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ABSTRACT. — In this paper we obtain the Plancherel formula for the spacgé-s&ctions of line bundles
over the complex projective hyperboloids’ H with G =U(p, ¢; C) andH = U(1; C) x U(p — 1, ¢; C).
The Plancherel formula is given in an explicit form by means of spherical distributions associated with a
charactery of the subgrougH . We obtain the Plancherel formula by a special method which is also suitable
for other problems, for example, for quantization in the spirit of Berezi®000 Editions scientifiques et
médicales Elsevier SAS
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0. Introduction

In this paper we obtain the Plancherel formula for the spaced.%$ections of line
bundles over the complex projective hyperboloi@gH with G = U(p,¢;C) and H =
U(;C) x U(p —1,4;C), i.e. we present the decomposition bf into irreducible represen-
tations of the groug; of classy. In order to leave aside the well-known case of a hyperboloid
with compact stabilizer subgroup, see [14], we asspmel, g > 0.

The Plancherel formula is given in an explicit form by means of spherical distributions
associated with a character of the subgroupH. We obtain the Plancherel formula by
Molchanov’s method, see [9]. Namely, we follow the detailed scheme in [1], Sections 4, 7. This
method deals with the spectral resolution of the radial part of the Laplace operator. The essential
step is setting the boundary conditions at certain special points. Those conditions are prescribed
by the behaviour of spherical distributions. Finally, it is necessary to perform various analytic
continuations. This method is also suitable for other problems, for example, for quantization in
the spirit of Berezin, namely, for the decomposition of the Berezin form. It is therefore why this
method has to be preferred to the existing methods, described in [3].

We use our results from [13]. There we defjnespherical distributions, study their asymptotic
behaviour and express them by means of hypergeometric functions. We describe the irreducible
unitary representations of the group, of class y associated with an isotropic cone. We
give constructions for the Fourier and Poisson transform, define intertwining operators and
diagonalize them. Some of those results are presented in Section 1.
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This problem was studied by several people. The case of the trivial bundle was studied in [3].
But the Plancherel formula was proved by a different method. Some important results about
representations of the group associated with a cone in the complex case were obtained in [8].
For non-trivial bundles the Plancherel formula is stated in [11]. The authors of [11] follow a
method from [3] but do not determine the spherical distributions. They also do not present an
explicit form of the discrete part of the Plancherel formula. As to the method used by them,
it is not suitable for other important rank one spaces likénSR)/GL(n — 1, R). Our method
however is suitable not only for the determination of the Plancherel formula but also for the other
problems, mentioned above.

We would like to emphasize an interesting, but maybe known, phenomenon which occurs
due to the noncompactness Bf The spherical distributions have, as in the real case, see [7],
nonintegrable singularities on the singular orbits of the grBuand hence do not yield locally
integrable functions. In some cases, namely in the first discrete series (Theorem 4.4), the
spherical distributions turn out to be supported only on the singular orbits.

1. x-spherical distributions on U(p, ¢) with respect to the subgroup U1) x U(p — 1, q)
In this section we introduce some results from [13].
1.1. x-spherical distributions

Let G denote the group b, ¢) of complex matrices of order= p + ¢, preserving inC" the
Hermitian form:

(1.1) [x, yI=x1y1+ -+ XpYp — Xp+1Vp+1— "+ — XnYn.

Consider the subgroup! = Ho x Hi1, where Ho = U(1), H1 = U(p — 1,¢q). Define for
heH, h=ho-hi x(h)=h}, wherehg € Ho, h1 € Hy andl =0,1,2,.... We can define
this for any integef but it is sufficient and more convenient to take non-negdtive

Consider the spack; = G/H;1. LetD(X1) be the space of complex-valu€d°-functions on
X1 with compact supporfX; can be identified with the s¢t, x] = 1. Itis a pseudo-Riemannian
manifold (non-symmetric) and as such it has a Laplacian which we denatg.bife define the
x -spherical distributions oy = U(p, ¢) with respect to the subgroup = U(1) x U(p — 1, q)
as the distributiong on G which satisfy the following conditions:

(1) T(hgh') = x(hh")T (g). This means that such distributions atg-invariant and hence

can be seen as distributions &a with an extra property with respect to the subgraiip
T (x ho) = x(ho)T (x), wherex € X1.

(2) They are eigendistributions of.

So x -spherical distributions o6& with respect to the subgroui are distributions orX1 with
the following properties:

e T is invariant with respect téfy,

o (11T =AT,

o T(é%%)=€"T(x), 6 eR.

Denote this space b@/u(xl). Supposel’ = le - S, whereS is an H-invariant distribution
andx is the first coordinate of € X1. The equatiom; T = AT can be reduced to a differential
equation forS and then to a singular second order differential equatiof®oto] :
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where:
L=4(—1) d—2 +4[(n+l+2r— 1+ 1)]g +1(2(w+1)+1),
(1.3) dr? dr
u=p+qg—2 r=s>—(u+1>2
The solutions of this equation at points= 0 andr = 1 respectively are the following
hypergeometric functions:

[+1 — [+1
F(r,s,u,n:zﬂ(“” ks e ;1+1;r),

2 ’ 2
nut+s+I+1 p—s+14+1
2 ’ 2

(1.4

CD(t,s,u,l):zFl( ;M—i—l;l—t).

1.2. The averaging map

It turns out that anyy-spherical distribution is associated with @&hinvariant distribution
(multiplied by x}), see [13].

First, we find the basis of the space of théganvariant distributions. We use the averaging
map M from [3]. Consider the surfacgix1|2 =1, r € R, t > 0}. The average of a function
f € D(G/H) over this surface belongs to the sp&g¢ef functions on[0; co[ of the following
form:

(1.5) @(t) = po(t) + n()e1(1), o), 1(1) € D([0; ool),
wheren is the “singularity” functionn(r) = Y (1 — t)(1 — t)* andY is the Heaviside function:
Y(t)=1ift >0, Y(¢t) =0if r <0. Using the results from [6] we solve the equatiofi= AS
in 1" and find a basis of the space of distribution solutions. Then we take the pull back and get a
basis of the space df -invariant distributions. Finally, we return tp-spherical distributions by
multiplying with xll. Let us denote this procedure BY. In this way we find a basis dD/U(Xl).
The basis ir{’ is built by means of functions (1.4). Introduce the following notations:

F(t+ie, A, u, 1)+ F(t —ie, &, u,1)

