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ABSTRACT. – In this paper we obtain the Plancherel formula for the spaces ofL2-sections of line bundles
over the complex projective hyperboloidsG/H with G= U(p, q;C) andH = U(1;C)×U(p− 1, q;C).
The Plancherel formula is given in an explicit form by means of spherical distributions associated with a
characterχ of the subgroupH . We obtain the Plancherel formula by a special method which is also suitable
for other problems, for example, for quantization in the spirit of Berezin. 2000 Éditions scientifiques et
médicales Elsevier SAS
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0. Introduction

In this paper we obtain the Plancherel formula for the spaces ofL2-sections of line
bundles over the complex projective hyperboloidsG/H with G = U(p, q;C) and H =
U(1;C)×U(p− 1, q;C), i.e. we present the decomposition ofL2 into irreducible represen-
tations of the groupG of classχ . In order to leave aside the well-known case of a hyperboloid
with compact stabilizer subgroup, see [14], we assumep > 1, q > 0.

The Plancherel formula is given in an explicit form by means of spherical distributions
associated with a characterχ of the subgroupH . We obtain the Plancherel formula by
Molchanov’s method, see [9]. Namely, we follow the detailed scheme in [1], Sections 4, 7. This
method deals with the spectral resolution of the radial part of the Laplace operator. The essential
step is setting the boundary conditions at certain special points. Those conditions are prescribed
by the behaviour of spherical distributions. Finally, it is necessary to perform various analytic
continuations. This method is also suitable for other problems, for example, for quantization in
the spirit of Berezin, namely, for the decomposition of the Berezin form. It is therefore why this
method has to be preferred to the existing methods, described in [3].

We use our results from [13]. There we defineχ -spherical distributions, study their asymptotic
behaviour and express them by means of hypergeometric functions. We describe the irreducible
unitary representations of the groupG, of classχ associated with an isotropic cone. We
give constructions for the Fourier and Poisson transform, define intertwining operators and
diagonalize them. Some of those results are presented in Section 1.
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This problem was studied by several people. The case of the trivial bundle was studied in [3].
But the Plancherel formula was proved by a different method. Some important results about
representations of the groupG associated with a cone in the complex case were obtained in [8].
For non-trivial bundles the Plancherel formula is stated in [11]. The authors of [11] follow a
method from [3] but do not determine the spherical distributions. They also do not present an
explicit form of the discrete part of the Plancherel formula. As to the method used by them,
it is not suitable for other important rank one spaces like SL(n,R)/GL(n− 1,R). Our method
however is suitable not only for the determination of the Plancherel formula but also for the other
problems, mentioned above.

We would like to emphasize an interesting, but maybe known, phenomenon which occurs
due to the noncompactness ofH . The spherical distributions have, as in the real case, see [7],
nonintegrable singularities on the singular orbits of the groupH and hence do not yield locally
integrable functions. In some cases, namely in the first discrete series (Theorem 4.4), the
spherical distributions turn out to be supported only on the singular orbits.

1. χ -spherical distributions on U(p, q) with respect to the subgroup U(1)×U(p− 1, q)

In this section we introduce some results from [13].

1.1. χ -spherical distributions

LetG denote the group U(p, q) of complex matrices of ordern= p+ q , preserving inCn the
Hermitian form:

[x, y] = x1ȳ1+ · · · + xpȳp − xp+1ȳp+1− · · · − xnȳn.(1.1)

Consider the subgroupH = H0 × H1, whereH0 = U(1), H1 = U(p − 1, q). Define for
h ∈ H, h = h0 · h1: χ(h) = hl0, whereh0 ∈ H0, h1 ∈ H1 and l = 0,1,2, . . . . We can define
this for any integerl but it is sufficient and more convenient to take non-negativel.

Consider the spaceX1=G/H1. LetD(X1) be the space of complex-valuedC∞-functions on
X1 with compact support.X1 can be identified with the set[x, x] = 1. It is a pseudo-Riemannian
manifold (non-symmetric) and as such it has a Laplacian which we denote by21. We define the
χ -spherical distributions onG=U(p, q) with respect to the subgroupH =U(1)×U(p− 1, q)
as the distributionsT onG which satisfy the following conditions:

(1) T (hgh′) = χ(hh′)T (g). This means that such distributions areH1-invariant and hence
can be seen as distributions onX1 with an extra property with respect to the subgroupH0:
T (x h0)= χ(h0)T (x), wherex ∈X1.

(2) They are eigendistributions of21.
Soχ -spherical distributions onG with respect to the subgroupH are distributions onX1 with

the following properties:
• T is invariant with respect toH1,
• 21T = λT ,
• T (eiθx)= eilθT (x), θ ∈R.
Denote this space byD′λ,l(X1). SupposeT = xl1 · S, whereS is anH -invariant distribution

andx1 is the first coordinate ofx ∈X1. The equation21T = λT can be reduced to a differential
equation forS and then to a singular second order differential equation on[0;∞[ :

Ly = λy,(1.2)
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where:

L= 4t (t − 1)
d2

dt2
+ 4

[
(µ+ l + 2)t − (l + 1)

] d

dt
+ l(2(µ+ 1)+ l),

µ= p+ q − 2, λ= s2− (µ+ 1)2.

(1.3)

The solutions of this equation at pointst = 0 and t = 1 respectively are the following
hypergeometric functions:

F(t, s,µ, l) = 2F1

(
µ+ s + l + 1

2
,
µ− s + l + 1

2
; l+ 1; t

)
,

Φ(t, s,µ, l) = 2F1

(
µ+ s + l + 1

2
,
µ− s + l + 1

2
;µ+ 1;1− t

)
.

(1.4)

1.2. The averaging map

It turns out that anyχ -spherical distribution is associated with anH -invariant distribution
(multiplied byxl1), see [13].

First, we find the basis of the space of theseH -invariant distributions. We use the averaging
mapM from [3]. Consider the surface{|x1|2 = t, t ∈ R, t > 0}. The average of a function
f ∈D(G/H) over this surface belongs to the spaceH of functions on[0;∞[ of the following
form:

ϕ(t)= ϕ0(t)+ η(t)ϕ1(t), ϕ0(t), ϕ1(t) ∈D
([0;∞[),(1.5)

whereη is the “singularity” functionη(t) = Y (1− t)(1− t)µ andY is the Heaviside function:
Y (t)= 1 if t > 0, Y (t)= 0 if t < 0. Using the results from [6] we solve the equationLS = λS
inH′ and find a basis of the space of distribution solutions. Then we take the pull back and get a
basis of the space ofH -invariant distributions. Finally, we return toχ -spherical distributions by
multiplying with xl1. Let us denote this procedure byA′. In this way we find a basis ofD′λ,l(X1).

The basis inH′ is built by means of functions (1.4). Introduce the following notations:

F 0(t, λ,µ, l)= lim
ε→0

F(t + iε,λ,µ, l)+ F(t − iε,λ,µ, l)

2
,

G(t, λ,µ, l)= lim
ε→0

F(t + iε,λ,µ, l)− F (t − iε,λ,µ, l)

2i
,(1.6)

A(λ,µ, l)= 0(l + 1)0(µ)

0(
l+µ+s+1

2 )0(
l+µ−s+1

2 )
,

whereλ, µ are as in (1.3). The functionsF 0 andG are defined fort 6= 1. MoreoverG is zero on
(−∞,1) and fort > 1 and integerµ> 0 it can be rewritten as follows:

G(t,λ,µ, l)= (−1)µπ

µ!0(−µ) ·A(λ,−µ, l) ·Φ(t, λ,µ, l)(1.7)

with Φ(t, λ,µ, l) as in (1.4). Notice that forλ= λr = (l+2r)(l+2r+2µ+2), r = 0,1,2, . . . ,
i.e. for s = ±(l + 2r + µ + 1) the functionF 0(t, λ,µ, l) is a polynomial of degreer and the
functionG(t,λ,µ, l) is zero.

