:ROSANICD. Scale bars, 50 mm.

ryos (I) stained with anti-Myf5 (green) antibody, AP reaction (red), and PECAM

ned with anti-Myf5 (green), anti-SMA (red), and anti-PECAM (violet) antibodies.

s, 50 mm.
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Figure 5. Analysis of Mutant and Control Fetus: E16.5 and E18.5

(A) Morphology of MyoDiCRE:ROSANICD and WT fetuses at E16.5.

(B) Quantitative real-time PCR analysis of relative mRNA analysis of MyoD, Myf5, MyHC, and myogenin and of NG2, RGS5, AP, and PDGF in WT and

MyoDiCRE:ROSANICD fetuses. Data are represented as mean ± SEM. *p < 0.05, **p < 0.005, ****p < 0.00005, unpaired t test.

(legend continued on next page)
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Figure 6. Immunofluorescence Analysis of

Myogenic and Pericyte Markers in Normal

Embryos

(A–C) Immunofluorescence analysis with anti-SMA

(green, A) or anti-Myf5 (red, B) antibodies of

a vessel in an E16.5 WT fetus. Nuclei are stained

with Hoechst (blue). Merged image in (C).

(D) Immunofluorescence analysis of the same

fetus, showing a transverse section of a medium-

size vessel, stained with anti-Myf5 (green), anti-

NG2 (violet), and anti-PECAM (red) antibodies.

Arrows indicate twoMyf5+ cells closely associated

with the vessel muscular layer.

(E) X-Gal staining of a transverse section of

a vessel from a phenotypically normal My-

oDiCRE:ROSANZG fetus at E16.5. Two nuclear

LacZ-positive cells, derived from MyoD-express-

ing cell(s), are found in a perithelial position,

showing a typical pericyte nucleus (arrow).

(F–H) Immunofluorescence analysis of a trans-

versal section from MyoDiCRE:ROSAEYFP fetus at

E16.5, stainedwith anti-PECAM (red) and anti-GFP

(green) antibodies, showing normal intermixing of

myoblasts and endothelial cells in (F). In (G) and

(H), several YFP+ nuclei, hence, derived from

MyoD-expressing cells, are detected closely

associated with the vessel wall (arrows).

(I and J) Immunofluorescence of a transversal

section from MyoDiCRE:ROSAEYFP at E16.5,

stained with anti-PECAM (red), anti-GFP (green),

anti-NG2 (violet), and Hoechst (blue) reveals several YFP+ cells associated to the vessel wall (J). The same image is shown without the NG2 channel to more

clearly reveal YFP+ cells. Inset shows three eYFP+ cells adjacent to the endothelium (PECAM+). Rectangle shows the colabeling with NG2 and eYFP.

(K) Confocal immunofluorescence of a transverse section from E16.5 WT fetus, stained with anti-PECAM (violet), anti-Myf5 (green) antibodies and AP (red)

reaction. Arrows show AP+, Myf5+ cells adjacent to the endothelium.

Scale bars, 100 mm. See also Figure S7.
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skeletal muscle progenitors originate in the dermomyotome

where fate choice is dictated by signaling molecules such as

BMP, TGF-b, and Notch (Ben-Yair and Kalcheim, 2008). Indeed,

Pax3-expressing myogenic precursors are also able to migrate

ventrally and contribute to the smooth muscle of the aorta (Esner

et al., 2006; Lagha et al., 2009).

We now show that specific signaling molecules act also at

later stages of development and are therefore able to drive
(C) Western blot analysis of myogenic (Myf5, MyHC) and pericyte (NG2, AP) mar

(D) H&E of longitudinal sections of fetal limbs (upper panel); immunofluorescenc

anti-MyHC (red) and anti-PECAM (green) antibodies. Scale bar, 50 mm.

(E) Immunofluorescence of serial transversal sections of MyoDiCRE:ROSANICD h

PECAM (violet) antibody in two different magnifications. Left upper part of the pan

with anti-Myf5 (green), anti-SMA (red), and anti-PECAM (violet) antibodies. Left i

Inset shows higher magnification of the area defined by the rectangle. Scale bar

(F) Morphology of MyoDiCRE:ROSANICD mice and WT fetuses at E18.5.

