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Abstract

Let R =k[x1.....x,1/(x¢ + - +x%), wherek is a field of characteristip, p does not divide
andn > 3. We describe a method for computing the test ideal for these diagonal hypersurface rings.
This method involves using a characterization of test ideals in Gorenstein rings as well as developing
a way to compute tight closures of certain ideals despite the lack of a general algorithm. In addition,
we compute examples of test ideals in diagonal hypersurface rings of small characteristic (relative
to d) including several that are not integrally closed. These examples provide a negative answer to
Smith’s question [K.E. Smith, The multiplier ideal is universal test ideal, Comm. Algebra 28 (12)
(2000) 5912-5929] of whether the test ideal in general is always integrally closed.
0 2003 Elsevier Science (USA). All rights reserved.
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Introduction

Test ideals play an important role in the theory of tight closure developed by Melvin
Hochster and Craig Huneke. Unfortunately, both tight closure and test ideals are difficult
to compute in general. In this paper we describe a method for computing the test ideal for
diagonal hypersurfacégxy, ..., x,1/(x{ +- - - +x¢), wherek is a field of characteristip,

p does not dividel andn > 3. This method involves using a characterization of test ideals
in Gorenstein rings as well as developing a way to compute tight closures of certain ideals
despite the lack of a general algorithm.

It is worth noting that the test ideals for these diagonal hypersurface rings are very
different depending on the magnitude pf(usually relative tod). If d > n and the
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dimension of the ring is two, then results of Huneke and Smith [10] show that the test ideal
is (x1, x2, x3)? 31 for p > d. In this case the test ideal is essentially all elements of degree
greater than the a-invariant. This follows from their tight closure interpretation of the
Strong Kodaira Vanishing Theorem. Huneke and Smith also point out that the Vanishing
Theorem is true for hypersurface rings with a similar restriction on the characteristic.
Huneke gives a direct proof of the Strong Vanishing Theorem for hypersurfaces [12, (6.4)]
using ideas found in earlier work of Fedder [2]. There are also similar results in [5, Cor 3]
using the idea ofF-injectivity in negative degree. For the diagonal hypersurfaces, the
Strong Vanishing Theorem implies thatdf> n, then the test ideal iéx1, ..., x,)? "1

for sufficiently largep, and ifd < n, then the test ideal is the unit ideal [12, (6.3)]. Fedder
and Watanabe also have results that show thatifz, then the ring igF-regular [3, (2.11)]

and hence the test ideal is the unit ideal, again for sufficiently largen the other hand,

we show in [14] that ifp < 4, then the test ideal is contained(iny, ..., x,)? "%, which is

much smaller than would be expected in many cases. This result does not depeidson
also show in [14] that ifp = d — 1, then the test ideal is in fact equal(tay, .. ., x,)” 1.

We are interested in computing test ideals in these rings wheés less than the
bounds required in [2,5,12] and [3]. F@[xl,...,xn]/(xf + -+ x,‘f), wherek is a
field of characteristicp, the bound in [2] isp > n(d — 1) — d. The bound in [12] is
p>n(d—1) —2d+ 1 and the bound in [5] i$ > n(d — 1) — 2d. The bound in [3]
comes from the bound in [2] and so is algo- n(d — 1) — d. It is quite likely that these
are not the best possible bounds. The bound in the two dimensionalicasé,[10], is
quite a bit better than these. In many examples when the dimension is greater than two, the
bound ofp > d is sufficient. For this reason, and the fact that the case when! — 1 is
known [14], we are particularly interested in computing test ideals when/ — 1. We do
have one example (see Example 13) whelis greater thar/ but less than the bound in
[2,3,12], and [5], and the ring is ndt-regular as predicted.

In this paper we describe a method for computing test ideals in diagonal hypersurface
rings. We then use this method to compute many examples of test idealspwhen— 1
and wherp is less than the previously mentioned bounds.

Recently Karen Smith has shown that test ideals are closely related to certain multiplier
ideals that arise in vanishing theorems in algebraic geometry. In [17] Smith established that
for normal local Cohen Macaula@-Gorenstein rings essentially of finite type over a field
of characteristic zero, the multiplier ideal isiniversal test idealsee [15] and [1] for more
information about the multiplier idea). Similar results were also obtained independently by
Hara in [6]. The multiplier ideal is integrally closed. This lead Smith to ask whether the
test ideal in general is integrally closed. Several of the examples we are able to compute
are particularly interesting because they are not integrally closed. These examples provide
a partial negative answer to Smith’s question.

1. Notation and definitions

Throughout this papeR is a commutative Noetherian ring of prime characteristic
p > 0. The letterg will always stand for a powep® of p, wheree € N.
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We review the definition of tight closure for ideals of rings of characterigtis 0.
Tight closure is defined more generally for modules and also for rings containing fields of
arbitrary characteristic. See [7] or [11] for more details.