Define as in [3]:

Sλ,l(ϕ)= lim
ε→0

∞∫
0

1

2

[
F(t + iε,λ,µ, l)+ F(t − iε,λ,µ, l)

]
ϕ(t)dt,
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Tλ,l(ϕ)= lim
ε→0

∞∫
0

1

2i

[
F(t + iε,λ,µ, l)− F(t − iε,λ,µ, l)

]
ϕ(t)dt;

Tλ,l can be expressed for integerµ> 0 as:

Tλ,l(ϕ) = A(λ,µ, l)

µ−1∑
k=0

(−1)µ−k−1π · ak(λ,−µ, l)ϕ
(µ−k−1)(t)|t=1

(µ− k − 1)!

+
∞∫

1

G(t,λ,µ, l)ϕ(t)dt

(1.8)

with

αk(λ,µ, l)= ((µ+ s + l + 1)/2)k((µ− s + l + 1)/2)k
(µ+ 1)kk! ,

where(γ )k = 0(γ+k)
0(γ )

= γ (γ + 1) · · · (γ + k − 1), see [3, p. 385].

1.3. A basis of the space ofχ -spherical distributions

Set forλr = (l + 2r)(l+ 2r + 2µ+ 2)

T ′λr,l(f )= lim
λ→λr

1

A(λ,µ, l)
Tλ,l.(1.9)

We have the important result:

THEOREM 1.1. –For anyλ 6= λr dimD′λ,l(X1)= 1 andD′λ,l(X1) is generated byA′Tλ,l . For
λ= λr dimD′λ,l(X1)= 2 andD′λ,l(X1) is generated byA′Sλr ,l andA′T ′λr ,l .

1.4. Representations of the groupG

We consider representations of the groupG induced from maximal parabolic subgroup ofG.
These representations are associated with an isotropic cone and were studied in [8,3] for the case
χ = 1. A description of representations of classχ was given in [13], see also [12,10].

Some subgroups of our groupG can be introduced as usual, see [3,8,10]. Namely, letK be
the maximal compact subgroup U(p)×U(q) of G.

Let g, k, h denote the Lie algebras of the groupsG, K, H respectively. Letp, q be
the orthogonal complements tok, h with respect to the Killing form. All maximal Abelian
subalgebras inp∩ q are one-dimensional. Consider one of them with basis:

L=
(0 0 1

0 On−2 0
1 0 0

)
,

whereOn−2 is the zero matrix of sizen− 2. LetA denote the group of matricesat = exp{t L},
t ∈R, and letM be its centralizer inH . The Lie algebrag can be decomposed into a direct sum∑2
k=−2 gk, where thegk are eigensubspaces of the operator adL: adL|gk = k · id. Denote by

N = expn, wheren is the nilpotent subalgebran= g1+ g2, generated by the positive roots.
Define fors ∈C andl = 0,1,2, . . . the characterχs,l of the parabolic subgroupMAN as

χs,l(matn)= e−ilθ · est , t ∈R,
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where e−ilθ is one-dimensional representation of the groupM given by:(eiθ 0 0
0 v 0
0 0 eiθ

)
7−→ e−ilθ(1.10)

with v ∈U(p−1, q−1), θ ∈R. The representationπs,l of the groupG induced by the character
χs,l can be realized in the spaceEs,l(Ξ) defined by:

Es,l (Ξ)=
{
f ∈C∞(Ξ) | f (gmat ξ0)= e(s−ρ)t · e−ilθ · f (gξ0)},(

ξ0= eM0N
)
,[

πs,l(g)f
]
(ξ)= f (g−1ξ

)
.

Hereρ = n− 1 andM0 is the subgroup ofM, consisting of the matrices as in (1.10) but with
θ = 0. As Ξ = G/M0N can be identified with the cone0 = {y ∈ Cn | [y, y] = 0, y 6= 0}, a
function ofEs,l(Ξ) can be seen as a function on the cone0 satisfying:

∀λ ∈C, λ 6= 0 f (γ λ)= λs−ρ,−l · f (γ ).(1.11)

Then, according to the method of Molchanov, see [9,7] we define theχ -spherical distributions
by means of these representations:

ζs,l(ϕ)=
〈
π ′−s,−l(ϕ)us,l, u−s,−l

〉 (
ϕ ∈D(G)).

Here 〈f,h〉 = ∫
B
f (b)h(b)db is theG-invariant linear form onEs,l(Ξ) × E−s,−l(Ξ), where

B = {kξ0 | k ∈ K} is theK-orbit which can be identified with the direct product of two unit
spheresΣ = S2p−1× S2q−1:

b↔ γ, b ∈B, γ ∈Σ,
and db is theK-invariant measure onB.
us,l(f ) is the following entire function ofs:

us,l(f )= 1

0(
s−ρ+|l|+2

2 )

∫
Σ

γ1
s−ρ,lf (γ )dγ,

wheref ∈ E−s,−l (Ξ) seen as a function on the cone, see (1.11),γ1 is the first coordinate of
γ ∈Σ .

In [13], Section 5, we showed thatζs,l is a well-definedχ -spherical distribution onG.

1.5. Poisson kernel, intertwining operators, Fourier transform

We define Poisson kernel, intertwining operators and Fourier transform in the same way as in
[3]. So we have “χ -analogues” of the main theorems and propositions from [3]. For example,
theχ -spherical distributions can be given by means of the Fourier transformϕ̂ of a functionϕ
fromD(X1)

ζs,l(ϕ)=
〈
ϕ̂(·, s, l), u−s,−l

〉
.

To diagonalize intertwining operators we use [12,10].
But we remark the following. In his paper Faraut gave detailed proofs for the real case. On

the other hand, according to [8], the complex case differs quite seriously from the real case.
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Namely, theK-types have a more complicated form. Because of it we can not use the methods
of computation used by Faraut. We have to prove some important theorems in an alternative way.

1.6. The behaviour of spherical distributions at infinity

First we consider the asymptotic behaviour of spherical distributions.

PROPOSITION 1.2. –Letϕ be a function inD(X1). Putϕt (x)= ϕ(at x). We have forRes >
ρ − 1 andl = 0,1,2, . . .

lim
t→∞e−(s−ρ)t · ζs,l(ϕt )= c(s, l) · γ (s, l) · ϕ̂

(
ξ0, s, l

)
with

c(s, l)= 2ρ−s · 4 · πp+q · 0(s)
0(

s+l−q+p+1
2 ) ·0( s+l+ρ2 ) ·0( s−l+q−p+1

2 )
.(1.12)

The factorγ (s, l) = 0( s−ρ+l+2p
2 )/0(

−s−ρ+l+2p
2 ) appears in the relationAs,−l ◦ F−s,l =

γ (s, l) · Fs,l, whereA and F denote an intertwining operator and the Fourier transform
respectively.

Later on we would like to express the coefficients of the Plancherel formula by means of
c-function, see (1.12). We shall need the following formulae:

1

c(s, l)c(−s, l) =−
s sinπs0( s+l+ρ2 )0(

−s+l+ρ
2 )

4ρ+2π2ρ+1 sinπ(−s+l+ρ2 )sinπ( s+l+ρ2 )
,

Res

(
1

c(s, l)c(−s, l) ; ρ + l + 2r

)
= (ρ + l + 2r)0(ρ + l + r)0(−r)

4ρ+1π2ρ+2
,(1.13)

c−2

(
1

c(s, l)c(−s, l) ; ρ + l + 2r

)
= 2(−1)r+1(ρ + l + 2r)0(ρ + l + r)

4ρ+1π2ρ+2r! .