> ,
F@t+ie, h,u, ) —F @ —ie, A, u,l)

2i ’

FO(t, n, . 1) = lim
e—0

(1.6) G, , u,1)=Ilim
e—0

(4 DI ()
l—-(l+luzrs+l)l—-(l+u£s+l) ’

A, 1) =

wherex, u are as in (1.3). The functiong? andG are defined for # 1. MoreoverG is zero on
(=00, 1) and fort > 1 and integeje > 0 it can be rewritten as follows:
—1)®
pil (=)
with @ (¢, A, u,l) asin (1.4). Notice thatfox =1, = ((+2r)({+2r+2u+2), r=0,1,2, ...,
i.e. fors = +( 4+ 2r +  + 1) the functionFO(t, &, u, 1) is a polynomial of degree and the
functionG (¢, A, , 1) is zero.
Define as in [3]:

o0
S3.1(p) = lim /
e—0
0

NI =

[F(t+ie, h,w, D)+ F(t —ig, h pu, D]p@) dr,
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1
T.1(p) = lim / —[F@t+ie,n, u, 1) — F(t —ie, &, w,D]o) dr;
e—0 2
0

T can be expressed for integer> 0 as:

e (n—k—1) _
Toi9) = AGe D) Y (D o, e,y =
k=0 (n—k—1)!
(1.8) .
+/G(t,>»,u,l)<p(t) dr
1
with
Oy = A H LA D/l s +1+D/2)
e (i + D)k! :
where(y ), = F}Qf(j)k) —y(y+1)---(y +k—1), see[3, p. 385].

1.3. A basis of the space of -spherical distributions

Setforh, = +2r)( +2r +2u+2)

, I
(1.9) T, . () —er A Ty

We have the important result:

THEOREM 1.1. —Forany\ # A, diij\,,(Xl) =1 andD/”(Xl) is generated by'T; ;. For
A=, dimD; ;(X1) =2andD; ,(X1) is generated byA’S;, ; and A'T;

1.4. Representations of the grouf

We consider representations of the gramnduced from maximal parabolic subgroup@f
These representations are associated with an isotropic cone and were studied in [8,3] for the case
x = 1. A description of representations of clagssvas given in [13], see also [12,10].

Some subgroups of our group can be introduced as usual, see [3,8,10]. NamelyKldte
the maximal compact subgroug p) x U(g) of G.

Let g, €, b denote the Lie algebras of the groups K, H respectively. Letp, q be
the orthogonal complements #© bh with respect to the Killing form. All maximal Abelian
subalgebras ip N g are one-dimensional. Consider one of them with basis:

0 0 1
L:(O 0,2 0),
1 0 0

whereO,_; is the zero matrix of size — 2. Let A denote the group of matrices = exp{s L},

t € R, and letM be its centralizer ir{. The Lie algebrg can be decomposed into a direct sum

Z,f?z gk, Where theg, are eigensubspaces of the operatoLaddL|y, = k - id. Denote by

N = expn, wheren is the nilpotent subalgebre= g1 + g2, generated by the positive roots.
Define fors e Cand/ =0, 1, 2, ... the charactey, ; of the parabolic subgroupf AN as

—ilo

Xs,i(mamn) =€ e, teR,
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where €'/ is one-dimensional representation of the grasigiven by:

é 0 0 .
(1.10) ( 0 v O ) — e 110
0 0 ¢
withv e U(p—1,¢ —1), 6 € R. The representatian, ; of the groupG induced by the character
Xs.1 Can be realized in the spa€g,; (&) defined by:
E1(8)={feCx@) | f(gma,%) =e"~"". e f(g£)],
(£°=eMoN),

[75.0(8) £1&) = f(8776).
Herep =n — 1 andMjp is the subgroup oM, consisting of the matrices as in (1.10) but with
6 =0. As E = G/MgN can be identified with the cone ={y e C" | [y,y] =0, y#0}, a
function of & ;(Z) can be seen as a function on the congatisfying:

(1.12) VAeC, A£0 Fiyr) =271 f(y).

Then, according to the method of Molchanov, see [9,7] we defing i#hgherical distributions
by means of these representations:

ti(@) =7l _j(@ust, u—s 1) (¢ €D(G)).

Here (f, h) = fB f(b)h(b)db is the G-invariant linear form on; (&) x E_5 (&), where
B = {k&% | k € K} is the K-orbit which can be identified with the direct product of two unit
spheresy = §2P—1 x §24-1:

b<y, beB,yelX,

and @ is the K -invariant measure oB.
us,1(f) is the following entire function of:

1
F(S*/OJEUHZ)

us (f) = /ﬁ“”’”f(y)dy,
)

where f € £_; _; (&) seen as a function on the cone, see (1.%1)s the first coordinate of
yeX.
In [13], Section 5, we showed that; is a well-definedy -spherical distribution 0.

1.5. Poisson kernel, intertwining operators, Fourier transform

We define Poisson kernel, intertwining operators and Fourier transform in the same way as in
[3]. So we have ¥-analogues” of the main theorems and propositions from [3]. For example,
the x -spherical distributions can be given by means of the Fourier transpooira functiong
fromD(X1)

é‘s,l((p) = (a(v S, l)a u*S,*l)*

To diagonalize intertwining operators we use [12,10].
But we remark the following. In his paper Faraut gave detailed proofs for the real case. On
the other hand, according to [8], the complex case differs quite seriously from the real case.
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Namely, theK -types have a more complicated form. Because of it we can not use the methods
of computation used by Faraut. We have to prove some important theorems in an alternative way.

1.6. The behaviour of spherical distributions at infinity

First we consider the asymptotic behaviour of spherical distributions.

PROPOSITION 1.2. —Let ¢ be a function inD(X1). Puty, (x) = ¢(a; x). We have foRes >
p—1and/=0,1,2,...

lim e “=P" ¢ (@) = (s, 1) -y (5. 1) - §(£°, 5, 0)

—00

with
2075 4. gPte . T (s)
l—-(s+lfq2+p+l) . F(s+12+p) . F(‘Sfl+q27p+l)

(1.12) c(s, )=

The factory (s, 1) = ['(S24320) )1 (==241420) gppears in the relatior,,; o F_y; =
y(s,1) - Fs1, where A and F denote an intertwining operator and the Fourier transform
respectively.

