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Abstract. We prove that every outerplanar graph can be optimally edge-eolcured in polylogarith- 
mlc time using a polynomial number of processors on a parallel random access machine without 
write conckts (P-RAM ). 

. . 
6. 

Vizing’s well-known theorem [ 151 states that the minimum number of colours 

required to (properly) edge-colour a graph is either A or (A + 1) depending upon 

the graph. Here and throughout the paper, A is the maximum vertex-degree of the 

graph. The problem of checking whether a particular graph is -edge-coloureb!e is 

NP-hard iSI. However, it is known that bipartite and outerplanar graphs are 
A-edge-colourable 2nd there are polynomial-time algorithms colcuring these graphs 

with the minimum (that is, optimal) number of coiours [2,3,5,]10,12]. In the case 

of bipartite graphs the nonexistence of odd cycles enables us to apply the technique 

of Euler paritioning (for the parallel ca se particularly, see [IO]), and in the case 

of outerplamtr graphs an associated tree structure of the graph is employed [ 121. 

NC is the class of problems computable in polylog (logk S, for some constant k 

and probie m size S) paEiitei the with a polynomiai number of processors. It is 

known [9, 131 how parallelisation of the algorithm implicit in the Froof of Vizing’s 

theorem can provide a (A + I)-edge-colouring of an arb itrary simple graph with 81 

vertices in parallel time P, whe 

specifically led Karloff and Sh 

(A + I)-edge-colouring is in NC for simple graphs which have 

was shown in [lo] that for bipartite grap 

edge-cofouring is also in NC, We shcw here 
finding a A-edge-colouring of outerplanar gr 

art of an exten 
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the problems of optimally edge-colouring outerplanar and Hahn graphs are both 
. 
xi 1ue. nTn ifi co-authorship with Amos Israeli and since presenting 171, the present 

authors discovered an improved algorithm for Halin graphs which is described in [6]. 

It was shown in [l] that the probiem of optimal vertex-colouring of outerplanar 

gr;iQ& is iii XC. HII Grt: case ol” verlex-colouring, the minimum number of colours 

is at most 3. Our parallel algorithm implicitly describes a new linear time sequential 

algorithm for edge-colouring outerplanar graphs. For graphs with d = 3 t 

tial algorithm in [ l2] is parallelised. However, for d > 3 we have to design an entirely 

new algorithm to reduce the problem to the case of A = 3. Iaii this reduced cast, a 

tree of internal faces of the graph is constructed, each face is independently 

edge-coloured and a technique similar to that used in [I] can be applied. The initial 

edge-colouring of faces is more subtle than in the case of vertex-colouring, the 

crucial point is to satisfy a certain invariant (property P3 from [ 121). The reduction 

from the case A > 3 to the case A s 3 is based on the following properties of 

outerplanar graphs: there is a node of degree at most 2, if the graph is biconnected 

then it has a Hamiltonian cycle and the maximum number of edges is 2n -3. Trees 

and uh>icycle graphs (see 11 I]) are special cases of outerplanar graphs. 

Our model of computation is a parallei randor - ----- ---G-- -- zrt ---& ----‘*- 11 4bUG33 1~1Cl~~11112. 01LIIWUL WI ILC 

conflicts (P-RAM). Such a machine consists of a number of synchronously working 

processors (which are uniform cost RAMS) using a common memory. No two 

processors can write simultaneously to the same location. On the other irand, many 
processors can read at the same time from ihe same location. The action of the 

parallel instruction 

for each x satisfying a given condition do in parallel instruction(x) 

consists of assigning a processor to each x (for which the specified condition holds) 

and executing instruction(x) for all such x simultaneously. See [4] for further details. 

ge-colouring of iconnected outerplanar graphs with 

Any biconnected outerplanar graph with at least three nodes has a Planar embed- 

ding which is a polygon with noncrossing (internal) diagonals. Such a graph has 

exactly one Hamiltonian cycle (bounding the polygon). We call the edges of this 

cycle sides and the remaining edges are called diagonals. Following [ 11, it is easy 

to fmd the Hamiltonian cycle using the following observation: deletion of an edge 
(together with i&- --J--:-C-~ Aiconm L3 GIIUpJllIL3/ Ulii~Va~ . rects the polygon if and only if it is a diagonal. 

The test for connectivity can be performed in log* n time using 0:~) processors, 

since the number of edges is linear, O(n) such tests are needed. The edges on the 

amiltonian cycle can be consecu atively ordered and this ordering can be used to 
compute the internal face edges entering 

be ~ssed to co 

es us to easily co ute a structured 
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the graph: a graph of its internal faces. In this graph two faces are adjacent if and 

only if thev have a common diagonal. This graph is a tree, denoted by TF, and it 

is the basis of the algorithm in this section. he parallel construction of TF together 
with the computation of the set of faces has been fully described in [ 13. 

