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Abstract

Let R = k[x1, . . . , xn]/(xd
1 + · · · + xd

n ), wherek is a field of characteristicp, p does not divided
andn � 3. We describe a method for computing the test ideal for these diagonal hypersurface
This method involves using a characterization of test ideals in Gorenstein rings as well as dev
a way to compute tight closures of certain ideals despite the lack of a general algorithm. In ad
we compute examples of test ideals in diagonal hypersurface rings of small characteristic (
to d) including several that are not integrally closed. These examples provide a negative an
Smith’s question [K.E. Smith, The multiplier ideal is universal test ideal, Comm. Algebra 28
(2000) 5912–5929] of whether the test ideal in general is always integrally closed.
 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Test ideals play an important role in the theory of tight closure developed by M
Hochster and Craig Huneke. Unfortunately, both tight closure and test ideals are d
to compute in general. In this paper we describe a method for computing the test id
diagonal hypersurfacesk[x1, . . . , xn]/(xd

1 +· · ·+xd
n ), wherek is a field of characteristicp,

p does not divided andn � 3. This method involves using a characterization of test id
in Gorenstein rings as well as developing a way to compute tight closures of certain
despite the lack of a general algorithm.

It is worth noting that the test ideals for these diagonal hypersurface rings are
different depending on the magnitude ofp (usually relative tod). If d � n and the
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dimension of the ring is two, then results of Huneke and Smith [10] show that the tes
is (x1, x2, x3)

d−3+1 for p > d . In this case the test ideal is essentially all elements of de
greater than the a-invariant. This follows from their tight closure interpretation o
Strong Kodaira Vanishing Theorem. Huneke and Smith also point out that the Van
Theorem is true for hypersurface rings with a similar restriction on the characte
Huneke gives a direct proof of the Strong Vanishing Theorem for hypersurfaces [12,
using ideas found in earlier work of Fedder [2]. There are also similar results in [5, C
using the idea ofF -injectivity in negative degree. For the diagonal hypersurfaces
Strong Vanishing Theorem implies that ifd � n, then the test ideal is(x1, . . . , xn)

d−n+1

for sufficiently largep, and ifd < n, then the test ideal is the unit ideal [12, (6.3)]. Fed
and Watanabe also have results that show that ifd < n, then the ring isF -regular [3, (2.11)]
and hence the test ideal is the unit ideal, again for sufficiently largep. On the other hand
we show in [14] that ifp < d , then the test ideal is contained in(x1, . . . , xn)

p−1, which is
much smaller than would be expected in many cases. This result does not depend on. We
also show in [14] that ifp = d − 1, then the test ideal is in fact equal to(x1, . . . , xn)

p−1.
We are interested in computing test ideals in these rings whenp is less than the

bounds required in [2,5,12] and [3]. Fork[x1, . . . , xn]/(xd
1 + · · · + xd

n ), wherek is a
field of characteristicp, the bound in [2] isp > n(d − 1) − d . The bound in [12] is
p > n(d − 1) − 2d + 1 and the bound in [5] isp > n(d − 1) − 2d . The bound in [3]
comes from the bound in [2] and so is alsop > n(d − 1) − d . It is quite likely that these
are not the best possible bounds. The bound in the two dimensional case,p > d [10], is
quite a bit better than these. In many examples when the dimension is greater than t
bound ofp > d is sufficient. For this reason, and the fact that the case whenp = d − 1 is
known [14], we are particularly interested in computing test ideals whenp < d − 1. We do
have one example (see Example 13) wherep is greater thand but less than the bound i
[2,3,12], and [5], and the ring is notF -regular as predicted.

In this paper we describe a method for computing test ideals in diagonal hypers
rings. We then use this method to compute many examples of test ideals whenp < d − 1
and whenp is less than the previously mentioned bounds.

Recently Karen Smith has shown that test ideals are closely related to certain mu
ideals that arise in vanishing theorems in algebraic geometry. In [17] Smith establish
for normal local Cohen MacaulayQ-Gorenstein rings essentially of finite type over a fi
of characteristic zero, the multiplier ideal is auniversal test ideal(see [15] and [1] for more
information about the multiplier idea). Similar results were also obtained independen
Hara in [6]. The multiplier ideal is integrally closed. This lead Smith to ask whethe
test ideal in general is integrally closed. Several of the examples we are able to co
are particularly interesting because they are not integrally closed. These examples
a partial negative answer to Smith’s question.