Later on we would like to express the coefficients of the Plancherel formula by means of
c-function, see (1.12). We shall need the following formulae:

1 ssingsT (52 (=442)
c(s,l)c(—s,l)_ 4p+2ﬂ2p+lsinn(*s+zl+,0)Sinn(SJrlerp)’
1 (p+1+2)T(p+1+r)I(—r)
1.13 Red ———; 1+2r)= ’
( ) S(C(S,I)C(—s,l) prit r) 40+172p12
1 2= o +1+2)T(p+1+7r)
| ———ip+i+2r) = .
2<c(s,l)c(—s,l) pri+ ") T2 2]

Herec_»(f(s); so) denotes the coefficient of the term— sg) 2 in the Laurent expansion of
in a neighbourhood of = sg.

Proposition 1.2 helps us to express spherical distributions by means of basis distributions, see
Theorem 1.1.

PROPOSITION 1.3. —Puti = s2—p2. Thenforalls £ +(+n—1+2r), r=0,1,2,..., [ =
0,1,2,...,
4.7P
I
Moreover, forh = A, = (I + 2r)(I + 2r + 214 + 2), we have

(1.14) Gl = (=1 AT

(1.15) £ =0.

Because of (1.15) fox = (I + 2r) (I + 2r 4+ 211 + 2) we define spherical distributiong; and
6,1, cf. [3], which correspond to the exceptional series of representatiatis@dnsidering their
behaviour at infinity we have:

PROPOSITION 1.4. —ForA =X, = ([ + 2r)(l + 2r + 2p)
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(=19 1
= 2Pt A'S o
Nr,1 T(+1) Al

2rP (=17 - [(—1)r

1.16
(10 =D e T g
N R o B TR |

2
Il

2. Eigenfunctions of the radial part of the Laplace—Beltrami operator

This section follows 8§28, [9], for a detailed version see Section 3, [1].
Changing the variable in equation (1.2) as- (¢ + 1)/2 and introducing new notations
u=2a, | =28 we get the following operator (cf. [9], (28.1)):

2

(2.1) Ly =4(c* - 1)% +8[(@+ B+ D+ (o — ﬁ)]d—i +4B8Q2a+ B+ 1).

We consider the following solutions of equation (12, 7, «, 8), Q(c,t,a,8), T(c,1,, B)
functions of the complex variabte(cf. [9], p. 105):

P(c) 2 FBTHLat Bt 42 =C
= T 3 —T; 5 ’
T Ay N\ * 2
r DI — 1
Q(C) — 21’ (a+13+r+ ) (a ﬂ+f+ )(C+1)—0!—/3—T—1
2t +2)
(2.2) 5
X2F1(oc+ﬂ+r+l,a—ﬂ+r+l;2r+2;—),
1+c¢
20—p 1—c¢
T = — —l_za F - 1,_ - 71_207 )
(©) F(1_20[)(6 ) 2 1< a+p+1+ a+p—1 5 )

wherea, B, t are complex parametersfi is the hypergeometric functior; is the Euler
gamma-function and the power has to be interpreted as the principal value.

They are defined and analytic in theplane with the cu{—oo, —1] for P and (—oo, 1] for
Q andT. On the cuts we defin®(c) and Q(c¢) as half sum of the limit values from above and
below, and forT (c) we set (cf. [9], p. 106)

€27 . T(c+ie) + €27 . T(c —ie)
5 :

T(c) = lim
(C) e—0

If it is necessary to indicate the parameters, then we Wiite 7, o, f), ...
In addition to these functions we define functioRs Q, T, P*, Q* andT*, where, for
example:

(2.3) P(c.t.a, )= P(—c, 7, B.a),  P*(c.t,a,B)=P(c,—t — 1, a, B).
All these functions satisfy certain relations (see [1], Section 3) on each inferval
(1, o0), j=1,
(2.4) I[=1(-11, ji=2,
(=00, =1), j=3.

We shall use some of those relations. We also use the same regularization process for defining
functionals associated with these functions. For example:
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(P9.1) = [ Plermeerde
1
(T(j), h) — (_1)jn . / T(c,7,0,B — ao)h(nfz)(c) de.

1

(2.5)

Notice that in our casg # 0. The regularization process férdiffers from the one fofl'. That's
why the relations for functionals differ from the ones for functions by terms concentrated at
¢ =1. For example:

T _—w.pd =7z

(2.6)
(-)"T? —w.pP?=_7,
where
W Fe+p+t+1) T(lae—B+1+1)
CD(—a—f+t+D) T(—a+p+r+1D)’
n—3 _1ymol—ap—B+m _ _
(—1ym2l-e0 Mg+ p+1—mT(w—-B+1+1)

2.7) (Z, h)= 0 ()| em1.
@7) 2. 1 ZF(—ao—ﬂ+t+m+2)1"(—ao+ﬂ+r+1)F(n—2—m)h (©le=1

m=0

To prove this we use the formulae similar to (3.55), (3.56), [1] but witk: O and some
formulae for functionsr’, P, for example, (3.23), (3.25), [1]. Notice that wih=0, 7 =
—o—ap—1, 0" =1—n— o we have the samg as in (3.50), [1].

3. A spectral decomposition
In this section we follow 8§30, [9], i.e. we obtain the spectral decomposition of the operator

L1, see (2.1). The main result is the Parseval equality in Theorem 3.2.
The operatol is not symmetric. So we make the change

(3.1) y=G"1z, whereG(c)=|c -1/ |c+ 1.
We obtain the following differential operator (cf. [9], p. 113):

d? Py d +2oa2+2~/32
a2 T T1 ¢ l+c’

Ly = (CZ— l)

The operatod.; is symmetric, provided? andp? are real. With the notation= (s — 1)/2 the
equationLy = Ly gives us the following differential equation:

Loz =1(t +1z.

The eigenfunctiong and F of the operatord., andL respectively are connected by the equality
f =GF,whereG is asin (3.1).

We are going to define an extension of the operatoand obtain its spectral decomposition.
Suppose:

IRea| <1/2, «#0, |Ref|<1/2.
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Then the eigenfunctions of the operatbs are square-integrable on each bounded interval.
For every functionp € L?(—1, co) which is absolutely continuous on each compact set not
containing+1 and for whichL,¢ € L?(—1, co) we can define the following boundary values
at pointsc = £1:

+ _ H I T o /

Aj@ = Jim le—1""{ep(0) + (= Dy},

B () = cadm o= 1*ap(@ ~ (= D'@)}.
(3.2) -

Aj(@) = lim e+ 127 {Be() + e+ De' (@)},

c—>—1,(.‘elj, Jj=2,

Bi(p) = lm  jc+1P{Bp(c)— (c+ D'},

c—>—1,(.‘elj, Jj=2,

wherel; asin (2.4).
Then we set the following boundary conditions at points +1 (cf. [9], p. 114):

(3.3) A=A} =B, =0.