Herec−2(f (s); s0) denotes the coefficient of the term(s − s0)−2 in the Laurent expansion off
in a neighbourhood ofs = s0.

Proposition 1.2 helps us to express spherical distributions by means of basis distributions, see
Theorem 1.1.

PROPOSITION 1.3. –Putλ= s2−ρ2. Then for alls 6= ±(l+n−1+2r), r = 0,1,2, . . . , l =
0,1,2, . . . ,

ζs,l = 4 · πρ
l! · (−1)q+1 ·A′Tλ,l.(1.14)

Moreover, forλ= λr = (l + 2r)(l + 2r + 2µ+ 2), we have:

ζs,l = 0.(1.15)

Because of (1.15) forλ= (l + 2r)(l+ 2r + 2µ+ 2) we define spherical distributionsηr,l and
θr,l, cf. [3], which correspond to the exceptional series of representations ofG. Considering their
behaviour at infinity we have:

PROPOSITION 1.4. –For λ= λr = (l + 2r)(l + 2r + 2ρ)



G. VAN DIJK, YU.A. SHARSHOV / J. Math. Pures Appl. 79 (2000) 451–473 457

ηr,l = (−1)q

0(l + 1)
2πρ+1 ·A′Sλr ,l;

θr,l = 2πρ(−1)q ·
[
(−1)r

r!0(ρ − 1)

0(ρ + l + r) ·A
′T ′λr ,l −

π

l! ·A
′Sλr ,l

]
.

(1.16)

2. Eigenfunctions of the radial part of the Laplace–Beltrami operator

This section follows §28, [9], for a detailed version see Section 3, [1].
Changing the variable in equation (1.2) ast = (c+ 1)/2 and introducing new notations

µ= 2α, l = 2β we get the following operator (cf. [9], (28.1)):

L1= 4
(
c2− 1

) d2

dc2
+ 8

[
(α + β + 1)c+ (α − β)] d

dc
+ 4β(2α+ β + 1).(2.1)

We consider the following solutions of equation (1.2)P(c, τ,α,β), Q(c, τ,α,β), T (c, τ,α,β)

functions of the complex variablec (cf. [9], p. 105):

P(c) = 2−α−β

0(1+ 2α)
2F1

(
α+ β + τ + 1, α+ β − τ ;1+ 2α; 1− c

2

)
,

Q(c) = 2τ
0(α + β + τ + 1)0(α − β + τ + 1)

0(2τ + 2)
(c+ 1)−α−β−τ−1

× 2F1

(
α + β + τ + 1, α − β + τ + 1;2τ + 2; 2

1+ c
)
,

T (c) = 2α−β

0(1− 2α)
(c− 1)−2α

2F1

(
− α + β + τ + 1,−α + β − τ ;1− 2α; 1− c

2

)
,

(2.2)

whereα, β, τ are complex parameters,2F1 is the hypergeometric function,0 is the Euler
gamma-function and the power has to be interpreted as the principal value.

They are defined and analytic in thec-plane with the cut(−∞, −1] for P and(−∞,1] for
Q andT . On the cuts we defineP(c) andQ(c) as half sum of the limit values from above and
below, and forT (c) we set (cf. [9], p. 106)

T (c)= lim
ε→0

ei2πα · T (c+ iε)+ e−i2πα · T (c− iε)
2

.

If it is necessary to indicate the parameters, then we writeP(c, τ,α,β), . . . .
In addition to these functions we define functionŝP , Q̂, T̂ , P ∗, Q∗ andT ∗, where, for

example:

P̂ (c, τ,α,β)= P(−c, τ,β,α), P ∗(c, τ,α,β)= P(c,−τ − 1, α,β).(2.3)

All these functions satisfy certain relations (see [1], Section 3) on each intervalIj :

Ij =
{
(1,∞), j = 1,
(−1, 1), j = 2,
(−∞, −1), j = 3.

(2.4)

We shall use some of those relations. We also use the same regularization process for defining
functionals associated with these functions. For example:
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(
P (j), h

) = ∫
Ij

P (c)h(c)dc,

(
T (j), h

) = (−1)jn ·
∫
Ij

T (c, τ,0, β − α0)h
(n−2)(c)dc.

(2.5)

Notice that in our caseβ 6= 0. The regularization process forP differs from the one forT . That’s
why the relations for functionals differ from the ones for functions by terms concentrated at
c= 1. For example:

T (1)−W · P (1) =Z;
(−1)nT (2) −W · P (2) =−Z,

(2.6)

where

W = 0(α + β + τ + 1) · 0(α − β + τ + 1)

0(−α − β + τ + 1) · 0(−α + β + τ + 1)
,

(Z, h)=
n−3∑
m=0

(−1)m21−α0−β+m0(α0+ β + τ −m)0(α0− β + τ + 1)

0(−α0− β + τ +m+ 2)0(−α0+ β + τ + 1)0(n− 2−m)h
(m)(c)|c=1.(2.7)

To prove this we use the formulae similar to (3.55), (3.56), [1] but withβ 6= 0 and some
formulae for functionsT , P , for example, (3.23), (3.25), [1]. Notice that withβ = 0, τ =
−σ − α0− 1, σ ∗ = 1− n− σ we have the sameZ as in (3.50), [1].

3. A spectral decomposition

In this section we follow §30, [9], i.e. we obtain the spectral decomposition of the operator
L1, see (2.1). The main result is the Parseval equality in Theorem 3.2.

The operatorL1 is not symmetric. So we make the change

y =G−1z, whereG(c)= |c− 1|α · |c+ 1|β .(3.1)

We obtain the following differential operator (cf. [9], p. 113):

L2=
(
c2− 1

) d2

dc2
+ 2c

d

dc
+ 2 · α2

1− c +
2 · β2

1+ c .

The operatorL2 is symmetric, providedα2 andβ2 are real. With the notationτ = (s − 1)/2 the
equationLy = λy gives us the following differential equation:

L2z= τ (τ + 1)z.

The eigenfunctionsf andF of the operatorsL2 andL respectively are connected by the equality
f =GF , whereG is as in (3.1).

We are going to define an extension of the operatorL2 and obtain its spectral decomposition.
Suppose:

|Reα|< 1/2, α 6= 0, |Reβ|< 1/2.



G. VAN DIJK, YU.A. SHARSHOV / J. Math. Pures Appl. 79 (2000) 451–473 459

Then the eigenfunctions of the operatorL2 are square-integrable on each bounded interval.
For every functionϕ ∈ L2(−1,∞) which is absolutely continuous on each compact set not
containing±1 and for whichL2ϕ ∈ L2(−1,∞) we can define the following boundary values
at pointsc=±1:

A+j (ϕ) = lim
c→1, c∈Ij , j=1,2

|c− 1|−α{αϕ(c)+ (c− 1)ϕ′(c)
}
,

B+j (ϕ) = lim
c→1, c∈Ij , j=1,2

|c− 1|α{αϕ(c)− (c− 1)ϕ′(c)
}
,

A−j (ϕ) = lim
c→−1, c∈Ij , j=2,3

|c+ 1|−β{βϕ(c)+ (c+ 1)ϕ′(c)
}
,

B−j (ϕ) = lim
c→−1, c∈Ij , j=2,3

|c+ 1|β{βϕ(c)− (c+ 1)ϕ′(c)
}
,

(3.2)

whereIj as in (2.4).
Then we set the following boundary conditions at pointsc=±1 (cf. [9], p. 114):

A+1 =A+2 = B−2 = 0.(3.3)

And at infinityϕ ∈L2, we denote this as follows:

∞(ϕ)= 0.(3.4)

These boundary conditions define an operator onL2(−1,∞) which we denote bỹL. Now
we are going to write explicitly the resolventRω = (ωI − L̃)−1 of this operator by means of
hypergeometric functions, see (2.2).

