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Abstract. We prove thart every outerplanar graph can be optimally edge-colcured in polylogarith-
mic time using a polynomial number of processors on a parallel random access machine without
write confiicts (P-RAM).

i. Imtroduction

Vizing’s well-known theorem [15] states ihat the minimum number of colours
required to (properly) edge-colour a graph is either 4 or (4 +1) denending upon
the grapb. Here and throughout the paper, 4 is the maximum vertex-degree of the
graph. The problem of checking whether a particular graph is 4-edge-colourable is
NP-hard [S]. However, it is known that bipartite and outerplanar graphs are
A-edge-colcurable ~nd there are polynomial-time algorithms colcuring these graphs
with the minimum (that is, optimal) number of celours [2, 3, 5, 10, 12]. In the case
of bipartite graphs the nonexistence of odd cycles enables us to apply the technique
of Euler par:itioning (for the parallel case particularly, see [10]), and in the casc
of outerplanar graphs an associated trce structure of the graph is employed [12].

NC is the class of problems computable in polylog (log* s, for some constant k
and probicm size s) paraliel iiime with a polynomial number of processors. It is
known [9, 13] how parallelisation of the algorithm implicit in the nroof of Vizing’s
theorem can provide a (A + 1)-edge-colouring of an arbitrary simple graph with »
vertices in parallel time P, where P is a polynomial in 4 and log(n). In [9], this
specifically led Karloff and Shmoys to the result that the problem of finding a
(a+1)-edge-colouring is in NC for simple graphs which have 4 = O(log®"(n)). It
was shown in [10] that for bipartite graphs, the tighter problem of optimally
edge-colouring is also in NC. We show here that the similarly tighter problem of
finding a A-edge-colouring of outerplanar graphs is also in NC. This paper is a full
version of part of an extended abstract presented in [7]. In [7] it was implied that
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the problems of optimally edge-colouring outerplanar and Halin graphs are both
in NC. In co-authorship with Amos Israeli and since presenting [7], the present
authors discovered an improved algorithm for Halin graphs which is described in [6].

it was shown in [1] that the probiem of optimal vertex-colouring of outerplanar
giapis i> ui NC. 1a ilie case of venex-coiouring, the minimum number of colours
is at most 3. Our parallel algorithm implicitly describes a new linear time sequential
algorithm for edge-colouring ouierplanar graphs. For graphs with 4 = 3 the sequen-
tial algorithm in [ 12] is parailelised. However, for 4 > 3 we have to design an entirely
new algorithm to reducc the problem to the case of 4 = 3. I this reduced casc, a
tree of internal faces of the graph is constructed, each face is independently
edge-coloured and a technique similar to that used in [1] can be applied. The initia!
edge-colouring of faces is more subtle than in the case of vertex-colouring, the
crucial point is to satisfy a certain invariant (property P3 from [12]). The reduction
from the case 4>3 to the case A=<3 is based on the following properties of
outerplanar graphs: there is a node of degree at most 2, if the graph is biconnected
then it has a Hamiltonian cycie and the maximum number of edges is 2n — 3. Trees
and uaicycle graphs (see [11]) are special cases of outerplanar graphs.

Our model of computation is a parallel random access machine without write
conflicts (P-RAM). Such a machine consists of a number of synchronously working
processurs (which are uniform cost RAMs) using a common memory. No two
processors can write simultaneously to the same location. On the other hand, many
processors can read at the same iime from ihe same iocation. The action of the
parallel instruction

for each x satisfying a given condition do in parallel instruction(x)

consists of assigning a processor to each x (for which the specified condition holds)
and executing instruction(x) for all such x simultaneously. See [4] for further details.

2. Optimal edge-colouring of biconnected outerplanar graphs with 4 =3

Any biconnected outerplanar graph with at least three nodes has a planar embed-
ding which is a polygon with noncrossing (internal) diagonals. Such a graph has
exactly one Hamiltonian cycle (bounding the polygon). We call the edges of this
cycle sides and the remaining edges are called diagonals. Following [1], it is easy
to find the Hamilionian cycle using the following observation: deletion of an edge
(together with its endpoints) disconnects the polygon if and only if it is a diagonal.
The test for connectivity can be performed in log® n time using O¢#n) processors,
since the number of edges is linear. O(n) such tests are needed. The edges on the
Hamiltonian cycle can be consecutive!y ordered and this ordering can be used to
compute the internal faces (the set of edges entering a given node can be ordered
clockwise, these local orderings can be used to compute the internal faces in
logarithmic parallel time). This enables us to easily compute a structured form of
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the graph: a graph of its internal faces. In this graph two faces are adjacent if and
only if they have a common diagonal. This graph is a tree, denoted by TF, and it
is the basis of the algorithm in this section. The parallel construction of TF together
with the computation of the set of faces has been fully described in [1].