And at infinity ¢ € L2, we denote this as follows:

(3.4) 0o (¢p) = 0.

These boundary conditions define an operatorZé—1, co) which we denote byL. Now

we are going to write explicitly the resolve®t, = (wl — )71 of this operator by means of
hypergeometric functions, see (2.2).

LEmMMA 3.1.-LetRer > —1/2, Imt # 0. The resolvent of the operatdr is an integral
operator with a symmetric kernel given for- y by the following formula

wt. Q@) -T(y), Ifl<y, c<oo,

(3.5) Ri11)(c, ) =G(c)-G(y) - . _
W1-T(c)- P(y), if —1l<y,c<1
with G(c¢) asin(3.1), W as in(2.7)and

1
(3.6) le—é'F(—a—i—ﬂ—t)'r‘(—a—i-,ﬁ—i-t—i-l).

Proof. —We take Re > —1/2, Imt # 0, this is the same as Ia{r + 1) # 0. The method of
variation of constants gives us the symmetric kemgl 1)(c, y) = R;(z4+1)(y, ¢) and forc > y:

vi(Qui(y) ;
ifl<y, c<oo
TERTIRS ’ ’
(37) Rr(r+1) ()= v(Cu)tt(vj) .
TR if —1<y, c<l

Hereu,v anduj, v1 are linearly independent solutions fcg = 1(t + 1) g on the intervals
(—1,1) and (1, co) respectively. Moreover, they are chosen to satisfy our boundary conditions
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(3.3), (3.4) in the following way:

By (u)=0, A3()=0, Aj(u1)=0, oo(vy)=0,

A7) #0, By (v)#0, oo(u1)#0, Af(v1)#0.

And [, v] denotegu, v] = (2 — 1)(u'(c)v(c) — u(c)v'(c)).

Now we are going to choose suitable candidatesifow, u1, v1. Using formulae for the
analytic continuation of the hypergeometric series from [2], 2.10, pp. 108-109, one can write
down the explicit formulae foG P, GT, GP andGT near pointg = £+1 (hereG is as in (3.1))
by means of hypergeometric series. Then one can evaluate the boundaryA/w B, of

the functionsG P, GT, GP andGT according to formulae (3.2):

— + +
B, Az Al
+1 2 2@
GP | B2 dap T'(2) T'(2%)
GP 0 a2ftldg, a2btldg
GT | p27otla_, 4 0 0
= B _ _
GT —ﬁ a2 Ptla_ g, a2 Ptla g,

2~ HN/2 P (—y)
(2 -0 T FZ+1+1)

According to the table we should take= GP,v=GT. Then[u,v] = 1/ Wy, see (3.6). And
we can choose; = GT, v1 = GQ because at Ieas;q(GT) = 0 and one can check, using
formula 1.5(2), p. 9 from [2], thato(G Q) = 0, see (3.4). To show thatf(G Q) # 0 we use the
following formula (cf. [9], p. 105), which is true far > 1:

Hered, , =

. Notice that for evaluatingd™ one has to use that< 1/2.

(3.8) ésin 2 - Q(c)=T(c) — W - P(c),

whereW is as in (2.7). To show thato(GT) # 0 we use the analytic continuation @f to
¢ = +00, see formula 2.10(3) from [2], p. 109.
Calculatingiu1, v1] we havdui, v1] = W. Substitutings, v, u1, v1 into (3.7) we get (3.5). O

Now we are going to determine the spectral decomposition of the opeﬁaiter we write the
Parseval equality fop, ¥ € L?(—1, c0).

THEOREM 3.2. —For |Rex| < 1/2, a #0, |Rep| < 1/2, Re(a £+ B) < 1/2 we have the
following Parseval equality

400
@) = / 2-(GTD.9) - (GTD )| __y 505
(3.9) oo
m —_
+ Z‘Ql' (GT(Z)’ ¢)- (GT(Z)v V’)‘r:—oﬂrﬂﬂc
k=0
with
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2t+1 |
2= 8,7 sin2tw
(3.10) xI'(—a—B+1+DI'(—a+B+t+ DI (—a —B—1)['(—a+ B — 1),

o _21—}—1F(—oc—,B—i-t—i—l)'l"(—ot—i—,B—i-T—i-l)
YT T+ ftc+D) T@—B+r+D

Proof. —We use the following formula:

@11) [ h@ (B ¥) =5 lim [ ) ((Rosi — Roio)e | ) do
R R

for any continuoug with compact support.

Passing fromw to = by w = 2 + r we change the notatioR,, = R.. Split thet-contour into
two parts: the “imaginary” part and the “real” part, see Fig. 1.

The “Imaginary” and the “real” parts will give us the continuous and the discrete spectrum of
the operatoi respectively.

Takings =1 in (3.11) we write the Parseval equality:

+00
(3.12) (@ ly)= / (Ke@ [ ¥)le=—1/2+iv v+ Y (Re§K}]o | v).
where
(3.13) K= %(a + (R, —R—-1), Kl=@Qr+DR,

and the sum is taken over all points inside #h&ontour at which the functiok ! has a pole.
Now rewrite equality (3.12) in a more explicit form. First consider the continuous spectrum.
Using formula (3.5) forR,, = R; we have forc > y:

QT ()T (y), ifl , )

with £2 as in (3.10). Here we used formula (3.8) f@rand the fact that, T, P, i’;are invariant
under the transformation— —7 — 1, see (2.3),i.ey*=u, T*=T, P*=P, P*=P.

|
—_
5
\
\
v
'
|
|
|
T
'
'
|
'
i
t
'
'
'
!
!
i
'

a2

l
I
'
L
i
v

“imaginary” part “real” part

Fig. 1.
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K+ (c, y) is symmetric and one can easily write
(Kep|¥)=2-(GTD, ) - (GTD.y),

whereT () as in (2.5). We also recall our notations:

(w,w)=/<p(0)w(0)dc, (¢l ¢)=/<p(0)&(0)dc.
-1 -1

So the continuous part of the spectral decomposition of our opefatmn be written as
follows:

+00 +oo
(3.14) / (K@ | Y)e=—1/24iv Qv = / 2-(GTY,¢) - (GTV,P)|,__y 5y, -
—00 —00

Now we consider the discrete part of the spectral decomposition. First of all using formula
(3.5) we write forc > y:

-1 .
KXe») = G(©)- G- 2t +1)- { WeOT), <y, c<oo,
W1T (¢)P(y), if —1l<y, c<l.
We see tha’rK} has the series of poles becauseWigf and W. But if in addition to|Rex| <
1/2, |RefB| < 1/2 we suppose that Re+ 8) < 1/2 then only the poles = —a+ 8 +k, k=0,
1,2,...(given byWs), lie in the half plane Re > —1/2.
If we denotekK! = RegKY; T = —a + B + k) then forc > y:

=
© {0, ifl<y, c<oo,
T BAGOTEOCIT Wlematprh, if —l<y, c<l

Here we used formula (3.29), [1] faP. Now it is clear thatk! is symmetric and in a similar
way as above one can write:

2t+1 -
(Klp|y)= W (GT(Z)’ ¢) - (GT(Z)’ V’)‘rszmk'
Thus the discrete part can be written as follows:
. 2r+1 -
315 > (Re§kloly)=>_ W (GT@,9)-(GT?, (0]
k=0

Finally, substituting (3.14) and (3.15) into (3.12) we have (3.9).

4. The Plancherel formula

The main formula of this section is the decomposition of the functipinto spherical
distributions (Theorem 4.4) which implies the Plancherel formula.



G. VAN DIJK, YU.A. SHARSHOV / J. Math. Pures Appl. 79 (2000) 451473 463

Let § be the following distribution inD’ (G/H) (the delta function concentrated at the
. . 0 .
origin x"):

@1 f/)=f(&% (feD(G/H)).
Let us consider the following functions on the real line depending on the complex variable

lc — 117, for n odd,

Nc,n(c) = { lc — 1|‘7 -sgn(c — 1), for n even.

By [4] these functionals are analytic functions®fwithin the domain Re > —1 and can be
analytically extended to the whote plane as meromorphic functions. &t= 1 — n they have a
pole of the first order. The same is true for the distributions:

le) =1,
le(x) — 1|7 - sgn(c(x) — 1), forn even,

, for n odd,
M Ny =

where, according to our averaging magx) = 2|x1/> — 1 (cf. Section 1 and the notation
t = (c + 1)/2). Herex1 is the first coordinate of € X;. Moreover, wherw — 1 — n we have:

(4.1) (@ 41— 1M Nyn— E -5,

where

(4.2) o (—1)"%, 1 for n odd,
(_1)“121:&3”1; . forn even.

To evaluate the coefficients befardunction we wrote:

201817 =27 - [T + 87], for n odd,

M'Ny =
27 18| sgns =27 - [S7 — 7], forn even,

with the real quadratic forn§ of the signaturép, q) = (2¢,2p — 2)
S= —xziz — xpip +xp+1ip+1+ s +Xp+qu+q

since our spac&1 = G/Hj can be identified with the s¢t, x] =1, see (1.1) and used the result
from [4], p. 257:

. (_1)n/2+k71

—1)9/2;n/2
Res pr="D " (=D¥em
r=—n/2—k '(n/2+k)

k
Zrrmzih - o)

8§n/2+k_1)(P) +

with
92 92 92 92

L= — 4. .4 -
9y ayg 8y§+1 9y51q
and the fact tha&ik)(P) = (Sg‘)(P) forevenn andk <n/2—1, see [4], p. 267.
Let Dg be the following domainDg = {|Rex| < 1/2, o # 0, |ReB| < 1/2, Re(a £+ B) <
1/2}. According to (3.9) withinDg we have the Parseval equality. We are going to write that
equality for the function®V, .
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LEMMA 4.1.—In the domain
DoN {Re(a +a+p) < —1/2} N{Reos > —1}

we can write forh € H

oo

o
43)  (Nowlh)= / (TP 1)y, D+ D0 (TP R)| e
A k=0
where
2a+/3+o—2 r 1
l]/ = T(ZT + l)Sithﬂ%r(—a - ,3 — 0 + 7:)
@4 xI(—a—B—oc—1—DI'(—a+B+1+DI'(—a+ B —1),

Wy = (=120t Loy 4 28 + 2k + 1)
I'—2a+28+k+1LT'(0c +1I'(—20 — 0 + k)
KT (=20 — o) (2B +0 +2+k) ’

Proof. —We follow the scheme in the proof of Lemma 7.3, [1]. First consider the case when
is odd. ThenV, , = |c — 1|?. SinceNy ,(c) ¢ L?(R, dr) for anyo, we represent it as a sum:

Non(e) =N, () + N, ,(0), Ny (©)=lc—1"-Y(+2—|c]),
whereY is the Heaviside function.
One can see that the functiGhv,", = |c— 1|7+ |c+1]#- ¥ (2—|c|) belongs taL?((—1, 00))
if Re(o + ) > —1/2 and R > —1/2. AndGN,;, € L?((—1, 00)) if Re(o + o + p) < —1/2.
HereG isasin (3.1).
We are going to write two Parseval equalities: first for the pait GN;,, ¥ = G 'h and

then for the paip =GN, ,,, ¥ = 57111, whereh belongs to the image of our averaging map,
see (1.5) (taking in account the substitutioa (¢ + 1)/2).

The first equality can be written for the domdin = Dg N {Re(o + «) > —1/2}. The second
equality can be written for the domaid, = Do N {Re(o + @ + B) < —1/2}. We can see that
D1 N Dy # ¢ at least for negativg.

We notice that the first equality can be written within the wider domBm= Dg N
{Reos > —1}. Indeed, the left-hand side exists for Re- —1, see [4]. According to 7.512(5),
p. 863, [5] the conditions Re > —1 and Re3 > —1/2 give the existence of the integral
(GT®,GN,)) in the right-hand side. Also the condition Re> —1 gives the existence of
the integrakGT ™, GN,},) in the right-hand side. Thug, N D3 # ¥ even for some positive.