LEMMA 3.1. –Let Reτ > −1/2, Im τ 6= 0. The resolvent of the operator̃L is an integral
operator with a symmetric kernel given forc > y by the following formula:

Rτ(τ+1)(c, y)=G(c) ·G(y) ·
 W−1 ·Q(c) · T (y), if 1< y, c <∞,
W1 · T (c) · P̂ (y), if − 1< y, c < 1

(3.5)

withG(c) as in(3.1),W as in(2.7)and

W1=−1

2
· 0(−α + β − τ ) · 0(−α + β + τ + 1).(3.6)

Proof. –We take Reτ >−1/2, Im τ 6= 0, this is the same as Imτ (τ + 1) 6= 0. The method of
variation of constants gives us the symmetric kernelRτ(τ+1)(c, y)=Rτ(τ+1)(y, c) and forc > y:

Rτ(τ+1)(c, y)=


v1(c)u1(y)[u1,v1] , if 1 < y, c <∞,
v(c)u(y)
[u,v] , if − 1< y, c < 1.

(3.7)

Here u,v and u1, v1 are linearly independent solutions tõLg = τ (τ + 1) g on the intervals
(−1,1) and(1,∞) respectively. Moreover, they are chosen to satisfy our boundary conditions
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(3.3), (3.4) in the following way:

B−2 (u)= 0, A+2 (v)= 0, A+1 (u1)= 0, ∞(v1)= 0,

A+2 (u) 6= 0, B−2 (v) 6= 0, ∞(u1) 6= 0, A+1 (v1) 6= 0.

And [u,v] denotes[u,v] = (c2− 1)(u′(c)v(c)− u(c)v′(c)).
Now we are going to choose suitable candidates foru, v, u1, v1. Using formulae for the

analytic continuation of the hypergeometric series from [2], 2.10, pp. 108–109, one can write
down the explicit formulae forGP, GT, GP̂ andGT̂ near pointsc=±1 (hereG is as in (3.1))
by means of hypergeometric series. Then one can evaluate the boundary valuesA+1,2 andB−2 of

the functionsGP, GT, GP̂ andGT̂ according to formulae (3.2):

B−2 A+2 A+1
GP β2α+1dα,−β 2−α

0(2α)
2−α
0(2α)

GP̂ 0 α 2β+1 dβ,α α2β+1dβ,α

GT β2−α+1d−α,−β 0 0

GT̂ − 2β
0(−2β) α 2−β+1 d−β,α α2−β+1d−β,α

Heredx,y = 2−(x+y)/2·0(−y)
0(

x−y
2 −τ )·0( x−y2 +τ+1)

. Notice that for evaluatingA+ one has to use thatα < 1/2.

According to the table we should takeu=GP̂ , v =GT . Then[u,v] = 1/W1, see (3.6). And
we can chooseu1 = GT, v1 = GQ because at leastA+1 (GT ) = 0 and one can check, using
formula 1.5(2), p. 9 from [2], that∞(GQ)= 0, see (3.4). To show thatA+1 (GQ) 6= 0 we use the
following formula (cf. [9], p. 105), which is true forc > 1:

2

π
sin 2απ ·Q(c)= T (c)−W · P(c),(3.8)

whereW is as in (2.7). To show that∞(GT ) 6= 0 we use the analytic continuation ofT to
c=+∞, see formula 2.10(3) from [2], p. 109.

Calculating[u1, v1]we have[u1, v1] =W . Substitutingu,v,u1, v1 into (3.7) we get (3.5). 2
Now we are going to determine the spectral decomposition of the operatorL̃, i.e. we write the

Parseval equality forϕ, ψ ∈L2(−1,∞).
THEOREM 3.2. –For |Reα| < 1/2, α 6= 0, |Reβ| < 1/2, Re(α ± β) < 1/2 we have the

following Parseval equality:

(ϕ |ψ) =
+∞∫
−∞

Ω · (GT (1), ϕ) · (GT (1), ψ̄)∣∣
τ=−1/2+iν dν

+
∞∑
k=0

Ω1 ·
(
GT (2), ϕ

) · (GT (2), ψ̄)∣∣
τ=−α+β+k

(3.9)

with
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Ω = 2τ + 1

8π2 sin2τπ

×0(−α− β + τ + 1)0(−α + β + τ + 1)0(−α − β − τ )0(−α + β − τ ),(3.10)

Ω1= 2τ + 1

2

0(−α − β + τ + 1) · 0(−α + β + τ + 1)

0(α + β + τ + 1) · 0(α − β + τ + 1)
.

Proof. –We use the following formula:∫
R

h(ω)
(
E(dω)ϕ |ψ)=− 1

2π i
lim
ε→0

∫
R

h(ω)
(
(Rω+iε −Rω−iε)ϕ |ψ

)
dω(3.11)

for any continuoush with compact support.
Passing fromω to τ by ω= τ2+ τ we change the notationRω = R̃τ . Split theτ -contour into

two parts: the “imaginary” part and the “real” part, see Fig. 1.
The “Imaginary” and the “real” parts will give us the continuous and the discrete spectrum of

the operator̃L respectively.
Takingh≡ 1 in (3.11) we write the Parseval equality:

(ϕ |ψ)=
+∞∫
−∞

(Kτϕ |ψ)|τ=−1/2+iν dν +
∑(

Res
[
K1
τ

]
ϕ |ψ),(3.12)

where

Kτ = 1

4π
(2τ + 1)(R̃τ − R̃−τ−1), K1

τ = (2τ + 1)R̃τ(3.13)

and the sum is taken over all points inside theP -contour at which the functionK1
τ has a pole.

Now rewrite equality (3.12) in a more explicit form. First consider the continuous spectrum.
Using formula (3.5) forRω = R̃τ we have forc > y:

Kτ (c, y)=G(c) ·G(y) ·
{
ΩT (c)T (y), if 1 < y, c <∞,
0, if − 1< y, c < 1

with Ω as in (3.10). Here we used formula (3.8) forQ and the fact thatu,T ,P, P̂ are invariant
under the transformationτ→−τ − 1, see (2.3), i.e.,u∗ = u, T ∗ = T , P ∗ = P, P̂ ∗ = P̂ .

“imaginary” part “real” part

Fig. 1.
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Kτ (c, y) is symmetric and one can easily write

(Kτϕ |ψ)=Ω ·
(
GT (1), ϕ

) · (GT (1),ψ),
whereT (j) as in (2.5). We also recall our notations:

(ϕ,ψ)=
∞∫
−1

ϕ(c)ψ(c)dc, (ϕ |ψ)=
∞∫
−1

ϕ(c)ψ̄(c)dc.

So the continuous part of the spectral decomposition of our operatorL̃ can be written as
follows:

+∞∫
−∞

(Kτϕ |ψ)|τ=−1/2+iν dν =
+∞∫
−∞

Ω · (GT (1), ϕ) · (GT (1), ψ̄)∣∣
τ=−1/2+iν dν.(3.14)

Now we consider the discrete part of the spectral decomposition. First of all using formula
(3.5) we write forc > y:

K1
τ (c, y)=G(c) ·G(y) · (2τ + 1) ·

{
W−1Q(c)T (y), if 1 < y, c <∞,
W1T (c)P̂ (y), if − 1< y, c < 1.