1. Notation and definitions

Throughout this paperR is a commutative Noetherian ring of prime characteri
p > 0. The letterq will always stand for a powerpe of p, wheree ∈ N.
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We review the definition of tight closure for ideals of rings of characteristicp > 0.
Tight closure is defined more generally for modules and also for rings containing fie
arbitrary characteristic. See [7] or [11] for more details.

Definition 1. Let R be a ring of characteristicp andI be an ideal in a Noetherian ringR
of characteristicp > 0. An elementu ∈ R is in the tight closure ofI , denotedI∗, if there
exists an elementc ∈ R, not in any minimal prime ofR, such that for all largeq = pe ,
cxq ∈ I [q] whereI [q] is the ideal generated by theq th powers of all elements ofI .

In many applications one would like to be able to choose the elementc in the definition
of tight closure independent ofx or I . It is very useful when a single choice ofc, a test
element, can be used for all tight closure tests in a given ring.

Definition 2. The ideal of allc ∈ R such that for any idealI ⊆ R, we havecuq ∈ I [q] for
all q wheneveru ∈ I∗ is called the test ideal forR and is denoted byτ . An element of the
test ideal that is not in any minimal prime is called a test element.

2. Determining the test ideal

We will make use of the following grading in our calculation of the test ideal.
denote byZn the ring Z/nZ. Next we describe aZn-grading of rings of the form
R = A[z]/(zn − a) wherea ∈ A. The ringR has the following decomposition as anA-
module:

R = A ⊕ Az ⊕ · · · ⊕ Azn−1.

This is true because every element ofR can be uniquely expressed as an elemen
A ⊕ Az ⊕ · · · ⊕ Azn−1 by replacing every occurrence ofzn by a. R is Zn-graded, where
the ith piece ofR, denoted byRi , is Azi , 0� i < n, sinceAziAzj ⊆ Azi+j if i + j < n

andAziAzj ⊆ Azi+j−n if i + j � n.
We use this idea to obtain multipleZn-gradings ofR = k[x1, . . . , xn]/(xd

1 + · · · + xd
n ),

wherek is a field of characteristicp. Let z = xi andA = k[x1, . . . , x̂i , . . . , xn].
It is not difficult to show that ifI is a graded ideal, then so isI∗.

Lemma 3 [14]. Let R be a finitely generatedk-algebra that is Zn-graded and of
characteristicp, wherep is not a prime factor ofn (p = 0 is allowed). Then the tight
closure of a homogeneous ideal ofR is homogeneous.

We will use the following result about the test ideal in a Gorenstein ring to comput
test ideal for the diagonal hypersurfaces.

Lemma 4 ([11, (2.14)], [12, (4.3)]).Let (R,m) be a Gorenstein local ring with anm-
primary test ideal. LetI be generated by a system of parameters consisting of test elem
Then the test ideal isI : I∗.
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We also know that the elements of the Jacobian ideal are always test eleme
Hochster and Huneke’s “test elements via Lipman Sathaye” result [8, (1.5.5)], [12, (3
In practice, it is preferable to usexd

1 , . . . , xd
n−1 as the sequence of test elements. This all

us to capitalize on certain symmetries that arise in the diagonal hypersurface rings. B
we have the defining relationxd

1 + · · · + xd
n = 0, the ideals generated by anyn − 1 of the

d th powers of the variables are the same.
Let R = k[x1, . . . , xn]/(xd

1 + · · · + xd
n ) wherek is a field of characteristicp, p does

not divided , andn � 3. Thenτ = (xd
1 , . . . , xd

n−1) : (xd
1 , . . . , xd

n−1)
∗ and the problem o

computing the test ideal reduces to determining(xd
1 , . . . , xd

n−1)
∗.

Remark 5. It is also worth noting that the test ideal forR can be generated by monomia
Recall that there is aZn-grading ofR associated with eachxi , 1� i � n. We also know tha
if I is a homogeneous ideal, then so areI∗ (Lemma 3) andI : I∗. Since(xd

1 , . . . , xd
n−1) is

homogeneous with respect to each of the gradings, so is(xd
1 , . . . , xd

n−1) :R(x
d
1 , . . . , xd

n−1)
∗

and hence so is the test ideal. Using the grading with respect to eachxi , the multigrading,
we see that the test ideal can be generated by monomials. Essentially, this is becau
monomials are homogeneous with respect to alln gradings simultaneously.