Within D, N D3 both equalities are true. Taking the sum we get the Parseval equality for

——1
QOZGNJ,nuw:G h.

o]

o
(45) (GNow |G 'n)= / 2B(TO.R)[ o+ Y 21B1(TP, R
% k=0

T=—a+p+k’

where
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o
B=(GTY.GNJ,) +(GTW.GN,,) = / (e = D7+ DPT(0) de,

1
1

B1=(GT®,GN},)+(GT?®,GN;,) = /(1 — )T (c+ DT (c) de.
-1

It remains to computé® and B;. First of all rewriteT (¢), using formula 2.9(1,3) from [2],
p. 105. Then by means of 7.512(3), p. 863, [5]:

B — putBo+l FNo+YI(—~a—B—oc+0)(—~a—B—0—1—1)
B IN—a—B+1+ DI (—a—B —0)[(—20 — o)

Here we make the change of variabte (¢ — 1)/(c + 1) and recall that = —% +iv.
To calculateB; we use 7.512(5), p. 863, [5]:

C(c+DHIr(1+28)
I'oc+28+2)I'(1—2x)
x3Fo(—a+B+t+1l,—a+pB—1,0+11—20,0 +28+2;1).

Considering the case is even, i.e.Ny ,(c) = |c — 1|° - sgn(c — 1), we see that the only
difference is that in (4.5B1 appears with a minus sign. Thus for amyve multiply the above
expression foB by (—1)" 1,

Finally, putting B and B; into (4.5) we have (4.3). To ge¥ and ¥; we just used the
expressions fof2, £21, see (3.10). Moreover, substituting= —a + B8 + k in the hypergeometric
functionsF» in By we are able to use formula 4.4(3), p. 188, [2[1

Bl — 20(+,3+(7+1

Both sides of (4.3) can be analytically continueding, o, to the pointx = «g, 8 = o, 0 =
o0, Where
n22, ,30:%, oo=1-—n.
The following lemma is obtained from Lemma 4.1 by this analytic continuation. Moreover, to
pass from the decomposition 8%, ,, to the decomposition af we take the pull back1’ of both
sides of the equality. Finally, we pass tespherical distributions multiplying both parts hi/.
We introduce the following notation:

oap =

&1 1)y = (x}-81h).

LEMMA 4.2.—-Leth € D(X1). We have the following decomposition of the funcion

l=n+1 _
L35 5 Az- (AT h)| oy TOrizn—1,
(4.6) E-(&1hy=1{1+]1l, forl=n-2,

_ -
LRI+, 5% As- (ATDh)| o0 jr fOri<n—3

with E asin(4.2), A; as in(4.17)and the following notations

o0

I = / A . (A/T(l)7 }_l)|f:—1/2+ivdv’

—00
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(@] 2) 1.
i S0 AL (AT, h)‘t=(lfn)/2+k+1’ I>n—3

5 -
Y2 Ar (AT )| o oy IS =3

Proof. —The scheme of the proof follows the proof of Lemma 7.4, [1]. Since in our £356,
we have to make an analytic continuation twice for big and for sin&llhen we do an analytic
continuation some additional terms can appear on the right-hand side of (4.3), since poles of
the integrand in (4.3) pass the integration lfieRer = —1/2. The integrand has two series of
poles:

Q1D t=a+p+0—1i, t=—a—fB—-0—-1+4+1i,i=0,1,2,...

@) coming from the factoF (e« — 8 —o + ) I'(—a — B —0 — T — 1);
4.7

2 t=a-p—-1—j, t=—a+p+j, j=012,...
coming from the factoF (—a + B+t + D) (—a + B — 7).

In the domainD; N D3 we have forany, j =0,1,2, ...

Re (0+B+o-1) Re (—o—B-0—-1+)
| —1/IZ | Ret
Re (0—B—-1-j) Re (—o+p+))
| —1/IZ | Ret
Fig. 2.

First let us mover, 8 ando in such a way that the inequality Re— 8) < 1/2 is maintained.
Then poles in (2) do not pass the integration liieOn the contrary, some poles in (1) pass
C, namely, those with < (I —n + 1)/2. Sincew TV is invariant with respect te — —7 — 1,
every pair of them with the samieassingC gives by Cauchy theorem the following additional
term in the right-hand side of (4.3):

D; =4 - RGS:a+ﬁ+g_il1/T(1) =y T(l)|r:oc+/3+o—i’

with

FNo+DIr'@2B+0—i+1HI'(—20 — 0 +1i)

4.8) W =221 20 + 28+ 20 —2i +1
(4.8) (ot 2p 4 20 = 2 ) 2F 1 20 — (=20 — o)

Thus, after the continuation ia, 8 ando, when («, 8, 0) belong to a sufficiently small
neighbourhood of(52, 5,1 — n), and the inequality Re — ) < 1/2 is satisfied, in the
decomposition (4.3) the following additional sum appears:

l—n+1

2
(4.9) Z LZR (T(l)’ B)|r:oc+/3+o—i'
i=0
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Notice that after the continuation the inequality(Re- ) < 1/2 becomes > n — 3, but
from (4.9) we see that the additional sum appeard ferm — 1. Thus, in a neighbourhood of
point («g, Bo, og) We can write the decomposition (4.3) in the same form tern — 2 and with
additional term (4.9) fot > n — 1.

Secondly, we can mowe, 8 ando from D2 N D3 to the point(ao, Bo, o) in such a way that
the inequality Réx + 8 + o) < —1/2 is maintained. Then poles in (1), see (4.7), do not pass the
integration lineC, but poles in (2) do, namely, those with< (n — 3 —1)/2. In the right-hand
side of decomposition (4.3) the following additional sum appears:

n—3—
2

(4.10) 2;] ¥3- (T(l)’ }-Z)|r:a—/3—l—j’
j=

where

Noe+LHI'(-2—0—j—DI'(—20 — 0 + j)
I'(—2a —o)['2x—28—j)j!

(4.11) Wa=22%P+0 .20 —28—-2j — 1)

After the continuation the inequality Re+ 8 +0) < —1/2 becomes$ < n—1, but the additional
term (4.10) appears for< n — 3.

Thus, in a sufficiently small neighbourhood @, 8o, 00) we have the decomposition of the
form:

—n+

1 1
1) .
>3 ng«(T(),h)‘tzaJrﬂerfi, fori >n—1;

(4-12) (Na,n | h) = forl=n—-2;

e,

n=3-1 —
et Y We (T h)| y py o fOri<n=3,

where. .. denotes the right-hand side of (4.3).