We see thatK1
τ has the series of poles because ofW1 andW . But if in addition to |Reα| <

1/2, |Reβ|< 1/2 we suppose that Re(α±β) < 1/2 then only the polesτ =−α+β+k, k = 0,
1,2, . . . (given byW1), lie in the half plane Reτ >−1/2.

If we denoteK ′τ =Res(K1
τ ; τ =−α+ β + k) then forc > y:

K ′τ =
{0, if 1 < y, c <∞,

2τ+1
2W G(c)T (c)G(y)T (y)|τ=−α+β+k, if − 1< y, c < 1.

Here we used formula (3.29), [1] for̂P . Now it is clear thatK ′τ is symmetric and in a similar
way as above one can write:

(
K ′τ ϕ |ψ

)= 2τ + 1

2W
· (GT (2), ϕ) · (GT (2), ψ̄)∣∣

τ=−α+β+k.

Thus the discrete part can be written as follows:

∑(
Res

[
K1
τ

]
ϕ |ψ)= ∞∑

k=0

2τ + 1

2W
· (GT (2), ϕ) · (GT (2), ψ̄)∣∣

τ=−α+β+k.(3.15)

Finally, substituting (3.14) and (3.15) into (3.12) we have (3.9).2
4. The Plancherel formula

The main formula of this section is the decomposition of the functionδl into spherical
distributions (Theorem 4.4) which implies the Plancherel formula.
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Let δ be the following distribution inD′ (G/H) (the delta function concentrated at the
origin x0):

(δ | f )= f (x0)
(
f ∈D(G/H)).

Let us consider the following functions on the real line depending on the complex variableσ :

Nσ,n(c)=
{ |c− 1|σ , for n odd,
|c− 1|σ · sgn(c− 1), for n even.

By [4] these functionals are analytic functions ofσ within the domain Reσ > −1 and can be
analytically extended to the wholeσ -plane as meromorphic functions. Atσ = 1− n they have a
pole of the first order. The same is true for the distributions:

M′Nσ,n =
{∣∣c(x)− 1

∣∣σ , for n odd,∣∣c(x)− 1
∣∣σ · sgn

(
c(x)− 1

)
, for n even,

where, according to our averaging mapc(x) = 2|x1|2 − 1 (cf. Section 1 and the notation
t = (c+ 1)/2). Herex1 is the first coordinate ofx ∈X1. Moreover, whenσ → 1− n we have:

(σ + n− 1)M′Nσ,n→E · δ,(4.1)

where

E =
 (−1)q 22−nπn−1

0(n−1) , for n odd,

(−1)q+1 22−n πn−1

0(n−1) , for n even.
(4.2)

To evaluate the coefficients beforeδ-function we wrote:

M′Nσ,n =
 2σ · |S|σ = 2σ · [Sσ+ + Sσ−], for n odd,

2σ · |S|σ sgnS = 2σ · [Sσ+ − Sσ−], for n even,

with the real quadratic formS of the signature(p,q)= (2q,2p− 2)

S =−x2x̄2− · · · − xpx̄p + xp+1x̄p+1+ · · · + xp+qx̄p+q
since our spaceX1=G/H1 can be identified with the set[x, x] = 1, see (1.1) and used the result
from [4], p. 257:

Res
λ=−n/2−k

P λ+ =
(−1)n/2+k−1

0(n/2+ k) δ
(n/2+k−1)
1 (P )+ (−1)q/2πn/2

22kk!0(n/2+ k)L
kδ(y)

with

L= ∂2

∂y2
1

+ · · · + ∂2

∂y2
p
− ∂2

∂y2
p+1

− · · · − ∂2

∂y2
p+q

and the fact thatδ(k)1 (P )= δ(k)2 (P ) for evenn andk < n/2− 1, see [4], p. 267.
Let D0 be the following domain:D0 = {|Reα| < 1/2, α 6= 0, |Reβ| < 1/2, Re(α ± β) <

1/2}. According to (3.9) withinD0 we have the Parseval equality. We are going to write that
equality for the functionsNσ,n.
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LEMMA 4.1. –In the domain

D0 ∩
{
Re(σ + α + β) <−1/2

}∩ {Reσ >−1}

we can write forh ∈H

(Nσ,n | h)=
∞∫
−∞

Ψ
(
T (1), h̄

)∣∣
τ=−1/2+iν dν +

∞∑
k=0

Ψ1
(
T (2), h̄

)∣∣
τ=−α+β+k,(4.3)

where

Ψ = 2α+β+σ−2

π2 (2τ + 1)sin2τπ
0(σ + 1)

0(−2α − σ)0(−α − β − σ + τ )

×0(−α − β − σ − τ − 1)0(−α+ β + τ + 1)0(−α + β − τ ),
Ψ1 = (−1)n+1 2α+β+σ (−2α+ 2β + 2k + 1)

× 0(−2α + 2β + k + 1)0(σ + 1)0(−2α− σ + k)
k!0(−2α− σ)0(2β + σ + 2+ k) .

(4.4)

Proof. –We follow the scheme in the proof of Lemma 7.3, [1]. First consider the case whenn

is odd. ThenNσ,n = |c− 1|σ . SinceNσ,n(c) /∈L2(R,dt) for anyσ , we represent it as a sum:

Nσ,n(c)=N+σ,n(c)+N−σ,n(c), N±σ,n(c)= |c− 1|σ · Y (± (2− |c|)),
whereY is the Heaviside function.

One can see that the functionGN+σ,n = |c−1|σ+α · |c+1|β ·Y (2−|c|) belongs toL2((−1,∞))
if Re(σ + α) >−1/2 and Reβ >−1/2. AndGN−σ,n ∈L2((−1,∞)) if Re(σ + α+ β) <−1/2.
HereG is as in (3.1).

We are going to write two Parseval equalities: first for the pairϕ = GN+σ,n, ψ = G−1
h and

then for the pairϕ =GN−σ,n, ψ =G−1
h, whereh belongs to the image of our averaging map,

see (1.5) (taking in account the substitutiont = (c+ 1)/2).
The first equality can be written for the domainD1=D0 ∩ {Re(σ + α) >−1/2}. The second

equality can be written for the domainD2 = D0 ∩ {Re(σ + α + β) < −1/2}. We can see that
D1 ∩D2 6= ∅ at least for negativeβ .

We notice that the first equality can be written within the wider domainD3 = D0 ∩
{Reσ > −1}. Indeed, the left-hand side exists for Reσ > −1, see [4]. According to 7.512(5),
p. 863, [5] the conditions Reσ > −1 and Reβ > −1/2 give the existence of the integral
(GT (2),GN+σ,n) in the right-hand side. Also the condition Reσ > −1 gives the existence of
the integral(GT (1),GN+σ,n) in the right-hand side. Thus,D2∩D3 6= ∅ even for some positiveβ .

Within D2 ∩ D3 both equalities are true. Taking the sum we get the Parseval equality for

ϕ =GNσ,n, ψ =G−1
h.

(
GNσ,n |G−1

h
)= ∞∫
−∞

ΩB
(
T (1), h̄

)∣∣
τ=−1/2+iν dν +

∞∑
k=0

Ω1B1
(
T (2), h̄

)∣∣
τ=−α+β+k,(4.5)

where
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B = (GT (1),GN+σ,n)+ (GT (1),GN−σ,n)= ∞∫
1

(c− 1)σ+2α(c+ 1)2βT (c)dc,

B1=
(
GT (2),GN+σ,n

)+ (GT (2),GN−σ,n)= 1∫
−1

(1− c)σ+2α(c+ 1)2βT (c)dc.