3. Computing (xd
1 , . . . , xd

n−1)
∗

Let R = k[x1, . . . , xn]/(xd
1 + · · · + xd

n ) wherek is a field of characteristicp, p does not
divide d , andn � 3. First we describe a general method for computing(xd

1 , . . . , xd
n−1)

∗.
Let m = (x1, . . . , xn) andI = (xd

1 , . . . , xd
n−1).

(1) LetJ be a candidate forI∗. (Begin withJ = I .)
(2) Compute Soc(R/J ) = J :Rm = (u1, . . . , um).
(3) Determine whetherui ∈ I∗, 1� i � m.
(4) Form a new candidate forI∗ by adding allui ’s that are inI∗ to J and repeat.

When no generators of Soc(R/J ) are inI∗, the process is complete andJ = I∗. Since
R is Noetherian, the process must eventually end. Next we explain why it is sufficie
check elements of Soc(R/J ).

Lemma 6. Let (R,m,k) be a Noetherian local ring andJ ⊆ I ideals ofR. If J ⊂ I , then
I contains an element ofSoc(R/J ).

Proof. Let u ∈ I\J . We know that Soc(R/J ) contains all simple submodules ofR/J and
therefore meets every submodule ofR/J . ConsiderN = Ru/J , the submodule generate
by u. If N �= (0), thenN ∩ Soc(R/J ) �= (0). Let ū be the image ofu in R/J . There exists
r ∈ R with rū ∈ Soc(R/J ). Thenru is the desired element ofI .

SupposeJ is a candidate forI∗. By Lemma 6, ifI∗ strictly containsJ , thenI∗ must
contain an element of Soc(R/J ). Therefore, to showJ = I∗, it is sufficient to show tha∑

kui ∩ I∗ = 0 where Soc(R/J ) is generated by theui .
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The final step in the “algorithm” to be justified is step 3. The method described ab
not a true algorithm since there is no known algorithm for computing tight closure, e
in some special cases.A priori, one might have to test infinitely many exponents in or
to determine whether one element is in the tight closure of a given ideal. Another w
describe this problem is in terms of test exponents as in [9].

Definition 7. Let R be a reduced Noetherian ring of positive prime characteristicp. Let
c be a fixed test element forR. We shall say thatq = pe is a test exponent forc, I , R if
whenevercuQ ∈ I [Q] andQ � q , thenu ∈ I∗.

Whenever one can compute what the test exponent is, one obtains an effective
tight closure. Despite the lack of test exponents, in practice, one can compute tight c
in diagonal hypersurface rings in many cases. The following two observations are hel
determining whether a specific element is in the tight closure of a given ideal. Even t
in general there is no bound on the power of an element needed to test tight closure
are two situations where one exponent is enough.

Remark 8. Note that the Frobenius closureIF of an idealI is the set of elementsu such
thatuq ∈ I [q] for q � 0. It follows from elementary properties of the Frobenius map
if uq ′ ∈ I [q ′] for one value ofq ′ = pe , thenuq ∈ I [q] for all higher powersq � q ′. In fact,
IF is often defined to be the set of elementsu such thatuq ∈ I [q] for someq = pe . This
means that ifuq ∈ I [q] for just one value ofq , thenu ∈ IF ⊆ I∗.

Remark 9. Recall that ifc is a test element, thencuq ∈ I [q] for all u ∈ I∗ and for all
q = pe. This means that ifcuq /∈ I [q] for even oneq , thenu /∈ I∗.