If the faces of the graph G are edge-coloured independently then many edges 

will be coloured inconsistently, because one edge belongs to two distinct faces. Even 

if each edge is coloured consistently in this sense and has the same colour in both 
faces, the whole c~&_~ring UQ~ be imprcqxr, because two similarly coloured but 

distinct edges (in separate faces) can ha a common endpoint and this will violate 
the requirement that edges incident to e same node must have distinct colours. 

We start with a “locally good” colouring of faces and step by step we shall remove 

the inconsistencies described above. The following crucial invariant will enable us 

to do it. 

Each face C is properly coloured as a cycle and lf them are in C three 
consecutive f~.&e~ e I, 62, e3 such fk: m2 behrrgs to sw’rse other cycle then these edges 
tire coloured by three distinct colours. 

It was shown in [9] that each cycle can be (independently) coloured to satisfy 

Property P. We parallelise the method from [9]. 

The first step of our algorithm consists of simultaneously aqd independently 

colouring all faces to satisfy Property P. For a given face we start from the edge 

joining this face to its father face and colour its edges consecutively with 1, 2, 3 (if 
the face has no father then we start from any edge common with some other face). 

After that, Property P can be violated on edges (a, b), (b, c) and (c, d) (see Fig. 1). 

We recolour these edges depending on the value of k moduio 3 (where k is the 

number of edges on the cycle). If k modulo 3 = 2 then two situations are possible 

depending L:pon whether (a, b) belongs to some other face. If this is so then we 

colour edges (62, b), (b, c), (c, d) by 2, 1, 3, respectively. Otherwise we colour them 

1, 3, I. Figure 1 indicates the recolouring schemes. For the outerplanar graph C of 

Fig. 3, the initial colouring of the faces is presented in Fig. 4. 

length mod 3=1 length mod 3=2 

( 
Fig. 1. The initial colouring of faces. The edges are coloured 8, 2, 3, 1, 2.. . starting with the upper edge 

(which is shared with the father face). Then a suitable recolouring of the edges (a, h), ( b, c) and (c, d ) 
is carried out. 
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For one face such a colouring can easily be done in log(n) time with O(n) 

processors. The length of the cycle has to be computed and the edges numbered 

consecutively by I,& 3, 1, . . . . This can be done by directing the cycle and breaking 

it at the point c Such a numbering can be achieved for an (open) list by computing 

the distances (modulo 3) from each element to the end of the list using a standard 

doubling technique. knee the initial colouring of faces can be done ir logarithmic 

time with 0(n2) processors, using O(n) processors for each face. 

Let C be a face which is not the root of the tree TF and let (e, a), (a, 61, (6. f) 
be consecutive edges coloured xl, y 1, z 1, respectively. Here Ca, 6) is the edge 

common to C and its father face C’. The edges (d, a), (a, b), (6, c) are consecutive 

edges of the face C’. We d cnote their colours by X, y, z, respectively (see Fig. 2). 

Let sub( C, k) be a subgraph of the outerplanar graph consisting of aI1 faces which 

are in the subtree (of TF) rooted at C and whose distance from C (measured as a 

number of faces on the path to C in the tree TF) is not larger than h. For example 
sub(C, 1) = C. 

We define the operation recolour(C, !I). This operation consists of simultaneously 
replacing in sub! C3 h) each nccurrerrce of dour xl_ by z, y 1 b>r y afid z ?, by _Y. In 

other words we perform the assignment of colours (xl, yl, zl) + (z, J, x) in the set 

of faces which are in the maximal subtree of height at most h rooted at C (in TF). 

For example if we execute recolour(C, I), for one face C only, then f and its father 

father of C not recolored 

Fig. 2. A subtlxe rooted at the iower face is tecoioured by executing the assignment (x 1, _I* 1, z 1) * ( z, y, x). 

Fig. 3. The outerplanar graph 6. 



Fig. 4. The tree of faces rooted at Fl. 

face are consistently cotoured. Notice that the operation recolour is well defined if 

the invariant P holds. Moreover, this operation preserves the invariant R Also P 

guarantees that the assignment of colours defined above is a permutation of colours. 

Now we use a divide-and-conquer approach to consistently co:our the whole 
graph G. We decompose TF into smalfer s~bztre~ of faces, colour them recursively 

by rhe same method and then use the operation recolour to agree between colours 

of these subtrees of faces. The tree TF can be decomposed in many ways and some 

variatiok Gf the same schema are possible (for example one can find a node which 

splits the tree into much smaller subtrees). We use the following method& First 

compute the depth of each node (face) o. f TF, as a number of faces to the root. 

Let h be the height of TF. Assume for simplicity that It is a power of two (some 

dummy layers can be added if necessary). If h = 1 then the graph consists of only 

one face which is already properly coloured during the initialization and the 

algorithm stops. Otherwise we disconn,t, a-t all faces of depth h/2 from their sons. 