It remains to computeB andB1. First of all rewriteT (c), using formula 2.9(1,3) from [2],
p. 105. Then by means of 7.512(3), p. 863, [5]:

B = 2α+β+σ+1 0(σ + 1)0(−α − β − σ + τ )0(−α − β − σ − τ − 1)

0(−α − β + τ + 1)0(−α − β − τ )0(−2α− σ) .

Here we make the change of variablet = (c− 1)/(c+ 1) and recall thatτ =−1
2 + iν.

To calculateB1 we use 7.512(5), p. 863, [5]:

B1= 2α+β+σ+1 0(σ + 1)0(1+ 2β)

0(σ + 2β + 2)0(1− 2α)

× 3F2(−α + β + τ + 1,−α+ β − τ, σ + 1;1− 2α,σ + 2β + 2;1).
Considering the casen is even, i.e.Nσ,n(c) = |c − 1|σ · sgn(c − 1), we see that the only

difference is that in (4.5)B1 appears with a minus sign. Thus for anyn we multiply the above
expression forB1 by (−1)n+1.

Finally, puttingB and B1 into (4.5) we have (4.3). To getΨ and Ψ1 we just used the
expressions forΩ ,Ω1, see (3.10). Moreover, substitutingτ =−α+β+ k in the hypergeometric
function3F2 in B1 we are able to use formula 4.4(3), p. 188, [2].2

Both sides of (4.3) can be analytically continued inα, β, σ , to the pointα = α0, β = β0, σ =
σ0, where

α0= n− 2

2
, β0= l

2
, σ0= 1− n.

The following lemma is obtained from Lemma 4.1 by this analytic continuation. Moreover, to
pass from the decomposition ofNσ,n to the decomposition ofδ we take the pull backM′ of both
sides of the equality. Finally, we pass toχ -spherical distributions multiplying both parts byxl1.
We introduce the following notation:

(δl | h)=
(
xl1 · δ | h

)
.

LEMMA 4.2. –Leth ∈D(X1). We have the following decomposition of the functionδl :

E · (δl | h)=


I + II +∑ l−n+1

2
i=0 A2 ·

(
A′T (1), h̄

)∣∣
τ=(l−n)/2−i, for l > n− 1,

I + II , for l = n− 2,

I + II +∑ n−3−l
2

j=0 A3 ·
(
A′T (1), h̄

)∣∣
τ=(n−l)/2−2−j , for l 6 n− 3

(4.6)

withE as in(4.2),Aj as in(4.17)and the following notations:

I =
∞∫
−∞

A · (A′T (1), h̄)∣∣
τ=−1/2+iν dν,
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II =

∑∞
k=0A1 ·

(
A′T (2), h̄

)∣∣
τ=(l−n)/2+k+1, l > n− 3,∑∞

k=n−l−2A1 ·
(
A′T (2), h̄

)∣∣
τ=(l−n)/2+k+1, l 6 n− 3.

Proof. –The scheme of the proof follows the proof of Lemma 7.4, [1]. Since in our caseβ 6= 0,
we have to make an analytic continuation twice for big and for smalll. When we do an analytic
continuation some additional terms can appear on the right-hand side of (4.3), since poles of
the integrand in (4.3) pass the integration lineC: Reτ =−1/2. The integrand has two series of
poles:

(1) τ = α+ β + σ − i, τ =−α− β − σ − 1+ i, i = 0,1,2, . . .

coming from the factor0(−α − β − σ + τ )0(−α − β − σ − τ − 1);

(2) τ = α− β − 1− j, τ =−α + β + j, j = 0,1,2, . . .

coming from the factor0(−α + β + τ + 1)0(−α+ β − τ ).

(4.7)

In the domainD2 ∩D3 we have for anyi, j = 0,1,2, . . .

Fig. 2.

First let us moveα, β andσ in such a way that the inequality Re(α− β) < 1/2 is maintained.
Then poles in (2) do not pass the integration lineC. On the contrary, some poles in (1) pass
C, namely, those withi 6 (l − n+ 1)/2. SinceΨT (1) is invariant with respect toτ →−τ − 1,
every pair of them with the samei passingC gives by Cauchy theorem the following additional
term in the right-hand side of (4.3):

Di = 4π ·Resτ=α+β+σ−iΨ T (1) = Ψ2T
(1)
∣∣
τ=α+β+σ−i ,

with

Ψ2= 2α+β+σ (2α + 2β + 2σ − 2i + 1)
0(σ + 1)0(2β + σ − i + 1)0(−2α− σ + i)
0(2+ 2α+ 2β + 2σ − i)0(−2α− σ)i! .(4.8)

Thus, after the continuation inα, β and σ , when (α,β,σ ) belong to a sufficiently small
neighbourhood of( n−2

2 , l2,1 − n), and the inequality Re(α − β) < 1/2 is satisfied, in the
decomposition (4.3) the following additional sum appears:

l−n+1
2∑
i=0

Ψ2 ·
(
T (1), h̄

)∣∣
τ=α+β+σ−i .(4.9)
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Notice that after the continuation the inequality Re(α − β) < 1/2 becomesl > n − 3, but
from (4.9) we see that the additional sum appears forl > n − 1. Thus, in a neighbourhood of
point (α0, β0, σ0) we can write the decomposition (4.3) in the same form forl = n− 2 and with
additional term (4.9) forl > n− 1.

Secondly, we can moveα, β andσ fromD2 ∩D3 to the point(α0, β0, σ0) in such a way that
the inequality Re(α+ β + σ) <−1/2 is maintained. Then poles in (1), see (4.7), do not pass the
integration lineC, but poles in (2) do, namely, those withj 6 (n− 3− l)/2. In the right-hand
side of decomposition (4.3) the following additional sum appears:

n−3−l
2∑

j=0

Ψ3 ·
(
T (1), h̄

)∣∣
τ=α−β−1−j ,(4.10)

where

Ψ3= 2α+β+σ · (2α− 2β − 2j − 1)
0(σ + 1)0(−2β − σ − j − 1)0(−2α− σ + j)

0(−2α − σ)0(2α − 2β − j)j ! .(4.11)

After the continuation the inequality Re(α+β+σ) <−1/2 becomesl < n−1, but the additional
term (4.10) appears forl 6 n− 3.