In principle, this method would only work ifIF = I∗. There is some evidence th
IF = I∗ when n = d = 3 and p ≡ 2 mod 3 [13], however, we are not conjecturi
that IF = I∗ for all diagonal hypersurface rings. In practice, however, the potentia
betweenIF andI∗ has never prevented us from computing a test ideal. Instead, the c
limitations are memory and monomial bounds in Macaulay 2 [4]. In almost every exa
we show that an element is in the tight closure of an ideal by using the observation in (
showing that the element is actually in the Frobenius closure of the ideal. In a few
we have used the following result of Hara. Smith has a similar result [16, Lemma 3.2

Lemma 10 [5, Lemma 2].LetR = ⊕
n�0 Rn be a NoetherianN-graded ring defined ove

a perfect fieldk = R0 of characteristicp > 0. Assume thatR is Cohen–Macaulay. Le
x1, . . . , xd be a homogeneous system of parameters ofR, and assume thatd = dimR � 1.
If a homogeneous elementz satisfiesdeg(z) �

∑d
i=1 deg(xi), thenz ∈ (x1, . . . , xd)∗.

It is interesting to note that every instance where we could not show that an eleme
in the Frobenius closure of an ideal by direct computation was an instance where
lemma applied.
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4. Examples

Example 11. Let R be the localization at(x1, . . . , x5) of the ring

k[x1, . . . , x5]
(x5

1 + x5
2 + x5

3 + x5
4 + x5

5)
,

wherek is a field of characteristic two. In this case the test ideal forR is generated by th
elementsx2

i xj for all 1 � i, j � 5.

To verify this, we use the observation that in a Gorenstein ring with isolated singu
the test ideal isJ : J ∗ whereJ is an ideal generated by a system of parameters that ar
elements (Lemma 4). We also know that elements in the Jacobian ideal are test elem
(1.5.5)], so in this ringx4

1, . . . , x4
5 are test elements. Some of our calculations will be ea

if we use the fact thatx5
1, . . . , x5

5 are also test elements. Thus we useJ = (x5
1, . . . , x5

4). One
can calculate directly that

J ∗ = (
x5

1, x5
2, x5

3, x5
4, x3

1x3
2x3

3x3
4x3

5, x4
1x4

2x4
3x4

4x2
5, x4

1x4
2x4

3x2
4x4

5,

x4
1x4

2x2
3x4

4x4
5, x4

1x2
2x4

3x4
4x4

5, x2
1x4

2x4
3x4

4x4
5

)
.

Using theZ5 grading we can assume thatJ ∗ is generated by elements of the for
u = x

a1
1 x

a2
2 x

a3
3 x

a4
4 x

a5
5 . Also any monomial of that form inJ ∗\J must have all 0< ai < 5.

Clearly, we must have allai < 5 in order to haveu /∈ J . The fact that allai > 0 follows
from “tight closure from contractions” [11, (1.7)] sincek[x1, . . . , x5]/(x5

1 + · · · + x5
5) is a

module finite extension ofk[x1, . . . , x4]. To verify that the monomials listed above are
J ∗ we use the observation in Remark 8, namely ifuq ′ ∈ I [q ′], thenuq ∈ I [q], q � q ′, and
henceu ∈ I∗. One easily checks thatu4 ∈ J [4] for all monomialsu listed above. It is also
easy to check that no generators of the socle modulo the candidate forJ ∗ are inJ ∗. Since
J ∗ andm are both monomial ideals, it is routine to computeJ ∗ : m, the socle moduloJ ∗.
We computeJ ∗ : m and see that the socle moduloJ ∗ has 25 generators that are not inJ ∗.
Those generators are as follows:

u1 = x1x
4
2x4

3x4
4x4

5, u2 = x4
1x2x

4
3x4

4x4
5, . . . , u5 = x4

1x4
2x4

3x4
4x5,

u6 = x2
1x3

2x4
3x4

4x4
5, u7 = x2

1x4
2x3

3x4
4x4

5, . . . , u25 = x4
1x4

2x4
3x3

4x2
5.

We usec = x4
1 as a test element and see that, for example,cu32

1 /∈ J [32] andcu16
6 /∈ J [16].

Similar calculations and the observation in Remark 9 show that the remaining mono
are not inJ ∗. ComputingJ : J ∗ gives the desired result.

Example 12. Let R be the localization at(x1, . . . , x4) of the ring

k[x1, . . . , x4]
(x7

1 + x7
2 + x7

3 + x7
4)

,

wherek is a field of characteristic three. In this case the test ideal forR is generated by th
elementsx2x2 for all 1 � i, j � 4.
i j
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In this example we letJ = (x7
1, x7

2, x7
3). One can calculate directly that

J ∗ = (
x7

1, x7
2, x7

3, x3
1x5

2x5
3x5

4, x5
1x3

2x5
3x5

4, x5
1x5

2x3
3x5

4, x5
1x5

2x5
3x3

4

)
.