If the faces of the graph G are edge-coloured independently then many edges
will be coloured inconsistently, because one edge belongs to two distinct faces. Even
if each edge is coloured consistently in this sense and has the same colour in both

distinct edges (in separate faces) can have a common endpoint and this will violate
the requirement that edges incident to the same node must have distinct colours.
We start with a “locally good” colouring of faces and step by step we shail remove
the inconsistencies described above. The following crucial invariant will enable us
to do it.

Property P. Each face C is properly coloured as a cycle and if there are in C three
consecuiive edges el, e2, e3 such that ¢2 belongs to some other cycle then these edges
are coloured by three distinct colours.

it was shown in [9] that each cycie can be (independently) coloured to satisfy
Property P. We parallelise the method irom [9].

The first step of our algorithm consists of simultaneously and independently
colouring all faces to satisfy Property P. For a given face we start from the edge
joining this face to its father face and colour its edges consecutively with 1, 2, 3 (if
the face has no father then we start from any edge common with somc other face).
After that, Property P can be violated on edges (a, b), (b, ¢) and (¢, d) (see Fig. 1).
We recolour these edges depending on the value of k moduic 3 (where k is the
number of edges on the cycle). If k modulo 3 =2 then two situations are possible
depending cpon whether (a, b) belongs to some other face. If this is so then we
colour edges (a, b), 'b, c¢), (c,d) by 2, 1, 3, respectively. Otherwise we colour them
1, 3, 1. Figure 1 indicates the recolouring schemes. For the cuterplanar graph G of
Fig. 3, the initial colouring of the faces is presented in Fig. 4.

length mod 3=1 length mod 3=2
(two distinct situations)
Fig. t. The initial colouring of faces. The edges are coloured 1, 2, 3, 1, 2... . starting with the upper edge
(which is shared with the father face). Then a suitable recolouring of the edges (a, b), (b, ¢} and (c, d)
is carried out.
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For one face such a co'ouring can easily be done in log(n) time with O(n)
processors. The length of the cycle has to be computed and the edges numbered
consecutively by 1, 2, 3, 1, .. .. This can be done by directing the cycle and breaking
it at the point ¢. Such a numbermg can be achieved for an (open) list by computing
the distances (modulo 3) from each element to the end of the list using a standard
doubling technique. Hence the initial colouring of faces can be done ir logarithmic
time with O(n?) processors, using O(n) processors for each face.

Let C be a face which is not the root of the tree TF and let (e, a), (a, b}, (b. f)
be consecutive edges coloured x1, y1, z1, respectively. Here (a, b) is the edge
common to C and its father face C'. The edges (d, a), (a, b), (b, c) are consecutive
edges of the face C'. We denote their colours by x, y, z, respectively (see Fig. 2).

Let sub(C, k) b¢ a subgraph of the outerplanar graph consisting of all faces which
are in the subiree (of TF) rooted at C and whose distance from C {measured as a
number of faces on the path tc C in the tree TF) is not larger than A. For example
sub(C, 1) =C

We define the operation recolour(C, h). This operation consists of simultaneously
replacing in sub(C, h} each occurrence of colour x1 by z, y1 by v and z1 by x. In
other words we perform the assignment of colours (x1, y1, z1) «(z, ), %) in the set
of faces which are in the maximal subtree of height at most h rooted at C (in TF).
For example if we execute recolour{C, 1), for one face C only, then  and its father

father of C not recolored

d c \.i c
\ a b 8 y b

2 X 2

recolouring

p T

the face C recolored

Fig.2. Asubtice rooted at the iower face is recoioured by executing the assignment (x1, y'1, z1) « (z, v, x).

A D
¥

Fig. 3. The outerplanar graph G.
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Fig. 4. The tree of faces rooted at F1.

face are consistently coloured. Notice that the operation recolour is well defined if
the invariant P holds. Moreover, this operation preserves the invariant P. Also P
guarantees that the assignment of colours defined above is a permutation of colours.

Now we use a divide-and-conquer approach to consistently colour the whole
graph G. We decompose TF into smaller subtrees of faces, colour them recursively
by the same method and then use the operation recolour to agree between colours
of these subtrees of faces. The tree TF can be decomposed in many ways and some
variatiou: of the same schema are possible (for example one can find a node which
splits the tree int> much smaller subtrees). We use the following method. First
compute the depth of each node (face) of TF, as a number of faces to the root.
Let & be the height of TF. Assume for simplicity that h is a power of two (some
dummy lay 2r1s can be added if necessary). If h =1 then the graph consists of only
one face which is already properly coloured during the initialization and the
algorithm stops. Otherwise we disconnsct all faces of depth h/2 from their sons.
TF is decomposed into a set of subtrees, each of depih at most h/2. We colour
these subtrees recursively. Denote by R the set of faces of depth (h/2+ 1). After
that we execute in parallel for each face C belonging to R: recolour((, h/2). Now
the whole tree of faces is consistently coloured and this gives the edge-colouring
of G and the algorithm stops.