Definition 1. Let R be a ring of characteristip and be an ideal in a Noetherian ring
of characteristipp > 0. An elemeni: € R is in the tight closure of , denoted *, if there
exists an element € R, not in any minimal prime ofR, such that for all large = p¢,
cx4 e 19 wherell4! is the ideal generated by tlggh powers of all elements df.

In many applications one would like to be able to choose the elemiarthe definition
of tight closure independent afor /. It is very useful when a single choice of a test
element, can be used for all tight closure tests in a given ring.

Definition 2. The ideal of allc € R such that for any ideal C R, we havecu? e 114! for
all ¢ whenevemw € I'* is called the test ideal faR and is denoted by. An element of the
test ideal that is not in any minimal prime is called a test element.

2. Determining thetest ideal

We will make use of the following grading in our calculation of the test ideal. We
denote byZ, the ring Z/nZ. Next we describe &,-grading of rings of the form
R = A[z]/(z" — a) wherea € A. The ringR has the following decomposition as anr
module:

R=A®AzD---® A L.

This is true because every element Bfcan be uniquely expressed as an element of
A® Az @ --- @ Az" 1 by replacing every occurrence gf by a. R is Z,-graded, where
theith piece ofR, denoted byR;, is Az/, 0<i <n, sinceAzAz/ C Azt if i +j<n
andAz/ Azl C AZ7H T if i 4 j > .

We use this idea to obtain multipk&; -gradings ofR = k[x1, .. .,xn]/(x‘lf + .+ x,‘f),
wherek is a field of characteristip. Letz =x; andA = k[x1, ..., %, ..., x,].

It is not difficult to show that iff is a graded ideal, then so 8.

Lemma 3 [14]. Let R be a finitely generated-algebra that isZ,-graded and of
characteristicp, where p is not a prime factor of: (p = 0 is allowed. Then the tight
closure of a homogeneous ideal®is homogeneous.

We will use the following result about the test ideal in a Gorenstein ring to compute the
test ideal for the diagonal hypersurfaces.

Lemma 4 ([11, (2.14)], [12, (4.3)]).Let (R, m) be a Gorenstein local ring with am-
primary testideal. Lef be generated by a system of parameters consisting of test elements.
Then the test ideal i : I*.
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We also know that the elements of the Jacobian ideal are always test elements by
Hochster and Huneke’s “test elements via Lipman Sathaye” result [8, (1.5.5)],[12, (3.12)].
In practice, itis preferable to usé, . xff_l as the sequence of test elements. This allows
us to capitalize on certain symmetries that arise in the diagonal hypersurface rings. Because
we have the defining relatioﬂf 4+ 4 xff =0, the ideals generated by any- 1 of the
dth powers of the variables are the same.

Let R = k[x1,..., x,l]/(xf + -4 x,‘f) wherek is a field of characteristip, p does
not divided, andn > 3. Thent = (x{,..., x4 ) : (x{,....x? ))* and the problem of

computing the test ideal reduces to determinieg ..., x?_)*.

Remark 5. Itis also worth noting that the test ideal fBrcan be generated by monomials.
Recall that there is 4, -grading ofR associated with each, 1 <i < n. We also know that

if 7 is a homogeneous ideal, then so atgLemma 3) and : I*. Since(x{,...,x¢_))is
homogeneous with respect to each of the gradings, 6dis.., x? ) :p(x{, ..., x?_)*

and hence so is the test ideal. Using the grading with respect taveattle multigrading,

we see that the test ideal can be generated by monomials. Essentially, this is because only
monomials are homogeneous with respect ta gfadings simultaneously.

3. Computing (x{, ..., x4 )*

LetR =k[xy1, ..., x,,]/(xf 4+ +x,‘,’) wherek is a field of characteristip, p does not
divide d, andn > 3. First we describe a general method for computix@ .. '»xil)*-
Letm = (x1,...,x,) and/l = (xf, .. .,xfllfl).

(1) LetJ be a candidate fofr*. (Begin withJ =1.)

(2) Compute So@R/J)=J :gm = (u1,...,un).

(3) Determine whether; € I'*, 1 <i <m.

(4) Form a new candidate fd by adding allu;'s that are in/* to J and repeat.

When no generators of S@R/J) are inI*, the process is complete add= I*. Since
R is Noetherian, the process must eventually end. Next we explain why it is sufficient to
check elements of SOR/J).

Lemma 6. Let (R, m, k) be a Noetherian local ring and C I ideals ofR. If J C I, then
I contains an element &dqR/J).

