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The exponential stability of the solution of the Navier—Stokes equation in L?,
p > 2, p # 3, in bounded domain is considered in this paper. Under some assump-
tions on the external force, it can be shown that the bounded solution of the
Navier-Stokes equation with initial and boundary conditions approaches the sta-
tionary solution of the system exponentially when time  goes to infinite. © 1995

Academic Press, Inc.
1. INTRODUCTION

About 30 years ago, Prodi studied in [11] the uniqueness of solutions
of Navier-Stokes equations in L? (p > 3) and in [12] the exponential
stability of the stationary solutions of the Navier-Stokes systems in L?
for bounded domain. Recently, for Navier-Stokes equations, Schonbek
in [13] obtained the L? decay for weak solutions of the equations in the
whole domain. A similar problem in R" was considered by Kajikiya and
Miyakawa [10]. For bounded domain, Foias and Saut 5, 6, 7, and 8 consid-
ered the L*-exponential decay for solutions of the equations. The result
of exponential stability of the equilibrium solutions in L? can also be found
in Temam [14]. In the space of L?, Da Veiga and Secchi [3] proved the
L7 stability for the strong solutions in the whole domain. In this short
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note we will prove the L” (p > 2) exponential stability of the equilibrium
solutions of the Navier-Stokes equations in bounded domain, under some
assumptions on the external forces.

The Navier—Stokes equations with initial-boundary conditions are as
the following:

%lf+(u-V)u—vAu+VTr=f(x) inQ = (0, ) x O
divu=0 in Q; (1.1
Ul,o=ty InQ

ul,g=0 for t € (0, ),

where u(t, x), m, f{x) = Vfy(x), uy( x) stand for velocity, pressure, potential
force, and initial velocity, respectively. The equilibrium solution satisfies
the system

w-VY))v—vWuv+Vp=flx) in ;
divv=20 in (}; (1.2)
Ul{vﬂ =0.

We will prove that under some conditions on f{ x) there exist constants
C, ¢y, B3, independent of ¢, «, such that

lu—v|, = Cluy— v|Be v (1.3)

for all + > 0, where |- |, stands for the usual L” norm.

This paper is arranged in the following order: We will introduce some
definitions and notations in Section 2. A regularity result for the weak
solution of (1.1) due to von Wahl [15] will be presented. We will establish
some inequalities which will be used later in the article in deriving the
exponential inequality. Finally, in Section 3, the main result of the L”
(p > 2, p # 3) exponential stability of the equilibrium solution of the
Navier-Stokes equation will be established.

2. LEMMAS AND INEQUALITIES

Assume that Q is a bounded domain in R® with smooth boundary.
Denote the standard Sobolev norm of L? as |-, the L* norm as || - || .

DEFINITION 2.1. Let uy € H,(Q) N L), f € LX(0, T), (H "3(Q)%.
An element

u € L*((0, T, (LX) N L0, D), (Hy*()))
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which fulfills div u(z) = 0 for almost all ¢+ € (0, 7) and which is weakly
continuous in (LX) from {0, 7] to (L*(2))" is called a weak solution of
(1.0 if

T , T T
—jo (u,¢)dz+ujo (Vu,Vdu)dt—]O (u-u, V) di o

T
= (ug. 6O) + [ (.

for all testing functions
é € CI([0, T, (LX) N CX[0, T1, (HFHQ)H) N L0, T), (H§' ()%

with div ¢(¢) = 0 on [0, T], ¢(T) = 0.

The existence of such a weak solution is standard (cf. [9]). When n =
2 von Wahl proved in {15, Theorem 1V.5.7] the following regularity result:

LEMMA 2.1. Letu, € H,(Q) N LP(Q)yandfE c'" (o, T, (LPEOQ©QNIN
%O, T1, (H"?7())* for p > 2 and all T > 0. Then the solution of (1.1),
in the sense of Definition 2.1 over (0, T} X & for al T > 0, u €
C%(0, =), H* ()%, applies.

The following result can be found in Temam [14].

LEMMA 2.2. If the L? norm of f is small enough (see Theorem 10.2 in
[14] for the exact condition, for instance) and v € {u, Au € H*¥(Q), div
u = 0 in Q} solves (1.2), then

llee() = wll = flutg — vlle

where ¢ is a positive constant independent of u.

To establish the exponential stability of the equilibrium solutions of the
Navier—Stokes equations in L”, we need the following results.

LEMMA 23. Ifu &€ (L70, T, W) N (L0, T, L"), div u = 0, then
[fp~2 € (L90, T, Wh9)? N (L™, T, L9)? where 1/p + 1/q = 1.