As in the previous example, we use the observation in Remark 8 and check thatu3 ∈ J [3]
for all monomialsu listed above. We computeJ ∗ : m and see that the socle moduloJ ∗ has
10 generators that are not inJ ∗. Those generators are as follows:

u1 = x2
1x6

2x6
3x6

4, u2 = x6
1x2

2x6
3x6

4, u2 = x6
1x6

2x2
3x6

4, u4 = x6
1x6

2x6
3x2

4,

u5 = x4
1x4

2x6
3x6

4, u6 = x4
1x6

2x4
3x6

4, . . . , u10 = x6
1x6

2x4
3x4

4.

We usec = x6
1 as a test element and see that, for example,cu9

1 /∈ J [9] and cu9
5 /∈ J [9].

Similar calculations and the observation in Remark 9 show that the remaining mono
are not inJ ∗. ComputingJ : J ∗ gives the desired result.

Example 13. Let R be the localization at(x1, . . . , x5) of the ring

k[x1, . . . , x5]
(x4

1 + x4
2 + x4

3 + x4
4 + x4

5)
,

wherek is a field of characteristic seven. In this case the test ideal forR is (x1, . . . , x5), the
maximal ideal.

In this example we letJ = (x4
1, x4

2, x4
3, x4

4). One can calculate directly that

J ∗ = (
x4

1, x4
2, x4

3, x3
1x3

2x3
3x3

4x3
5

)
.

As in the previous example, we use the observation in Remark 8 and chec
(x3

1x3
2x3

3x3
4x3

5)7 ∈ J [7]. We computeJ ∗ : m and see that the socle moduloJ ∗ has 5
generators that are not inJ ∗. Those generators are as follows:

u1 = x2
1x3

2x3
3x3

4x3
5, u2 = x3

1x2
2x3

3x3
4x3

5, u3 = x3
1x3

2x2
3x3

4x3
5,

u4 = x3
1x3

2x3
3x2

4x3
5, u5 = x3

1x3
2x3

3x3
4x2

5.

We usec = x3
1 as a test element and see that, for example,cu7

1 /∈ J [7]. Similar calculations
and the observation in Remark 9 show that the remaining monomials are notJ ∗.
ComputingJ : J ∗ gives the desired result.

Remark 14. Using our notation, the previous example is the case wheren = 5, d = 4 and
p = 7. Sinced < n, the results of Fedder and Watanabe [3], Huneke [12] and Har
would predict that the ring isF -regular ifp > 11,p > 8 or p > 7, respectively. Note tha
in the previous examplep > d , but p is less than each of the bounds and the ring is
F -regular.
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We have been able to compute the test ideal in the following cases:

d p n

4 7 5
5 2,3 3,4,5,6,7,8,9
7 2,3,5 3,4,5,6,7,8,9
8 3,5 3,4,5,6,7,8
9 2 3,4,5,6,7,8,9
9 5 3,4,5,6
9 7 3,4
10 3 3

We have not included any examples wherep > d and we obtained the predicted resu
although we can compute many examples in those cases. Our computations ten
limited by the degrees of the monomials involved and the number of generators
ideals involved. Asp andn grow, the degrees of the monomials grow, and asn grows, the
number of generators of the ideals involved grows. Also, our examples do not rep
the absolute limits of current computation. Computing further examples is incredibly
consuming and for a fixedp andd , the pattern asn increases tends to stabilize. We exp
that future results will eventually make further computations unnecessary.

5. Non-integrally closed test ideals

Many of the test ideals that we can compute are not integrally closed. In this secti
confirm that two of the examples of test ideals in the previous section are not inte
closed.

Example 15. The test ideal computed in Example 11 is not integrally closed. Letτ be
the test ideal. The integral closure ofτ is (x1, . . . , x5)

3 �= τ . For example,x1x2x3 ∈
(x1, . . . , x5)

3\τ .

Example 16. The test ideal computed in Example 12 is not integrally closed. Lτ
be the test ideal. The integral closure ofτ is (x1, . . . , x4)

4 �= τ . For example,x1x
3
2 ∈

(x1, . . . , x4)
4\τ .
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