Proof. Letu € I'\J. We know that Sock/J) contains all simple submodules 8§ J and
therefore meets every submoduleryfJ. ConsiderN = Ru/J, the submodule generated
by u. If N # (0), thenN NSodR/J) # (0). Letu be the image of in R/J. There exists
r € R with riu € SOoqR/J). Thenru is the desired element &f

Suppose/ is a candidate for*. By Lemma 6, if/* strictly contains/, then/* must
contain an element of Sek/J). Therefore, to show = I*, it is sufficient to show that
> ku; N I* =0 where So¢R/J) is generated by the;.
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The final step in the “algorithm” to be justified is step 3. The method described above is
not a true algorithm since there is no known algorithm for computing tight closure, except
in some special caseA.priori, one might have to test infinitely many exponents in order
to determine whether one element is in the tight closure of a given ideal. Another way to
describe this problem is in terms of test exponents as in [9].

Definition 7. Let R be a reduced Noetherian ring of positive prime characterjsticet
¢ be a fixed test element fat. We shall say thay = p° is atest exponent fot, I, R if
wheneveru? e 1191 andQ > ¢, thenu € I*.

Whenever one can compute what the test exponent is, one obtains an effective test for
tight closure. Despite the lack of test exponents, in practice, one can compute tight closure
in diagonal hypersurface rings in many cases. The following two observations are helpfulin
determining whether a specific element is in the tight closure of a given ideal. Even though
in general there is no bound on the power of an element needed to test tight closure, there
are two situations where one exponentis enough.

Remark 8. Note that the Frobenius closufé of an ideall is the set of elements such
thatu? e 119! for ¢ > 0. It follows from elementary properties of the Frobenius map that
if u?" e 1191 for one value of;’ = p¢, thenu? e 114! for all higher powers; > ¢'. In fact,

17 is often defined to be the set of elementsuch that? € 11! for someg = p¢. This
means that ifz¢ e 119! for just one value of, thenu e I¥ C I*.

Remark 9. Recall that ifc is a test element, theru? < 19! for all u € I* and for all
g = p°. This means that ifu? ¢ 1191 for even oney, thenu ¢ I*.

In principle, this method would only work if ' = 1*. There is some evidence that
I¥ = I* whenn =d =3 and p = 2 mod 3 [13], however, we are not conjecturing
that 77 = I* for all diagonal hypersurface rings. In practice, however, the potential gap
between/ ' andI* has never prevented us from computing a test ideal. Instead, the current
limitations are memory and monomial bounds in Macaulay 2 [4]. In almost every example,
we show that an element s in the tight closure of an ideal by using the observationin (8) and
showing that the element is actually in the Frobenius closure of the ideal. In a few cases,
we have used the following result of Hara. Smith has a similar result [16, Lemma 3.2].

Lemma10[5, Lemma 2]Let R = P, R, be a NoetheriaN-graded ring defined over
a perfect fieldc = Rg of characteristicp > 0. Assume thaRk is Cohen—Macaulay. Let
x1,...,xq be a homogeneous system of paramete®, @nd assume that =dimR > 1.

If a homogeneous elemensatisfiedeqz) > Zfl:l degx;), thenz € (x1, ..., xq)*.

Itis interesting to note that every instance where we could not show that an element was
in the Frobenius closure of an ideal by direct computation was an instance where Hara’s
lemma applied.
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4. Examples
Example 11. Let R be the localization atx;, .. ., x5) of the ring

klx1,...,xs]
(xf—i—xg—l—xg—i—xf—i—xg)’

wherek is a field of characteristic two. In this case the test idealffas generated by the
elementsc?x; forall 1< i, j <5.

To verify this, we use the observation that in a Gorenstein ring with isolated singularity,
the testideal ig/ : J* whereJ is an ideal generated by a system of parameters that are test
elements (Lemma 4). We also know that elements in the Jacobian ideal are test elements [8,
(1.5.5)], so in this ringcf, ey xé are test elements. Some of our calculations will be easier
if we use the fact that?, . . ., x2 are also test elements. Thus we use (x3, ..., x3). One
can calculate directly that

J* = (xf xg, xg, xi’, xfxg’xg’xi’xg’, xfxgxgxﬁxg, xfxgxgxixé,

whed2add xhdididd, x2ddndd).
Using theZs grading we can assume thdt is generated by elements of the form
u = xy'x52x3%x, x2°. Also any monomial of that form ig*\J must have all < a; < 5.
Clearly, we must have all; <5 in order to have: ¢ J. The fact that all;; > 0 follows
from “tight closure from contractions” [11, (1.7)] sinégxy, ..., x5]/(x +--- +x2) is a
module finite extension of[x1, ..., x4]. To verify that the monomials listed above are in
J* we use the observation in Remark 8, namely‘ifc 1191, thenu? € 1191, g > ¢/, and
henceu € I*. One easily checks that € J#! for all monomials listed above. It is also
easy to check that no generators of the socle modulo the candidaté &e inJ*. Since
J* andm are both monomial ideals, it is routine to compute: m, the socle moduld*.
We compute/* : m and see that the socle moduld has 25 generators that are not/if
Those generators are as follows:

wt = et = ot s bbb
2.3 .4 .4 4 2.4.3 .4 .4 4.4 .4 3 .2

We usec = x{ as a test element and see that, for examplg? ¢ /32 andcug® ¢ /119
Similar calculations and the observation in Remark 9 show that the remaining monomials
are not inJ*. Computing/ : J* gives the desired result.