(G) Quantitative real-time PCR analysis of relative mRNA analysis of MyoD, My

fetuses. Data are represented as mean ± SEM. **p < 0.05, ***p < 0.005, ****p < 0

(H) Western blot analysis of myogenic (Myf5, MyHC) and pericyte (NG2, AP) ma

orescence of serial transversal sections of trunk stained with anti-MyHC (red) an

(I) H&E of longitudinal sections of fetal limbs (upper panel); immunofluorescence

anti-MyHC (red) and anti-PECAM (green) antibodies. Scale bar, 50 mm.

(J) Immunofluorescence of serial transversal sections of hindlimb stained with ant

upper part of the panel of both WT (left) and MyoDiCRE:ROSANICD (right) fetuses; in

(right) fetuses are stained with anti-antibodies against Myf5 (green), anti-SMA (red

area defined by the rectangle. Scale bar, 100 mm.

See also Figures S6 and S7.
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conversion (i.e., fate change from skeletal to smooth muscle) in

already-committed cells. Hence, it appears that during embryo-

genesis, cells adopt a specific fate depending upon the timely

and appropriate exposure to signaling molecules emanating

from the surrounding cells (Bonfanti et al., 2012). However, these

fate choices are not irreversibly fixed but are reinforced and

stabilized by the microenvironment (Bonfanti et al., 2010; Booth

et al., 2008). In the case of developing skeletal muscle,
kers expressed by WT and MyoDiCRE:ROSANICD fetuses.

e analysis of transversal sections of the trunk of the same fetus, stained with

indlimb stained with anti-Myf5 (green) antibody, AP reaction (red), and anti-

el shows confocal analysis; in the lower part of the panel, sections are stained

mage depicts WT fetus, whereas the right shows a MyoDiCRE:ROSANICD one.

, 100 mm.

HC, myogenin, NG2, RGS5, AP and PDGFB in WT and MyoDiCRE:ROSANICD

.00005, unpaired t test.

rkers expressed by WT fetuses and MyoDiCRE:ROSANICD fetuses. Immunoflu-

d anti-PECAM (green) antibodies. Scale bars, 50 mm.

analysis of transversal sections of the trunk of the same fetus, stained with

i-Myf5 (green) and anti-PECAM (violet) antibodies and AP (red) reaction. In the

the lower part of the panel, sections of both WT (left) and MyoDiCRE:ROSANICD

), and anti-PECAM (violet) antibodies. Inset shows higher magnification of the

Inc.



Figure 7. Notch Target Gene Activation

Prevents Myf5-Mediated Myogenesis by

Both Sequestering Myf5 and Inhibiting

MEF2 Expression

(A–D) Quantitative real-time PCR analysis of ID3

(A), Notch3 (B), Twist (C), and Lunatic Fringe (D):

relative mRNA level of control (C), Dll4 and PDGF-

BB treated (T), and reverted (L-685,458) (R).

Pax3GFP/+ cells from E11.5 embryos. Data are

represented as mean ± SEM. *p < 0.05, ***p <

0.005 **p < 0.005, ****p < 0.00005, one-way

ANOVA.

(E) ChIP analysis of WT and MyoDiCRE:ROSANICD

fetuses at E16.5 showing binding of Myf5 on the

myogenin promoter only in mutant fetus.

(F) Immunoprecipitation of WT and MyoDiCRE:

ROSANICD fetuses at E16.5, revealing binding

between ID3 and Myf5.

(G) Double-immunofluorescence analysis of limbs

at E16.5, stained with anti-MEF2 (green) and

anti-Myf5 antibodies. WT fetuses stained with

anti-MCF2 (green) and anti Myf5 (red) antibodies.

Bone on the left shows nonspecific background

staining. Scale bar, 50 mm.

(H) A model proposing a molecular mechanism

regulating the conversion of myogenic progenitors

to a pericyte fate.
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developing fibers and endothelium may compete for

surrounding mesoderm cells, whose final fate is irreversibly fixed

only at the onset of terminal differentiation.

EXPERIMENTAL PROCEDURES

Mutant Animals and Genotyping

The Pax3GFP/+ (Relaix et al., 2005), MyoDiCRE (Kanisicak et al., 2009), and

ROSANICD (Murtaugh et al., 2003) mice were genotyped as previously
Developmental Cell 24, 586–59
described. All experiments were performed fol-

lowing regulations for animal care and handlings

(San Raffaele Hospital IACUC 355; UK Home

Office Project License PPL no. 70/7435).