As the right hand sides of (4.12) are regulawat «g, see (4.4), (4.8), (4.11), we can easily
seta = ap. After that we see that, ¥y, w3 are regular ag = Bp, SO just setting8 = So we
have:

n+l
2" o3 [(oc+1) n+1
V=—— (2 Dsinzcg——TI'(1-— —

gz T bsinan e e < 2 U+T>

n+1 [—n [—n
xF(l— 5 —o—r—l)F(T+r+2)F< 5 —‘C+1>,

Foe+H)(+o0o—i+ ) (—n—0+i+2)
Fn+1+20 —i)'(—n — o + 2)i!
FNo+)I'(~l—0c—j—DI'(—n—0+j+2)
FN(—n—0c+2T(n—1—-2—j)j! ’

)

Wy =2" 7+ Ly 4 4 20 — 2 — 1)

(4.13) w3 =2"F "1, (n | _2j _3)

For ¥, the matter is more complicated. Hog n — 3 the firstn — 3 — I terms¥; T @ of the series

in (4.12) have ag = Bo poles (of the first order). Fortunately, the poles of thth term and of

the (n — 3—1 — k)-th term are annihilated. (This situation differs from the one in [1], where the
poles of the discrete series were annihilated by the poles of the additional sum.) So we have to
compute the following limit:

Hie= ﬂleﬂo {wlT(z) ‘k:k +unT? ’k=n73717k}'
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After long manupulations with gamma-functions and their derivatives, using formulae
1.7.1(10) and 1.7.1(11), p. 16, [2] and the fact that in the [ |r—x = 7@ |x=p_3_1_1 We
have:

I'c+1HI'(—n—0 +k+2)
KT(—n+2—0)L(l+o04+24+KT'n—1—k—2)

1 1
2_(— . _
X{ ¢ ”+%+3)[<—a—n+k+2 k+1)

+ ! L)y
—o—n+k+3 k+2

+ ! — ! TP |k
—o0o—k—1-2 n—-1—-—k-3 -

Remark4.1. — Later on we shall take the limit when— 1 — n. As we seeH; will tend to
zero. Thus, fol < n — 3 the firstn — [ — 3 terms of the discrete part in (4.12) will disappear.
Notice that ifn — [ — 3 is even, then there is one term which is not involved in Aigynamely
w1 TP with k = (n — I — 3)/2. But this one is zero because of the fadteBa + 28 + 2k + 1).

Hy = (— 1)n+12"T+l +o

(4.14)

Forl >n — 3 and forl <n — 3 withk >n — [ — 2 one can easily see thé4 is regular at
B = Bo, so that just settingg = Bo we have:

Wy = (—1)" 12" 0Ly 4 2k 4 3)
(4.15) (Tt 14k + 3T+ DI (—n—0 +k+2)
kT(=n—o0+2L(+0+2+k) ’

Thus fora = «g andg = o we can rewrite (4.12) as follows:

l=n+1 _
L0+ Y- (TYh)| _ws s qe fOrizn—1,

-2
(4-16) (Na,n | h) = I+ 11, forl=n-2,

n—3-1
[0+

j= fori<n-—3

oM

V3 (T(l)’ B) |r:(n—l)/2—2—j’

with

(e.¢] 1 -
[ :/ v (T( ), h)‘t=71/2+iv dv,
—00

00 2 7
Zk:o ll/l : (T( )a h) "(=(l*l’l)/2+k+l’ l >n— 3,
n—[-3

Z}Z (Hk’ }_1) + Zlfin7172 Y- (T(Z)’ ]/_l)’tz(lfn)/2+k+l’ I<n-3

andv, ¥y, ¥r, W3, Hy asin (4.13), (4.14), (4.15).
Now introduce the following notations:
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(=1m2U=m/2=2(2¢ 4 1)sin2rxw

A = i ¥ = -I'((n—=10/2
0—I>r]r.]—n JTZF(H — l) ((I’l )/ + T)
xI((n=0/2—t=1)r(I—n)/2+1+2)T (I —n)/2—1 +1),
i 2U=n)/2
A = V)=——(n—1—2k—
(417) ! 0—I>T—n 1 I'n—1) (n—1-2-3),
: (=pr2t-m/z .
Ar = | Up=—"——(I—n—-2i+1),
2 0—I>T—n 2 F(}’l - 1) ( " r )
: (=pr2t-m/z .
Az = | Y3=-—"-—— — (n—1—-2j—23).
3 0—I>T—n 3 F(}’l — 1) (l’l J )

Here we used the limit lig, 1, (0 +n — DI'(0 +1) = (—1)"/T'(n — 1).

At last, taking pull backM’ of distributions in (4.16), then multiplying bgg +» — 1) and
taking the limit whero — 1 — n and finally multiplying byxl1 we get (4.6). We also set= ag
andpg = Bo everywhere and use (4.1) for the left-hand sides.

Now we are going to expresd’T /) which occurs in the right-hand side of (4.6) by means
of spherical distributions associated with representations of our giqugee Section 1. Then
Lemma 4.2 gives:

LEMMA 4.3.—Leti=0,1,2,..., 1, = —% +ivandt =( —n)/2+k+ 1. Forh e D(X1)
the functions; has a decomposition into spherical distributions as follows:

o0
E-Giim= [ Er(Caninirdo
—00
n—3 [ee)
(4.18) + Z E2- (Cor410, 1) + Z E3- (Ok—n+2.1, )y,
k:% k=n—-2

with A, A; from(4.17)and

El =A- T|t=tvv

Ex = (—=1)""1 AL Ty,

E3z = A1-77,
(4.19)
o (_1)17+127(n+l+2)/2 F(n_TZ_H +T+ 1)
- arlsing((n—0/2+7) T b4’
(DML T+ k+ 1)
71 =

20020 T'(k —n +3)”

Proof. —Fortunately, we already have the expressions of spherical distributions by means of
hypergeometric functions, see Propositions 1.3 and 1.4.

First we considef”» which occurs in the continuous part of the decomposition (4.6). Here
T= —% +iv. Thus, we can use formula (1.14), because it hold& #r(I + 2r) (I + 2r + 2n — 2),
ie.s#x(l+n—1+2r), r=0,1,2,....

From now we always keep in mind the notatians (c+ 1)/2, 1 =(s —1)/2, u=n — 2,
moreover, everywhere we set= (n — 2)/2, g =1/2.
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Fort = —% + iv we know by Theorem 1.1 that di@(xyl(Xl) = 1. Thus, with a constarit
(4.20) AT =V - ATD,
We are going to calculaté. First recall forT D, see (2.6)
(4.21) TO=w.pPp® 47

The relation (4.20) is true for any € D (X1). We can choosg with support on a regular
set in X1, then all terms concentrated on the cone, for exanple (4.21), are equal to zero,
and7;,; andT™® are given by regular functions. We indeed, can make such a choice, because if
T= —% + iv then the regular parts df; ; and T® are nonzero. (NeitheG (¢, A, i, 1) in (1.8)
nor P(c, 7,a, B) in (4.21) are zero.)