Proof. The simple identity | |u|?~2 4|, = |u|?'? implies that
lulP"2u € (LU0, T, L9)* N (L0, T, L9))*. 2.2)

Next, by using the condition div « = 0, it can be shown that

2
V- Juleulg=c | D lul” e fo dx (2.3)
Qi j=1

L=
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for some positive constant ¢. Applying the Holder inequality, we obtain
IV - a2 g = clulgults = (a2 + ful . 2.4)

Equations (2.2) and (2.4) thus imply that |u|?~? u € (L%0, T, W'9)2. |

Integration by parts shows that
[ Vu- 9 (uir?w dx = |1V uf? - ax
Q Q

4p—-2)
+ 222 L Tl dx. 2.5)

If u(-) € H}*, by applying Hélder’s inequality it can be shown that the
integrals on the right side of (2.5) are defined. For all « satisfying div
u = 0, let us denote [u], = [, |Vul’|u|?=? dx. The integral is well defined
according to (2.5). We have the following result:

LEMMA 2.4. Ifu € (L0, T, W&"’))2 N (L¥[0, T], LP))?, divu = 0,
v E LX0, T, LP)) then

[9 (u - Vv |u|?2 u dx = clv] ., lu] PH2P+D |y|plp=DUPTD - (2,6)

forallt € [0, T].

Proof. It takes only simple calculus and Cauchy’s inequality to
show that

lf V- |up2udx| < (p— l)f [u| P~ [v] V| dx. 2.7
Q Q

Applying Cauchy’s inequality and then Holder’s inequality on the right
side of (2.7), we have

p+2)

, ) 12 )
< - : & g
=(p-1 ( fﬂ Ve dx) (fﬂ i dx) 2.8)

(J» |u|p+2 dx))P/le+2)
Q

1/2
= o= 0 ([ 1l d) ol

\J- (u-Vyv-|uP P udx
Q

To estimate (2.8), let us observe that, similar to Eq. (1.14) in {2], we
can show
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| 233 = cluls™" [u],? 2.9)

where in (2.9) (4], = [q |Vul*u|?~? dx. Then (2.6) is derived from (2.8)
and 2.9). 1

LEMMA 2.5. Ifu € (LP0, T, W)?)? N (L*0, T, L?))?, w, v € (L*(0,
T, LP))*, then

f (w-V)u-|uP2udx
o

< C[u];/2+3(p-2)/2(p+2) |u|};p—l)(p-—2)/2(p+2) |v|p+2'wlp+2 . (2 10)

Proof. It can be shown that

'[ w-V)o- |ulP 2 udx s(p—l)j a|P~2|w| Jo] [Veel dx. (2.11)
4] Q

Using Cauchy’s inequality, Holder’s inequality, and the definition of [-],
we get

112
= o= 1) (] Ivultule~*ax)
(p—2)/2Ap+2)

( J 0P Pl =2 dx)m = (p ~ Diul}” ( J ute 2 dx)

2/(p+2)
(] ptowormtormac | = o = DU WD oz @12

If (w- V- juP2udx
Q

Substituting (2.9) into (2.12) yields

fﬂ w- V- |ulP?udx (2.13)

= C[u],l)/2+3(p~—2)/2(p+2) |u‘§’p~l)(p—2)/2(p+2) |U|p+zlw|p+z- i

Last result we will prove in this section is the following:

LEMMA 2.6. Let us make the following assumptions:

1. There exists a constant M > 0 such that for all t > 0 the function
y() < M.
2. There exist differentiable functions g(t) > 0 and continuous func-
tions f,(t), f(t), ..., f,(t) for t > 0 such that
J{)

. g . .
lim= =1 (>0); lim —=0,i=1,...,n.
e 8 ( ) 1= g(t)
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3. There are constants a; > ay, > <+ > a, > ay > 1.
4. Function y(1) satisfies the differential inequality

Y tcgyosbyy+fiyr+ -+ fy (2.14)

where ¢, by > 0. Then the estimate

b
y()™! s—c—‘l‘ g™ 2.15)

holds for all t € [0, x).
Proof. From (2.14) we have

%(e“’ﬂ’y) = —eMegy e fiyh 4o et fyn. (2.16)

Therefore, by dividing both sides by (¢e~%’y)% and integrating from ¢, to
t, we obtain

!
e—bot(l—au,yl—ao 6} zyl'“o +(1 - aO)] €~b0(l-a0)s(_cg(s)
‘o

2.17)
+ fils)y" % + -+ f (5) y*n %) ds.
Equation (2.17) implies that
ebo(aufl)t
y“o“ << 7 .
1-a, 0+ (g — 1 —bo(1—ag)s
y (L) + (ag )fme (2.18)
(cgls) = fi(s)y ™% — - -+ = f(s)y* %) ds

Choose 1, large enough so that the integrand of the integral on the right
of (2.18) is positive. By dividing top and bottom of the right side fraction
by ef%-1* g(£) and using the assumptions 1 and 2 in the lemma and L’Hopi-
tal’s rule, we can easily show that (2.15) holds. |

3. MAIN RESULTS

In this section we will prove our main result: the equilibrium solutions
of (1.1) are exponentially stable in L? topology.