Thus, in a sufficiently small neighbourhood of(α0, β0, σ0) we have the decomposition of the
form:

(Nσ,n | h)=


· · · +∑ l−n+1

2
i=0 Ψ2 ·

(
T (1), h̄

)∣∣
τ=α+β+σ−i , for l > n− 1;

· · · , for l = n− 2;

· · · +∑ n−3−l
2

j=0 Ψ3 ·
(
T (1), h̄

)∣∣
τ=α−β−1−j , for l 6 n− 3,

(4.12)

where. . . denotes the right-hand side of (4.3).
As the right hand sides of (4.12) are regular atα = α0, see (4.4), (4.8), (4.11), we can easily

setα = α0. After that we see thatΨ, Ψ2, Ψ3 are regular atβ = β0, so just settingβ = β0 we
have:

Ψ = 2
n+l

2 +σ−3

π2 (2τ + 1)sin2τπ
0(σ + 1)

0(−n+ 2− σ)0
(

1− n+ l
2
− σ + τ

)
×0

(
1− n+ l

2
− σ − τ − 1

)
0

(
l − n

2
+ τ + 2

)
0

(
l − n

2
− τ + 1

)
,

Ψ2= 2
n+l

2 +σ−1(n+ l + 2σ − 2i − 1)
0(σ + 1)0(l + σ − i + 1)0(−n− σ + i + 2)

0(n+ l + 2σ − i)0(−n− σ + 2)i! ,

Ψ3= 2
n+l

2 +σ−1 · (n− l − 2j − 3)
0(σ + 1)0(−l − σ − j − 1)0(−n− σ + j + 2)

0(−n− σ + 2)0(n− l − 2− j)j ! .(4.13)

ForΨ1 the matter is more complicated. Forl 6 n−3 the firstn−3− l termsΨ1T
(2) of the series

in (4.12) have atβ = β0 poles (of the first order). Fortunately, the poles of thek-th term and of
the(n− 3− l − k)-th term are annihilated. (This situation differs from the one in [1], where the
poles of the discrete series were annihilated by the poles of the additional sum.) So we have to
compute the following limit:

Hk = lim
β→β0

{
Ψ1T

(2)
∣∣
k=k +Ψ1T

(2)
∣∣
k=n−3−l−k

}
.
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After long manupulations with gamma-functions and their derivatives, using formulae
1.7.1(10) and 1.7.1(11), p. 16, [2] and the fact that in the limitT (2)|k=k = T (2)|k=n−3−l−k we
have:

Hk = (−1)n+12
n+l

2 +σ 0(σ + 1)0(−n− σ + k + 2)

k!0(−n+ 2− σ)0(l + σ + 2+ k)0(n− l − k − 2)

×
{

2− (l − n+ 2k + 3) ·
[(

1

−σ − n+ k + 2
− 1

k + 1

)
+
(

1

−σ − n+ k + 3
− 1

k + 2

)
+ · · ·

+
(

1

−σ − k − l − 2
− 1

n− l − k − 3

)]}
· T (2)|k=k.

(4.14)

Remark4.1. – Later on we shall take the limit whenσ → 1− n. As we seeHk will tend to
zero. Thus, forl 6 n− 3 the firstn− l − 3 terms of the discrete part in (4.12) will disappear.
Notice that ifn− l − 3 is even, then there is one term which is not involved in anyHk , namely
Ψ1T

(2) with k = (n− l − 3)/2. But this one is zero because of the factor(−2α+ 2β + 2k+ 1).

For l > n− 3 and forl 6 n − 3 with k > n − l − 2 one can easily see thatΨ1 is regular at
β = β0, so that just settingβ = β0 we have:

Ψ1 = (−1)n+12
n+l

2 +σ−1(−n+ l + 2k+ 3)

× 0(−n+ l + k + 3)0(σ + 1)0(−n− σ + k + 2)

k!0(−n− σ + 2)0(l + σ + 2+ k) .
(4.15)

Thus forα = α0 andβ = β0 we can rewrite (4.12) as follows:

(Nσ,n | h)=


I + II +∑ l−n+1

2
i=0 Ψ2 ·

(
T (1), h̄

)∣∣
τ= n+l2 +σ−i−1, for l > n− 1,

I + II , for l = n− 2,

I + II +∑ n−3−l
2

j=0 Ψ3 ·
(
T (1), h̄

)∣∣
τ=(n−l)/2−2−j , for l 6 n− 3

(4.16)

with

I =
∫ ∞
−∞

Ψ · (T (1), h̄)∣∣
τ=−1/2+iν dν,

II =

∑∞
k=0Ψ1 ·

(
T (2), h̄

)∣∣
τ=(l−n)/2+k+1, l > n− 3,∑ n−l−3

2
k=0

(
Hk, h̄

)+∑∞k=n−l−2Ψ1 ·
(
T (2), h̄

)∣∣
τ=(l−n)/2+k+1, l 6 n− 3

andΨ , Ψ1, Ψ2, Ψ3,Hk as in (4.13), (4.14), (4.15).
Now introduce the following notations:
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A = lim
σ→1−nΨ =

(−1)n2(l−n)/2−2(2τ + 1)sin2τπ

π20(n− 1)
·0((n− l)/2+ τ )

×0((n− l)/2− τ − 1
)
0
(
(l − n)/2+ τ + 2

)
0
(
(l − n)/2− τ + 1

)
,

A1 = lim
σ→1−nΨ1= 2(l−n)/2

0(n− 1)
(n− l − 2k− 3),

A2 = lim
σ→1−nΨ2= (−1)n2(l−n)/2

0(n− 1)
(l − n− 2i + 1),

A3 = lim
σ→1−nΨ3= (−1)n2(l−n)/2

0(n− 1)
(n− l − 2j − 3).

(4.17)

Here we used the limit limσ→1−n(σ + n− 1)0(σ + 1)= (−1)n/0(n− 1).
At last, taking pull backM′ of distributions in (4.16), then multiplying by(σ + n− 1) and

taking the limit whenσ → 1− n and finally multiplying byxl1 we get (4.6). We also setα = α0
andβ = β0 everywhere and use (4.1) for the left-hand sides.2

Now we are going to expressA′T (j) which occurs in the right-hand side of (4.6) by means
of spherical distributions associated with representations of our groupG, see Section 1. Then
Lemma 4.2 gives:

LEMMA 4.3. –Let l = 0,1,2, . . . , τν =−1
2 + iν andτk = (l − n)/2+ k + 1. For h ∈D(X1)

the functionδl has a decomposition into spherical distributions as follows:

E · (δl | h)=
∞∫
−∞

E1 · (ζ2τν+1,l , h̄)dν

+
n−3∑

k= n−l−3
2

E2 · (ζ2τk+1,l, h̄)+
∞∑

k=n−2

E3 · (θk−n+2,l , h̄)|τk ,(4.18)

withA, A1 from (4.17)and

E1 = A ·Υ |τ=τν ,
E2 = (−1)n+1 ·A1 ·Υ |τ=τk ,
E3 = A1 ·Υ1,

Υ = (−1)p+12−(n+l+2)/2

πn−1 sinπ((n− l)/2+ τ ) ·
0(n−2+l

2 + τ + 1)

0(2−n−l
2 + τ + 1)

,

Υ1 = (−1)k+q+1

2(n+l)/2πn
0(l + k + 1)

0(k − n+ 3)
.

(4.19)

Proof. –Fortunately, we already have the expressions of spherical distributions by means of
hypergeometric functions, see Propositions 1.3 and 1.4.

First we considerT (1) which occurs in the continuous part of the decomposition (4.6). Here
τ =−1

2+ iν. Thus, we can use formula (1.14), because it holds forλ 6= (l+2r)(l+2r+2n−2),
i.e. s 6= ±(l + n− 1+ 2r), r = 0,1,2, . . . .

From now we always keep in mind the notationst = (c+ 1)/2, τ = (s − 1)/2, µ = n − 2,
moreover, everywhere we setα = (n− 2)/2, β = l/2.
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For τ =−1
2 + iν we know by Theorem 1.1 that dimD′λ,l(X1)= 1. Thus, with a constantV

A′Tλ,l = V ·A′T (1).(4.20)

We are going to calculateV . First recall forT (1), see (2.6)

T (1) =W · P (1) +Z.(4.21)

The relation (4.20) is true for anyf ∈ D (X1). We can choosef with support on a regular
set inX1, then all terms concentrated on the cone, for exampleZ in (4.21), are equal to zero,
andTλ,l andT (1) are given by regular functions. We indeed, can make such a choice, because if
τ =−1

2 + iν then the regular parts ofTλ,l andT (1) are nonzero. (NeitherG(t,λ,µ, l) in (1.8)
norP(c, τ,α,β) in (4.21) are zero.)