Example 12. Let R be the localization atx;, .. ., x4) of the ring

klx1,...,x4]
(xz—l—x;—i—x??,—i—xb’

wherek is a field of characteristic three. In this case the test ideakfisrgenerated by the
element9ci2x]2 forall 1<, j < 4.
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In this example we lef = (x/, xJ, x1). One can calculate directly that

« (.0 7 7 3555 5355 5535 55053
J = (xl, .xZ, X3, xleX3X4, .xl.xZ.X3X4, .xl.xZ.X3.X4, xle.X3.X4).

As in the previous example, we use the observation in Remark 8 and cheaf tat!
for all monomials: listed above. We computg* : m and see that the socle moduld has
10 generators that are not jif. Those generators are as follows:

ul = sz_xgxgxg, uz = .x:?_x%xgxg, uz = x?xgxgxg, Uug = x?xgxgxz,
4.4 .6 6 4.6 .4 6 6.6 4 4
usle.XZX3X4, Mﬁz.xleX3X4, ceey u]_o=x1x2)C3X4.

We usec = x? as a test element and see that, for examplg,¢ J® andcu ¢ J1°.
Similar calculations and the observation in Remark 9 show that the remaining monomials
are not inJ*. Computing/ : J* gives the desired result.

Example 13. Let R be the localization atx;, .. ., x5) of the ring

klxa, ..., xs]
(xf—i—xg—l—xg—i—xf—i—xé)’

wherek is a field of characteristic seven. In this case the test idedt isn(xq, . . ., x5), the
maximal ideal.

In this example we lef = (x{, x3, x3, x). One can calculate directly that

J* = (x7,x3,x3, xfxgxgxfxg).
As in the previous example, we use the observation in Remark 8 and check that

(e3x3x3x3x2)7 € JU). We computes* : m and see that the socle modul§ has 5
generators that are not ifi*. Those generators are as follows:

w1 = 23333, up = x32e3xdnd, ug = x3deedid,
3,3,.3.2.3 3,3,3.3.2

ug = X1XZX3)C4)C5, us = X1XZX3X4)C5.

We usec = x3 as a test element and see that, for exampiég J!7. Similar calculations
and the observation in Remark 9 show that the remaining monomials are 6t in
ComputingJ : J* gives the desired result.

Remark 14. Using our notation, the previous example is the case whetd, d = 4 and

p = 7. Sinced < n, the results of Fedder and Watanabe [3], Huneke [12] and Hara [5]
would predict that the ring i'-regular if p > 11, p > 8 or p > 7, respectively. Note that

in the previous example > d, but p is less than each of the bounds and the ring is not
F-regular.
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We have been able to compute the test ideal in the following cases:

d p n

4 7 5

5 2,3 3,4,5,6,7,8,9
7 235 3456789
8 3,5 3,4,5,6,7,8
9 2 3,4,5,6,7,8,9
9 5 3,4,5,6

9 7 3,4

10 3 3

We have not included any examples where- d and we obtained the predicted result,
although we can compute many examples in those cases. Our computations tend to be
limited by the degrees of the monomials involved and the number of generators of the
ideals involved. Ay andrn grow, the degrees of the monomials grow, and gsows, the
number of generators of the ideals involved grows. Also, our examples do not represent
the absolute limits of current computation. Computing further examples is incredibly time
consuming and for a fixeg andd, the pattern as increases tends to stabilize. We expect
that future results will eventually make further computations unnecessary.

5. Non-integrally closed test ideals

Many of the test ideals that we can compute are not integrally closed. In this section we
confirm that two of the examples of test ideals in the previous section are not integrally
closed.

Example 15. The test ideal computed in Example 11 is not integrally closed.zLibé
the test ideal. The integral closure ofis (x1,...,x5)°% # 1. For examplexixoxs €

(x1,..., x5)3\r.

Example 16. The test ideal computed in Example 12 is not integrally closed. et
be the test ideal. The integral closure ©fis (x1, ..., x4)* # t. For example,xlxg €

(x1, ..., xp)"\T.
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