The recursion has depth log(h} = O(log(n}), and the decomposition and recolour-
ing can be done in log(n) time. Thus such an algerithm runs in log” n time with
O(n?) processors.

An iterative version of this algorithm is provided by impiementing the recursion
in 2 bottom-up manner (in the recursion tree), by first combining the trees of height
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1, then the trees of the height 2,4, 8,..., as follows:
for k=1 to iog(h) éo
for each Fice C such that (depth(C)—2* '—1) mod 2* =0
do in parallel recolour(C, 257,

Figure 5 presents the colouring of faces after performing one iteration with k=1,
and Fig. 6 shows the final colouring. Observe how recolour(F5.2) works when
proceeding from the colouring of Fig. 5 to that of Fig. 6.

Fig. 6. The final colouring obtained after executing recolour( F, 2) tor F= F5. F6, F4.
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The operation recolour(C, q) takes O(1) parallel time, if we preprocess the tree
in such a way that for each face we can test in O(1) time whether it is a member
of sub(C, g). Tt is enough to compute the table of distances between each pair of
faces of TF. This problem can be generally solved for a tree in log(n) parallel time
with O(n) processors. As the tree of faces can be computed in O(log® n) parallel
time with n” processors (see [1] or our discussion above, when describing the tree
TF), we now have the following result.

Lemma 2.1. Every outerplanar biconnected graph with A =3 can be edge-coloured
using three colours in O(logz) parallel time with O(n?) processors on a P-RAM.

3. Optimal edge-colouring of general outerplanar graphs

Let G be a biconnected outerplanar graph with A > 3. The outerplanar graph
reduced(G) is obtained in the following way. We find a node ¢ of degree 2. Let
(a, ¢), (¢, b) be the edges incident with ¢. Let H =(c, b), (b,d), (d,f), (1, 2),...,
(g, @), (a, c) be the sequence of consecutive sides of the polygon. We mark each
second edge of this sequence starting with (b, d). Notice that the edge (c, b) is
always unmarked and that the edge (a, ¢) is marked if and only if n is even. Each
node, except perhaps c, is incident with exactly one marked edge (see Fig. 7a). The
set of marked edges is a maximum matching (possibly not matching node ¢) which
we denoie by M(G). The graph reduced(G) is obtained by removing all the edges
of M(G) from G.

Figure 7a shows an example outerplanar graph with 4 >3 and the vertices are
labelied a< described in the preceding paragraph. The edges of M (G} are heavily
scored. The {:rst such edge is (b, d) and the last is (g, a). In this example both (q, ¢)
and (c, b) are unmarked. Hence the degree of node c in Fig. 7a is nct decreased in
reduced(G). However the degree of every other vertex is decreased by 1, and the
maximal degree of the whole graph is therefore also decreased by 1. The graph G
has 28 edg=s, but reduced(G) has only 20 edges. Such a high reduction in the
number of edges is a general property of the operation.

iLemma 3.1. Let A’ be the maximal degree and m' be the number of edges of ilie giaph
reduced (G), for a biconnected outerplanar graph G having maximal degree 4 >3 and
m edges. Then A'=A —1 and m’'<im. The graph reduced(G) can be constructed in
O(log n) parallel time with O(n) processors, where n is the number of nodes of G.

Proof. Each node of G is an endpoint of some edge in M(G), except perhaps node
¢ which has degree 2. Hence the maximal degree decreases, since the degree of
every other node is reduced by 1. There are at least (n—1)/2 edges in M(G) and
all of them are removed. The maximal number of edges of the outerplanar graph
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Fig. 7.

is 2n —3. This implies m’ <3m. A suitable node c can be easily found in log(n) time.
The marking can be made in log(n) time with n processors using a standard doubling
technique, This completes the proof. [J