Thus, T, ; can be expressed by meansifsee (1.8), (1.7)¢ can be expressed by means of
P, see (1.4) and (2.2), hen@g, can be expressed by meanstét with the coefficient:

re&E +o+0)
re=s 4r+1)

V = (=" sing (n — 1) /2 + 7)

Finally, it follows from (1.14) and (4.20) with" as in (4.19)

(4.22) ATD =71 Cor41.1-
We see thatI'® also occurs in some additional terms of the decomposition (4.6) with
1 =5 —iandt; = %51 — 2 — j respectively. In both cases= 27 + 1 can not be written

intheforms=+(+n—-1+2r), r=0,1,2,....
Thus, we can use formula (1.14) and the fact (4.20). In the ease; we can proceed as
above. Namely, we can apply both parts of (4.20) to a functipwith support on a regular set
in X1, because for such a functiof{ 75 ; and A'TV are given by regular nonzero functior (
in (1.7) andW in (2.7) are not equal to zero). Thus, proceeding as for the continuous part we get

(4.23) ATONg =Ty - 25410
with 7" asin (4.19).

In the caser = 7; one hasG =0in (1.7) andW =0 in (2.7). It follows from (1.8) and (4.21)
that:

n-l (u=k=1) (1))
T. — AGu .l Y P O ’l‘p—(’zl’
.20 3i(p) = AQ, )k;( A oy v

TD(p) = (Z,9)

with Z asin (2.7). One can see that (4.24) gives, Witlas in (4.19),
(4.25) ATD| e =T, - Cor,110-

Now we are going to express the distributidf® which occurs in the discrete part of the
decomposition (4.6) by means of spherical distributions.
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In this casery = (I —n)/2+ k + 1. We see that if & k <n — 2 thens = 2t + 1 can not be
writteninthe forms =+(+n—1+2r), r=0,1, 2,.... On the contrary, fok > n — 2 there
existr =0,1,2,...suchthat =1 +n— 1+ 2r.

First we consider the cage< n — 2. In this case we can use formula (1.14) with; as in
(1.8) and formula (2.6)

—)"1T@=w.pP? 7.

As G in (1.7) andW are zero fory = (! —n)/2+k + 1 andk < n — 2, we can take a function
fo with support on the cone i1 and proceeding as in (4.24)—(4.25) (with1)"t17@ instead
of TM) we get

(4.26) ATP| = D" g - Canraa

with 7" asin (4.19).

Now we consider the cage> n — 2. In this case the basis of spherical distributions is given
by Proposition 1.4. We will show thad’T@ is proportional td,;, see (1.16).

Fortunately, we see that'T® and6,; are given by nonzero functions for a test functin
with support on a regular set iki;. All terms concentrated on the cone are zero for sfich
Thus, we can use any relation for the hypergeometric fundtih see [1]. For example, using
the notationgt =n —2, t=(c+1)/2, 1= —a+k, a =(n—2)/2, B =1/2 and relation
r =k —n + 2 we can combine formula (3.29) from [1] with (1.16) such that

(4.27) AT® ’fk =71 Ok—n+t2.

with 71 as in (4.19). Here we also used formula (1.9) ft&f and A'S,,;, formula
(1.7) for G, formula (1.6) for A(x, u,[), formula 1.2(4) from [2] p. 3, formula (1.4) for
D(t, A, 1, 1), F(t, )\, 1) and formula (2.2) forP.

Now substitute (4.22), (4.23), (4.25), (4.26), (4.27) into (4.6). Noticing that 7|, =
A3- Tl = (=1)"*1. A1 - 7|, we introduce the following notations;, Ez, Es, see (4.19).
Then we have from (4.6):

Lnt1

|+”+Z E2 - (Cor1,0s W) e—nyj2—i»  fori>n-—1,
(4.28) E-(81h) =1 I+1I, forl=n—2,

n—=3-1

3 i}
L1+ % E2- (C2v410s Wle=(n-j2—2—j, fori<n-—3

J
with the following notations

oo

| = / Eq- (§2t+l,ly ]/_l)l‘(=71/2+i11 dv,

—00

o0
=Y "Ez-(Cort10.W)le=r, + D E3- Okony21 W)lr=xy.
k=n—2

where the first sum in Il is taken ovér=0,1,...,n —3for/ >n —3 and ovetk =n — [ —
2n—I01—1,...,.n—3forl <n—3.
Finally, combining the additional sums in (4.28) with the first sum in Il, we get (4.18).

Now we express the coefficients in (4.18) by means-fafnction, see (1.12).
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THEOREM 4.4. —For h € D(X1) the decomposition of the functiéninto spherical distribu-
tions is given by the following formula

o0

2, i/; ;
Grlh)=4 2 {271 c(iv,De(—=iv, 1) Giv,1, ) dv
(4.29) + Z {C(S De(—s. l) =,o+l+2r)-(§p+l+2r,l,h)

_—n— /+1

+Z (m :p+l+2}’>-(9r71,h).}.

Proof. —Using formulae (1.13) one can see that with notations= (s —1)/2 and
r=-n+k+2

2
E1=E'4’1_2'+,
c(iv,Dec(—iv, 1)
E>—E-4"2.27.Re S 1+2r),
2 g S(c(s,l)c(—s,l) st ")
1
E3=E -4 2.27.c ol —— 5= 1120 ).
: ¢ 2(c(sJ)c(—s,l) STt r)
Then, we write
o0 o0
_ 1 _
/El'(CZT,,+1,l’h)dV:§' / E1- (Giv,y, h)dy,
—0 —00

-1

n—3
Z Ez - (Lont10, ) = Z E2- (Cptioris h),

—n—I+1
2

_n—1-3 _
k—i2 r=

o B o0 B
Y Ez- Okoni2t.Wlg =) _ Ez- (01 h).

k=n—2 r=0
Now we rewrite (4.18) as (4.29).0

The formula (4.29) was obtained in [13] by a different method, namely as in [3], “premiére
démonstration de la formule de Plancherel”, p. 424.

Notice that the spherical distributions which occur in the second term of formula (4.29) are
“real” distributions, i.e. they are concentrated on a cone, i.e. on a singular orbit of the Hipup
cf. [7].
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