TF is decomposed into a set of subtrees, each of depth at most h/2. We colour 

these subtrees recursively. Denote by R the set of faces of depth (h/2 + 1). After 

that we execute in parallel for each face C’ belonging io R: recoIour(C’, h/2). NOW 

the whole tree of faces is consistently coloured and thi gives the edge-colouring 

of G and the algorithm stops. 

The recursion depth log(h) = log(n)), and the ecomposition and recoiour- 

ing can be don lo&? time. T s such an algcriihm runs in log’ me time with 

O( p1*) processors. 

An iterative version of this algorithm is provi by ~m~~~rne~ti~g t 

in a bottc er (in the recursion tree), st combining the trees of height 
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1, then the trees of the height 2, 4, 8,. . . , as follows: 

r k=i to lagjhj Qs 

for each f’tce C such that (depth( C j -2” ’ - i) mod 2” = 0 

0 ell recolsur( C9 2 Ii - ’ ). 

Figure 5 presents the colouring of faces after performing one iteration with k = ‘1, 

0tiA G;rr f; A~~\XPC +h@ fca! coloquring. Observe how recolour(KL2) works when UllU I LB. ” O*L”..d &ii-r 

proceeding from the colouring of Fig. s to that of Fig. 6. 

Fig. 5. The solouring of faces after Pxecuting recolour( F, 1) for F = F2, F3, F7, F8, F9, F16 (in parallel 1. 

Fig. 6. The final cdouring obtrrined Lnftcr executing I-ecolour( F, 2) for F = P5. F6, F4. 
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The operation recolour( C, 9) takes 0( 1) parallel time, if we pre 
in such a way that for each face we can test in O(1) time whethe 

of sub( C9 q)C IIt is enough to compute the table of distances between each pair of 
faces of TF. This problem can be generally solved for a tree in log(n) parallel time 

with O(n) processors. As the tree of faces can be computed in O(log* n) parallel 

time with n* process rs (see [I] or our discussion above, when describing the tree 

TF), we now have the following result. 

Every outerplanar biconnected graph with A = 3 can be edge-coloured 

using three colours in O(log*) parallel time wrth O(n*) processors on a P-RA 

tima 

Let G be a biconnected outerplanar graph with A > 3. The outerplanar graph 
reduced(G) is obtained in the following way. We find a node c of degree 2. Let 
(a, c), (C, b) be the edges incident with c. Let ii’ = (c, i>), (b, d j, (d,fj, (J gj, . . . , 

(9, a), (a, c) be the sequence of consecutive sides of the polygon. We mark each 

second edge of this sequence starting with (b, d). Notice that the edge (c, b) is 
al-ways unmarked and that the edge (a, c) is marked if and only if rz is even. Each 

node, except perhaps c, is incident with exactly one marked edge (see Fig. 7a). The 

set of marked edges is a maximum matching (possibly not matching node c) which 
we denote by M(G). The graph reduced(G) is obtained by removing all the edges 

of M(G) from G. 

Figure 7a shows an example outerplanar graph with A > 3 and the vertices are 

labelled 2~. described in the preceding paragraph. The edges of M(G) are heavily 

scored. The irrst such edge is (b, d) and the last is (q, a). In this example both (a, c) 

and (c, b) are unmarked. Hence the degree of node c in Fig. 7a is not decreased in 

reduced(G). However the degree of every other vertex is decreased by 1, and the 

maximal degree of the whole graph is therefore a!so decreased by 1, The graph G 

has 28 edg:s, but reduced(G) has only 20 edges. Such a high reduction in the 
number of edges is a general property of the operation. 

Le 
_ ---- _ 

Let A’ be the maximal degree and m’ be the number o~‘%dges oft:i~ ~WJJI 

reduced(G), for a biconnected outerplanar graph G having maximal degree 

m edges. Then A’=84 andm ‘S f m. The graph reduced(G) can be con 

O(log n) parallel time with ( n ) processors, where n is t 

Each node of G is an endpoint of some edge 

c which has degree 2. 

every other node is redu 

lo 
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C d 

Fig. 7. 

is 2ro -3. This implies m ’ =S $m. A suitable node c can be easiiy found in log(n) time. 

The marking can be made in log(n) time with n processors using a standard doubling 

technique. This completes the proof. q 

Notice that after removing M(G) the maximum degree of G decreases by 1, 

however degrees in biconnected components can decrease by more than 1. For 

example the maximal degree of biconnected components after deleting edges of 

M(G) in Fig. 7a decreases by 2, as can be seen in Fig. 7b which shows the tree of 

biconnected components. Notice that this tree czn easily be found within the 

complexity constraints we require, by employing the biconnected components 

algorithm of [l4]. Let TB denote the tree of biconnected components. We use the 
to agree colour into connected components which 

we presume to have been i The method we use is one of 

ents at odd levels in the tree agree with their 
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of the tree in each iteration and so a logarithmic number of iterations is sufhcient. 