Notice that after removing M(G) the maximum degree of G decreases by 1,
however degrees in biconnected components can decrease by more than 1. For
example the maximal degree of biconnected components after deleting edges of
M(G) in Fig. 7a decreases by 2, as can be seen in Fig. 7b which shows the tree of
biconnected components. Notice that this tree can easily be found within the
complexity constraints we require, by employing the biconnected components
algorithm of [14]. Let TB denote the tree of biconnected components. We use the
tree TB to agree colour inconsistencies between two connected components which
we presume to have been independently coloured. The method we use is one of
iterating the process of making components at odd levels in the tree agree with their
fathers and then merging these components with their fathers. This halves the height
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of the tree in each iteration and so a logarithmic number of iterations is sufficient.
Therefore we just need to see how we can bring about agreement between a
biconnected component and its father. Let A be the maximum degree of reduced(G)
tor which TB has been constructed. We assume that each biconnected component
is already edge-coloured using colours from within the set {1,..., A}. Consider a
father vertex F in TB and an articulation point v which F has in common with the
sons S,.S,,...,S,. Let P(S;) denote the set of colours present at S; in F and let
d(S;) be the degree of v in S;. The problem is to extract from theset{1,..., A} - P(F)
a number of disjoint subsets with cardinalities d(S;) for all i, 1 <i<r. Then taking
a one to one correspondence between colours in the subset with cardinality d(S;)
and colours in P(S;) will define a colour exchange in S; which for all i will remove
inconsistencies. This is because no colour in {1, ..., A} can then appear more than
once at v. Within a single iteration in which the height of TB is halved, this agreeing
of colours between all components at cdd leve!s with their fathers can be achieved
in O(log(n)) time using n’ processors. The details, although tedious, are not difficuit
and so we omit them. Thus we can remove colouring inconsistencies over the whole
of TB in O(log’(n)) time using n” processors.

If we call this process ADJUST, then the procedure for optimally edge-colouring

I 12

a biconnected outerplanar graph with mmaximum degree 4 is:

procedure edge-colour(G, D)
begin {4 =3, G is a biconnecied graph, the procedure colours G using
colours from [1,..., D], D<A}
if A <3 then use the algorithm described earlier for this case else
begin find M(G)
colour every edge in M(G) with the colour D
G < reduced(G)
f nd the biconnected componenis of G and construct TB
for each biconnected component X in parallel do
edge-colour(X, D—1)
ADJUST
end
end

We illustrate the procedure ADJUST with reference to the tree of biconnected
components shown in Fig. 7b. We take the root of the tree to be the component
which is the circuit (a, b, ¢). Let the edges of the biconnected components be coloured
as indicated in Fig. 7b. In Fig. 7c the inconsistencies between components at odd
levels in the tree have been removed and components at these odd levels have been
merged with their tathers. In Fig. 7d the process has been repeated once more and
an optimal colouring of reduced(G) has been obtained, wheie G is the graph of
Fig. 7a. The edges of M(G) can now be coloured with the colour 6 50 that an
optimum colouring of G is obtained.
We are now in a position to present our mairn result.



410 A. Gibbons, W. Rytter

Theorem: 3.2. (a) Every outerplanar graph can be optimally edge-coloured in
O(log’(n)) time with n* processors.

(b) If G is a biconnected outerplanar graph with A =3, then edge-colour(G, A)
optimally edge-colours 5 in O(log*(n)) time with n> processors.

Proof. (b): Lemma 3.1 implies that the depth of the recursion is O/log(»)). The
first operation, if 4 > 3, is the removal of M(G) and this decreases the number of
edges by a factor of 3. Within one recursive level of edge-colour, for a graph with
n vertices, all operations (constructing the tree of biconnected componeits and the
operation ADJUST) take O(log’(n)) time with n” processors. An optimal colouring
is produced because, as we saw earlier, the base cases of the recursion produce
optimal colourings and in other cases when A is increased by 1 (with the addition
of the edges in M(G)) so is the number of colours used. Thus (b) is proved.

(a): If A=3 and the graph is not biconnected then we can decompose G into
biconnected components and execute edge-colour for each component in parallel.
Then we can apply the operation ADJUST. Then (a) foiiows from (b). I'hat completes
the proof. [

Remark 3.3. Consider replacing in the procedure edge-colour all instructions of the
form for each...do in parallel by the corresponding sequential instruction for
each...do. Then edge-colour(G, A) can be easily implemented to colous G in linear
time. The crucial point is that after each removal of M(G) the number of cdges
decreases by a factor ;. The number of edges is linear with respect to n (the number
of nodes) and the tree TB can be computed in linear time. The operation ADJUST
can be easily implemented to run in linear time by traversing the tree TB in breadth
first manner, making suitable recolourings of the biconnected components encoun-
tered (nodes of TB). Moreover, the sequential colouring of graphs with A =3 can
be done much easier than using the approach in Section 2. The inductive argument
used in [3] for the case 4 =3 can be used to obtain a very simple linear time
algorithm for this case (by removing, inductively, a node with degree two and
identifying neighbours of such node). This gives, for the general case, quite a different
linear time algorithm than that presented in [12]. The trick of traversing the tree of
faces in a suitable order (described in [12]) is omitted.
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