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1. I N T R O D U C T I O N  A N D  R E S U L T S  

T h e  non l inea r  SchrSdinger  equa t ion  (NLS)+ on the  circle 

is a comp le t e ly  in t eg rab le  H a m i l t o n i a n  sys tem of infini te  d imension.  (NLS)+ is referred to  as t h e  

defocus ing  nonl inear  Schr5dinger  equa t ion ,  whereas  (NLS)_  is referred to  as t he  focusing one. 

W e  choose  as t h e  phase  space of  th is  H a m i l t o n i a n  sys tem HN'~(S1; C) defined for N > 0 and  

~ > 0 b y  

HN"~('S1;C)={~°(x)=Ee2~rk:tC~(k);'l~°l'N'~<°a} ' k e z  

where ~(k) denote the Fourier coefficients of ~ and 

II~IIN,~ = (1 + Ikl)2Ne2~lkll¢o (k)l 2 . 
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Equation (1)+ admits a Lax pair representation 

dM+ = [M±, A+] 
dt 

where M+ := L(~,~),  M_ := L(qo,-~), L being the Zakharov-Shabat operator (see [1]) 

(10)  (0¢:) 
L ( ¢ 1 , ¢ 2 ) : = i  0 , - 1 ,  ~xx + ¢2, ' (2) 

and A± are (rather complicated) operators, given in [2]. The periodic eigenvalues of the Zakharov- 
Shabat operator L(qa, ~) (respectively, L(q0,-~)) considered on the interval [0,2] are a complete 
set of conserved quantities for (NLS)+ (respectively, (NLS)_) on circle. 

Motivated by this fact, we study in this paper the periodic spectrum of L = L(¢I,¢2) for 
(¢1, ¢2) in HN'w(S1; C) × HN'w(S1; C). 

We denote by a - a(¢1, ¢2) the set of eigenvalues of L(¢I, ¢2) considered on the interval [0,2]. 
Recall that this set is discrete. Our principal result is the following theorem. 

THEOREM. Let N > O, w >_ 0 and let 7 := 1/2 i f N  > 1/2 and 0 < 7 < N, if0 < N < 1/2. Then, 
for any bounded subset 13 in HN,w(S1;C) x HN,w(S1;C), there exist no >_ 1 and M >_ 1, so that 
for any [k[ >_ no and (¢1, ¢2) • B, the set a(¢1, ¢2) ~ {A • C, [A - klr[ < 7r/2} contains exactly 
one isolated pair of eigenvalues + - { A k , A k }. These eigenvalues satisfy the following estimates. 

(i) Elkl>_ o (1 + Ikl) e  lkl - A;I 2 -< M.  

(ii) ~-]~lkl>no (1 + [k[) 2N+2~ e 2wlkl [A + - A~ - 2(~b2(n)¢l(-n))1/2[ 2 <_ M.  

Furthermore, a(¢ , ,  ¢2) \ {A[, [k] _> no} is included in {A • C, [A[ < no~r-~r/2} and its cardinality 
is 4no - 2. 

Notice that L is unitary equivalent to the well-known AKNS operator (see [3]). The operator 
L(¢1, ¢2) is self-adjoint iff ¢1 = ¢2 and in this case, (ii) can be improved 

Z ix "~[k])2N+4"Ye2w[k[ ((/~k+ - /~;) - 2 ~(n) ) 2  M. 
[k[>no 

Thus, our theorem is a generalization of the gap estimates established by Mar~enko [4] who 
considered only the self-adjoint case assuming that w = 0 and N • N \ {0} (see also [5]). 

As an application of this theorem, we will prove in a subsequent paper that the defocusing 
nonlinear Schr6dinger equation iOtqo = -o~+21~12~ admits globally defined, real analytic action 
angle variables on the phase space HN"~(S1; C) which can be used to prove KAM-type theorems. 

2. S K E T C H  O F  T H E  P R O O F  

We consider the eigenvalue problem on the interval [0,2], 

L (¢1, ¢2) F = AF. (3) 

In order to solve (3), we adapt a method used by Kappeler and Mityagin for the SchrSdinger oper- 
ator (see [6]). We decompose f • (L2[0, 2]) ~ with respect to the orthogonal basis (1/v/'2(~)e 'k~x, 
1/v~(°)e'k'rx)kez (these functions correspond to the eigenfunctions associated to A = kTr when 
¢1 = ¢2 = 0) and we write A = n r  + z, Izl < 7r/2 and n • Z. Then, the couple (A, F) is a solution 
of (3) if and only if there exists a nontrivial solution of the following system: 

- z x  + ¢2(2n)y + E ¢2(k + n)bk = 0, (4)+ 
k#n 

 l(-2n)x - +  l(-k - n)ak = 0, (4)_ 
k~n 
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( z - B n ) ( a b )  = x ( ~ ( _ k _ n ) ) k # n / ,  (4)n 

where  ~b2(k), k E Z, denote  the  Fourier  coefficients of  ~ when considered as a per iodic  funct ion of 
per iod 2, x, and y belong to  C, a := (ak)k#~ and b := (bk)k#,~ are sequences in 12(Z \ {n}), and 

:= ~ \ . / k,jez\{n} . 

Bn (~21(_k_  j ) )  k jcZ\{n } ((k --n)Tr~kJ)k,JEZ\{n) 

We first solve (4)~, for n sufficiently large, invert ing ( z -  Bn) in an appropr i a t e  space. T h e  sy s t em 

(4)+, (4)_,  and (4)~ is then  equivalent  to the  2 × 2 sys tem 

~b, ( -n)+~-(n ,z )  - z  +o~(n,z) = , (5) 

where  the  coefficients ~(n ,  z) and f~+(n, z) are easily de te rmined  by (4)+, (4)_,  and (4)~ (see [7]). 
T h e  exis tence of a nontr ivial  solution of (5) follows from the  vanishing of the  de t e rminan t  

- z  + ~(n ,  z) ~2(n)  + f~+(n, z) 

~l( -n)+13-(n , z )  -z+oL(n,z)  ' 

which leads to the  following analyt ic  equat ion  for z: 

Precise  e s t ima tes  of  a ( n ,  z) a n d / ~ ± ( n ,  z) allow us to prove t h a t  equat ion  (6) has  exac t ly  two 
solut ions z + and z~ for In I sufficiently large and 

~ ^ 1 / ~  2 

In[>no 

This  fo rmula  leads to the  s t a t emen t s  (i) and (ii) of the  t heo rem above. Fur thermore ,  a count ing 

l emma,  using Rouche ' s  theorem,  proves t h a t  there  are exac t ly  4n0 - 2 eigenvalues in the  disc 

{A C C, IAI  < n o r -  7r/2}. 
T h e  detai ls  of the  proof  are contained in [7]. 
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