Thus,Tλ,l can be expressed by means ofΦ, see (1.8), (1.7);Φ can be expressed by means of
P , see (1.4) and (2.2), henceTλ,l can be expressed by means ofT (1) with the coefficient:

V = (−1)nl!2(n+l)/2−1 sinπ
(
(n− l)/2+ τ )0(2−n−l

2 + τ + 1)

0(n−2+l
2 + τ + 1)

.

Finally, it follows from (1.14) and (4.20) withΥ as in (4.19)

A′T (1) = Υ · ζ2τ+1,l.(4.22)

We see thatT (1) also occurs in some additional terms of the decomposition (4.6) with
τi = l−n

2 − i andτj = n−l
2 − 2− j respectively. In both casess = 2τ + 1 can not be written

in the forms =±(l + n− 1+ 2r), r = 0,1,2, . . . .
Thus, we can use formula (1.14) and the fact (4.20). In the caseτ = τi we can proceed as

above. Namely, we can apply both parts of (4.20) to a functionf0 with support on a regular set
in X1, because for such a functionA′Tλ,l andA′T (1) are given by regular nonzero functions (G

in (1.7) andW in (2.7) are not equal to zero). Thus, proceeding as for the continuous part we get

A′T (1)|τi = Υ |τi · ζ2τi+1,l(4.23)

with Υ as in (4.19).
In the caseτ = τj one hasG= 0 in (1.7) andW = 0 in (2.7). It follows from (1.8) and (4.21)

that:

Tλ,l(ϕ) = A(λ,µ, l)

µ−1∑
k=0

(−1)µ−k−1π · ak(λ,−µ, l)ϕ
(µ−k−1)(t)|t=1

(µ− k − 1)! ,

T (1)(ϕ) = (Z,ϕ)

(4.24)

with Z as in (2.7). One can see that (4.24) gives, withΥ as in (4.19),

A′T (1)|τj = Υ |τj · ζ2τj+1,l .(4.25)

Now we are going to express the distributionT (2) which occurs in the discrete part of the
decomposition (4.6) by means of spherical distributions.
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In this caseτk = (l − n)/2+ k + 1. We see that if 06 k < n− 2 thens = 2τ + 1 can not be
written in the forms =±(l + n− 1+ 2r), r = 0,1,2, . . . . On the contrary, fork > n− 2 there
existr = 0,1,2, . . . such thats = l + n− 1+ 2r.

First we consider the casek < n − 2. In this case we can use formula (1.14) withTλ,l as in
(1.8) and formula (2.6)

(−1)nT (2) =W · P (2) −Z.
AsG in (1.7) andW are zero forτk = (l−n)/2+ k+1 andk < n−2, we can take a function

f0 with support on the cone inX1 and proceeding as in (4.24)–(4.25) (with(−1)n+1T (2) instead
of T (1)) we get

A′T (2)
∣∣
τk
= (−1)n+1Υ |τk · ζ2τk+1,l(4.26)

with Υ as in (4.19).
Now we consider the casek > n− 2. In this case the basis of spherical distributions is given

by Proposition 1.4. We will show thatA′T (2) is proportional toθr,l, see (1.16).
Fortunately, we see thatA′T (2) andθr,l are given by nonzero functions for a test functionf0

with support on a regular set inX1. All terms concentrated on the cone are zero for suchf0.
Thus, we can use any relation for the hypergeometric functionT (2), see [1]. For example, using
the notationsµ= n− 2, t = (c+ 1)/2, τ = β − α + k, α = (n− 2)/2, β = l/2 and relation
r = k − n+ 2 we can combine formula (3.29) from [1] with (1.16) such that

A′T (2)
∣∣
τk
= Υ1 · θk−n+2,l(4.27)

with Υ1 as in (4.19). Here we also used formula (1.9) forT ′λr ,l and A′Sλr ,l , formula
(1.7) for G, formula (1.6) forA(λ,µ, l), formula 1.2(4) from [2], p. 3, formula (1.4) for
Φ(t, λ,µ, l), F (t, λ,µ, l) and formula (2.2) forP .

Now substitute (4.22), (4.23), (4.25), (4.26), (4.27) into (4.6). Noticing thatA2 · Υ |τi =
A3 · Υ |τj = (−1)n+1 · A1 · Υ |τk we introduce the following notationsE1, E2, E3, see (4.19).
Then we have from (4.6):

E · (δ | h)=


I + II +∑ l−n+1

2
i=0 E2 · (ζ2τ+1,l, h̄)|τ=(l−n)/2−i, for l > n− 1,

I + II , for l = n− 2,

I + II +∑ n−3−l
2

j=0 E2 · (ζ2τ+1,l, h̄)|τ=(n−l)/2−2−j , for l 6 n− 3

(4.28)

with the following notations

I =
∞∫
−∞

E1 · (ζ2τ+1,l, h̄)|τ=−1/2+iν dν,

II =
∑

E2 · (ζ2τ+1,l, h̄)|τ=τk +
∞∑

k=n−2

E3 · (θk−n+2,l , h̄)|τ=τk ,

where the first sum in II is taken overk = 0,1, . . . , n − 3 for l > n − 3 and overk = n − l −
2, n− l − 1, . . . , n− 3 for l 6 n− 3.

Finally, combining the additional sums in (4.28) with the first sum in II, we get (4.18).2
Now we express the coefficients in (4.18) by means ofc-function, see (1.12).
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THEOREM 4.4. –For h ∈D(X1) the decomposition of the functionδl into spherical distribu-
tions is given by the following formula:

(δl | h)= 4n−2 · 2π ·
{

1

2π
·
∞∫
−∞

1

c(iν, l)c(−iν, l)
· (ζiν,l, h̄)dν

+
−1∑

r=−n−l+1
2

Res

(
1

c(s, l)c(−s, l) ; s = ρ + l + 2r

)
· (ζρ+l+2r,l, h̄)(4.29)

+
∞∑
r=0

c−2

(
1

c(s, l)c(−s, l) ; s = ρ + l + 2r

)
· (θr,l, h̄).

}
.

Proof. –Using formulae (1.13) one can see that with notationsτ = (s − 1)/2 and
r =−n+ k + 2

E1=E · 4n−2 · 2

c(iν, l)c(−iν, l)
,

E2=E · 4n−2 · 2π ·Res

(
1

c(s, l)c(−s, l) ; s = ρ + l + 2r

)
,

E3=E · 4n−2 · 2π · c−2

(
1

c(s, l)c(−s, l) ; s = ρ + l + 2r

)
.

Then, we write
∞∫
−∞

E1 · (ζ2τν+1,l, h̄)dν = 1

2
·
∞∫
−∞

E1 · (ζiν,l, h̄)dν,

n−3∑
k= n−l−3

2

E2 · (ζ2τk+1,l, h̄)=
−1∑

r=−n−l+1
2

E2 · (ζρ+l+2r,l, h̄),

∞∑
k=n−2

E3 · (θk−n+2,l, h̄)|τk =
∞∑
r=0

E3 · (θr,l, h̄).

Now we rewrite (4.18) as (4.29).2
The formula (4.29) was obtained in [13] by a different method, namely as in [3], “première

démonstration de la formule de Plancherel”, p. 424.
Notice that the spherical distributions which occur in the second term of formula (4.29) are

“real” distributions, i.e. they are concentrated on a cone, i.e. on a singular orbit of the groupH1,
cf. [7].
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