Cell Isolation and Cell Culture

Cell isolation and cell cultures are detailed in

the Supplemental Experimental Procedures.

Briefly, embryonic myoblasts were obtained

from dissection of somites and limbs of E11.5

Pax3GFP/+embryos. Tissues were enzymatically

dissociated for 20min. Dissociated cells were sus-

pended in DMEM-high glucose (GIBCO), supple-

mented with 20% horse serum (HS; BioWhittaker),

20 mM HEPES, and 2 mM EDTA (Sigma-Aldrich)

and filtered before sorting. NG2+/PECAM�-posi-
tive cells were isolated from the GFP-negative

counterpart of Pax3GFP/+ embryos or Homo-GFP

(Hadjantonakis et al., 1998) mouse thus avoiding

contamination of myogenic cells.

For skeletal muscle differentiation, Pax3GFP/+-

sorted embryonic myoblasts were suspended

in DMEM-high glucose supplemented with 20%

HS onto collagen-coated dishes. Alternatively,

embryonic myoblasts were plated onto Dll4 (R&D

Systems; 1389-D4) 10 mg/ml-coated dishes and

grown in DMEM-high glucose medium supple-
mented with 20% HS and PDGF-BB (Sigma-Aldrich) at a concentration of

50 mg/ml. HUVECs were cultured in MCDB 131 (GIBCO) medium with endo-

thelial cell supplements as described previously (Lampugnani et al., 2002).

10T1/2 fibroblasts were cultured in DMEM-high glucose supplemented with

10% fetal calf serum on collagen-coated dishes.

Endothelial Cell Transfection

HUVECs were transfected at passage 1 using Lipofectamine (LTX&PLUS

reagent), with four different shRNAs targeting Dll4 (#1, #2, #3, and #4,
9, March 25, 2013 ª2013 Elsevier Inc. 597
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GeneCopoeia HSH013577) and with a scramble shRNA as a control for spec-

ificity. Briefly, 1.53 105 cells were plated into a 24-well. A total of 0.5 mg of DNA

was diluted into Opti-MEM and added to the cells according to the manufac-

turer’s instructions. Cells were then incubated for 18–24 hr and then analyzed

under a fluorescence microscope. qPCR analysis of Dll4 expression was per-

formed to select the best shRNA, and Matrigel plug assay was performed with

HUVECs after Dll4 silencing.

Angiogenic and Matrigel Plug Assays

Angiogenic assays were performed as already described in Akhtar et al.

(2002). Additional details are available in the Supplemental Experimental

Procedures. For Matrigel plug assay, HUVECs (4 3 106 cells/ml) were mixed

with Pax3GFP/+ (5 3 105 cells), either untreated or previously treated with

Dll4 and PDGF-BB. Five hundredmicroliters ofMatrigel-reduced growth factor

(BD; Matrigel 356230) wasmixed at a ratio of 1:1 with the cell suspension (con-

taining both HUVECs and either treated or untreated Pax3GFP/+ cells) and

promptly injected subcutaneously in the dorsal region of 2.5- to 3.5-month-

old nude mice. Plugs were recovered after 2–4 weeks after implant and then

embedded in OCT, cryostat sectioned, and processed for immunofluores-

cence analysis.

ChIP Assay and Immunoprecipitation

The ChIP protocol was performed on fetuses (E16.5) as previously described

(Messina et al., 2010). The following antibodies were used: rabbit anti-MEF2

(C21 sc-313X, 200 mg/0.1 ml; Santa Cruz Biotechnology); rabbit anti-Myf5

(Sc-302; Santa Cruz Biotechnology); and, as a control, normal rabbit IgGr

(Santa Cruz Biotechnology). Immunoprecipitated DNA was subjected to

PCR as detailed in the Supplemental Experimental Procedures. A detailed

description of the immunoprecipitation assay is available in the Supplemental

Experimental Procedures.

AP, Immunofluorescence, and Western Blot Analyses

AP reaction, immunofluorescence, and western blot on cells and tissues were

carried out as previously described in Tedesco et al. (2011) or detailed in

Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.devcel.2013.01.022.
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