Therefore we just need to see how we can bring about agreeme 
biconnected component and its father. Let d be the maximum degree of reduced( G) 

has been constructed. We assume that each biconnected component 
is already edge-coloured using colours from within the set { 1, . . . , A}. Consider a 
father vertex F in TB and an articulation point v which F has in common with the 
sons S,&,..., S,. Let P(S,) denote the set of colours present at Si in F and let 

c cf(Si) be the degree of u in tii. The problem is to extract from the set { 1, . . _ , 

a number of disjoint subsets wi:h cardina!ities Ir( Si) for all i, 1s i < r. Then taking 

a one to one correspondence between colours in the subset with cardinality d(Si) 

and colours in P( Si) will define a colour exchange in Si which for all i will remove 

-inconsistencies. This is because no colour in { 1, . . . , A) can then appear more than 
once at v. Within a single iteration in which the height of TB is halved, this agreeing 

of colours between all components at odd levels with their fathers can be achieved 

in O(log( ra)) time using nz processors. The details, although tedious, are not diEcuit 

and so we omit them. Thus we can remove colouring inconsistencies over the whole 

of TE in O(log’( n)) time using n* processors. 

If we call this process ADJUST, then the procedure for optimally edge-colouring 
a biconnected outerplanar graph with maximum degree A is: 

re edge-colour( G, D) 

Ibegin {A 3 3, G is a bizonnected graph, the procedure colours G using 

if 

colours from [l,..., D], DsA} 

A =S 3 then use the algorithm described earlier for this case else 

begin find M(G) 

colour every edge in M(G) with the colour E 

G + reduced(G) 

fnd the biconnected components of G and construct TB 

for each biconnected component X in 
edge-colonr( X; D - 1) 

ADJUST 

end 

e 

We illustrate the procedure ADJUST with reference to the tree of biconnected 

components shown in Fig. 7b. We take the root of the ee to be the component 
which is the circuit (Q, b, c). Let the edges of the biconnect components be coloure 
as indicated in Fig. 7b. In Fig. 7c the inconsistencies b 

levels in the tree have been removed and corn 

merged with their fathers. In Fig. 78 the pro 

an optimal colouring of reduced(G) has b-m nR*-;-e4 -“an uvcccIlI~ul, *#here C is the graph o 

Fig. %a. The edges of M(G) can now be coioured with the coinllr 6 so that a 

optimum colouring of G is obtained. 
e are now in a position to present our main res 
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3.2. (a) Every outer-planar graph can be optimally edge-coloured in 

O(ic;$( n)) time with n2 processors. 

(b) If G is a biconnected outerplanar graph with A 2 3, then edge-colour(G, 

optimally edge-&ours S in Q(lo$( n)) time with n2 processors. 

(b): Lemma 3.1 implies that the depth of the recur&x is Q’,!&??)j. The 

eration, if A > 3, is the removal of M( 6) and this decreases the number of 

edges by a factor of $. Within one recuEive level of edge-colour, for a graph wit 

n vertices, all operations (constructing e tree of biconnected components snd the 

operation ADJUST) take O(log’(n j) ti with n2 processors. An optimal colouring 

is produced because, as we saw ear!ier, the base cases af the recursion produce 

optimal colourings and in other cases when A is increased by 1 (with the addition 

of the edges in .&4(G)) so is the number of colours used. Thus (b) is proved. 

(a): If A 2 3 and the graph is not bfconnected then we can decompose G into 
biconnected components and execute edge-colour for each component in parallel. 

Then we can apply the operation ADJUST. Then [a) foilows; from (b j. That completes 

the proof. •II 

placing in the procedure edge-colour all instructions of the 

rallel by the corresponding sequential instruction for 
ur( G, A) can be easily implemented to colou~ G in linear 

time. The crucial point is that after each removal of M(G) the number of E 

decreases by a factor i. The number of edges is linear with respect to n (the nu 

of nodes) and the tree TB can be computed in linear time. The operation ADJUST 

can be easily implemented to run in linear time by traversing the tree TB in breadth 

first manner, making suitable recolourings of the biconnected components encoun- 

tered (nodes of TB). Moreover, the sequential colouring of graphs with A = 3 can 

be done much easier than using the approach in Section 2. The inductive argument 

used in [3] for the case A = 3 can be used to obtain a very simple linear time 

algorithm for this case (by removing, inductively, a node with degree two and 
identifying neighbours of - such node). This gives, for the general case, quite a QidXerent 

&XN time algorithm than that presented in [ 121. The trick of traversing the tree of 

faces in a suitable order (described in [12)) is omitted. 
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