1t is well known that the solution of the steady state problem (1.2) can
be very smooth if f(x) and the boundary of () are smooth enough (cf.



LP EXPONENTIAL STABILITY 425

Constantin and Foias [4]). Let us denote the bounded solution of (1.1) in
L7 by u, the solution of (1.2) by v. If f(x) = V fi(x) satisfies conditions of
Lemma 2.1, and f(x) € LP(Q), then u € C%(0, «), H2*())"), v € LP*YQ).
The difference w = u — v obviously solves the system

éi+(u Viw+w - Viv—vAw+V(p—-m)=0 in Q;

dt
divw=90 inQ; 3.1
w(0,x) =uy~v in Q;
Wao=0 for t € (0, =),

where Q = (0, =) x {). Let us denote P = p — 7. We see from (3.1) that

‘2_“’ +u-VYyw+w-Viv—vAw+ VP =0. (3.2)

Similar to [3], we can show that
[Py = Clwliy ((W2es + Wiy (3.3)

Multiplying both sides of (3.1) by |w[’"? w, integrating the resulting
equation over (1, and applying (2.5) implies

—%]wlz +[w], = - jﬂ (- Vyw - |wp2wdx — L (w-Vu-|wP?wdx

- f (VP) - [wpP?2wdx. (3-4)
Q

The first integral on the right side is zero because u is divergence free.
Applying Lemma 2.4 to the second integral we find that

L&l + [l = (p = 1 [ wp~ [Vl ol de + (p = 2) | P ol 2Vl d

< Clo, L]y |- 112p+2) (3.5)
172 -=2)12
+ CIwWW( 522 Pl a2y -

For the terms on the right side of (3.5), let us apply (3.3), Holder’s inequal-
ity (a-b =< a?/p + bilq, where 1/p + 1/q = 1) and Cauchy’s inequalities
to obtain

;‘,—-w + ], = 3 vl + CloRE D b+ Clwlpealofes

+ Clw|213.

(3.6)
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Applying (2.9) to the third and fourth terms on the right side of (3.6) and
then Holder’s inequality to the resulting inequality we have, if p # 3,

G PIE (W1, = 510, + Clo 26~ g+ Clulzr20 . 3.7)

Therefore we arrive at

1d

1 - -
;E ‘W“; + 5 [W]p = C|v|§(+p2+2)/(l7 1) lwiz + Clw|§(p+2)/(P 3 (38)

By applying the interpolation result we find that
wl, = C||w|?*} = C|w|§,. 3.9
Sobolev inequality further implies that
[wl, = Clw|; %2 lwl;’7+4p/3(p-—2) i (3.10)

Denote k& = 4p/3(p — 2). By applying Lemma 2.2 to the right side of
(3.10), we have from (3.8) that

;1)_% lwlg + Clwolz—k eckrlw‘§+k < Clwlgpy+k+rl + Clwlzﬂu-rz (3‘1 1)
where r, = 2p*/3(p — 2X(p — 3), r, = p(11p — 18)/3(p — 2)(p — 3), and
wo = uy — v. Applying Lemma 2.6 to y = |w|? for p > 3 we see then it is
easy to prove that there exists constants C, ¢, such that

w|,=Clwg|§e~@  forallr>0, (3.12)

where 8 = 4/3(p — 2). So we finally have proven the following asymptotic
stability theorem:

THEOREM 3.1. Denote the bounded solution of (1.1) in L? by u, the
solution of (1.2) by v. Suppose that f(t, x) = V fi(x) satisfies conditions
of Lemma 2.1, the L? norm of f is small enough, and uy € H, N L?, p >
3, then there exists constants C, ¢, independent of t, u, such that

|u(t, x) — v(x)| , = Cluglx) — v@)|Be™  forallt >0. (3.13)

Combining Lemma 2.2, Theorem 3.1, and the embedding theorems for
L? spaces when p = 2, we obtain a more general theorem:

THEOREM 3.2. The result of Theorem 3.1 holds for allp = 2, p # 3.
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ote that the result of Theorem 3.2 in L?, p = 2, is the generalization of

the asymptotic stability result in L? that Prodi obtained in [12].
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