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1. The well-known series of Dougall [1, 3.10 (6) (8) (9)] are the following:

(1) Py-m(cos ) = sin kxn L1y ( 1 1
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s=0

) Ps—m(cos 0),

valid for arbitrary non-integral k, —n<6<m, and

1 6+0 and Re (m)> —1
( a') 6=0 and Re(m)>0 or m___O P}
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7 sgo (=1r <k s k+s+1> Ps~(cos 6) Ps~m(cos V'),

valid for arbitrary non-integral k, —n<6+ ¥<a, —n<0—¥<x and the
pair 6, m satisfying (la), the pair ¥, ! satisfying the corresponding
condition,

Pym(cos 0) Py—m(cos ¥) =

(3) inkn 1 1
_ Sinkn 2 (—1) <k - m) Psym(cos ) Ps—m(cos ¥),

where m is a non-negative integer, k not an integer, —n<0+ ¥ <,
—n<O—-¥Y<zn. In the above Pym(x) denotes the associated Legendre
function of the first kind.

In this paper we will extend these results to generalized associated
Legendre functions of KuipERs-MEULENBELD [2]. The definitions and
some of the properties are found in [2] and [3].

2. We will prove the following theorems.

Theorem 1. (First series of Dougall.) Let m, n and k be complex con-
stants. Then for k not an integer

smkyz ® 1 1
Z(—l (k s k+s+1

where m and 0 satisfy conditions (la) and —n<f<m.

(4) Pgp—m.—n(cos 0)

) Ps—m,—n(cos §),
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Theorem 2. (Second series of Dougall.) Let m, n, u, v and k be complex
constants. Then for k not an integer

o e _ sinkn Q _ - 1 .
) Pp—m.—n(cos §) Py~ *"*(cos V') = = zo( 1)s (k_—s k+s+l)
- Py=m.—n(cos 0) Ps~#~*(cos ¥),

where —n<0+¥<n, —n<—¥ <z, and the pairs m, 0 and u, ¥ satisfy
condition (la).

Theorem 3. (Third series of Dougall.) Let k be a complex constant

not an integer, and m and n constants such that, m, {(n—m) and }(m+n)
are mon-negative integers. Then

m-—n
r(s-m57)
r<k+m;"+1>

(6) _sinkn % (_1)s<1 1 )

T s=}m+n) k—s k+s+1

m—"n
F<s— 3 —|-1>

F<s+m;n+1>

Pp—m=n(cos ) Ppmn(cos ¥) =

Py—n—m(cos §) Pymn(cos ),

where —n<0+¥Y<m, —a<—-¥<m.

3. Proof of Theorem 1. Taking m=0 in (1), and putting cos 0=
=1—2xsin? }p, where 0<2z=<1, —n<@p<m, we obtain:

o1y _ SinkT & (l _ 1_).
(7) Pi(1—2zsin® }g) 7 ,=0( by k—s k+s+1

- Py(1—2xsin2 §o).

1 1
. i  omeing 1 _ _ -
Putting wus(x) =(—1)s Pg(1 —2xsin2 Jp) and v, <_k—s Ic_+s+1) , it is

(o]
clear that Y |vs—;-1| converges. Furthermore, it can easily be shown that
8=0

where K is independent of # and N. Hence, from a modified Abel theorem,
the series in (7) converges uniformly in x, 0<x <1 for each ¢, —z<p<m.
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Writing (7) in terms of hypergeometric functions we find:

. sinkn <L___1__).
(8) F(—k, k+1;1; 2 sin? 4p) = 7 20( 1y k—s k+s+1
- F(—s,8+1; 1; zsin? 1gp).

Suppose Re (m) =1 and then multiply both sides of (8) by

m—n m—n (1—= )sin21<p
m-1(] — 2 -3 (m—n) . 2
(9) (Q—z)»Y(1—zsin2ip) F< R e st 1o

Since the function in (9) is bounded in z, 0=z <1 for each ¢, —a<@p<m,
the resulting series is still uniformly convergent and we can integrate
term by term over [0, 1]. Thus we get:

1

f (Q—z)m1(1—xsin? 3)-tm—n F(—Fk, k+1;1; x sin? {¢)-

0

m—mn m—mn (1—2)sin2 i¢p
F< 2 T2 0™ 1—xsin? Lo dz

smk ® 1 1
10) P e

j(l x)ym-1(1—x sin? 3p)~tm—n) F(—s,s+1; 1; xsin? }p) -

_ _ in2
F(m nmen.,.. (1—z) sin %q)) e
2 2 1—2sin? ¢

From [1, 2.4 (3)] we deduce the relation

1 m—n m—mn
’)T’LF<k+ 2 +1;_ 2 H ’)“

1—x)mY(1—gz)~tm-n) F(—k, k+1;1; xz) -

m—n m—n_ (1-2)2
F( 3 T g M l—xz)dx’

(11) f

valid for Re (m)>0, |arg (1 —2)| <a. Thus (10) becomes:

o) -

sinkn 2 1 1
(12) == 2(—1)s(m—m—1)'

8=0

F<k+m;n+ 1, —

-F(s—l—’n%—i— 1, —s+m;n 1+m; sin2 (p)
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Since
1 (1—cosg)im
I'(14+m) (1+ cos ¢)in

Pk—‘m,—n(cos (p) =

m—-—n

-F<k+ +1, e+ 220 ; 1+m; s1n22<p>
we have (4), valid for —n<p<x and Re (m)=1.

By uniform convergence and analytic continuation, it can be shown
that (4) holds under the conditions of (la).

4. Starting from (2) and using the same method twice, with the neces-
sary modifications to show uniform convergence of the series involved,
Theorem 2 is easily proved.

5. To prove Theorem 3, we set x=»=0 in (5) and interchange m and n.
Since n is a non-negative integer, condition (la) is satisfied for —n <6 <.
Thus

Pj=—7-m(cos ) Pr(cos V) =
(13)

_ sinkn & 1 1 -
2 (—1)s <K9 k—i—s—i—l) —#%,=m(cos 6) Ps(cos ).

As }(m+n) is a non-negative integer, we have:
d (m+n)
Pyiimin)(x) = (— 1)ttm+n) (1 — g2)t(m+n) (%) Pk(x).

Applied to (13) we obtain:

Py—n.-m(cos §) Pytmin)(cos V) =

sinkm 2 1 1
(14) = > (—1p (m - m_j) .

T s=0

- Ps—n.—m(cos §) Pgtim+n)(cos ¥).

The term-by-term differentiation is justified for ¥+0 because of the
uniform convergence of (14). However, it is evident that (14) also holds
for ¥=0.

Since }(n—m) is a non-negative integer, we can apply the relation

/ m—mn

re s )
b3

Pymn(a) — (14xz)in 2

(15) (1 =zt F(k—m;n—kl).

3 (n-m) (m+n)
. 2ha-m) <d%> {(%) Pimn)),
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(see [4, sec. 2]), to (14). Thus we obtain (6). The justification for the
term by term differentiation is the same as for (14). However, because
of the appearence of the gamma functions in formula (6), the interchange
of m and » in (5) is sufficient to assure the uniform convergence of (6).
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