

PII: S0893-9659(98)00063-9

Gap Estimates of the Spectrum of the Zakharov-Shabat System

B. Grébert

Mathématiques pour l'Industrie et la Physique UMR CNRS 5640,Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex, France

and

Institut für Mathematik, Universität Zürich Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

T. KAPPELER Institut für Mathematik, Universität Zürich Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

B. MITYAGIN

Department of Mathematics, Ohio State University

231 West 18th Avenue, Columbus, OH 43210, U.S.A.

(Received June 1997; accepted July 1997)

Communicated by J.-C. Saut

Abstract—We prove new gap estimates for the Zakharov-Shabat systems with complex periodic potentials. Our method allows us to characterize in a precise way the decreasing properties of the gap length sequence in terms of the regularity of complex potentials in weighted Sobolev spaces. © 1998 Elsevier Science Ltd. All rights reserved.

 $\label{eq:constraint} \begin{array}{c} \textbf{Keywords} & -- Periodic \ spectrum, \ Zakharov-Shabat \ system, \ Gap \ estimates, \ Lyapunov-Schmidt \ method. \end{array}$

1. INTRODUCTION AND RESULTS

The nonlinear Schrödinger equation $(NLS)_{\pm}$ on the circle

$$i\partial_t \varphi = -\partial_x^2 \varphi \pm 2|\varphi|^2 \varphi \tag{1}$$

is a completely integrable Hamiltonian system of infinite dimension. $(NLS)_+$ is referred to as the defocusing nonlinear Schrödinger equation, whereas $(NLS)_-$ is referred to as the focusing one.

We choose as the phase space of this Hamiltonian system $H^{N,\omega}(\mathcal{S}^1;\mathbb{C})$ defined for $N \ge 0$ and $\omega \ge 0$ by

$$H^{N,\omega}\left(\mathcal{S}^{1};\mathbb{C}\right) = \left\{\varphi(x) = \sum_{k\in\mathbb{Z}} e^{2i\pi kx} \hat{\varphi}(k); \|\varphi\|_{N,\omega} < \infty\right\},\,$$

where $\hat{\varphi}(k)$ denote the Fourier coefficients of φ and

$$\|\varphi\|_{N,\omega} = \left(\sum_{k\in\mathbb{Z}} (1+|k|)^{2N} e^{2\omega|k|} |\hat{\varphi}(k)|^2\right)^{1/2}.$$

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

Equation $(1)_{\pm}$ admits a Lax pair representation

$$\frac{dM_{\pm}}{dt} = [M_{\pm}, A_{\pm}]$$

where $M_+ := L(\varphi, \overline{\varphi}), M_- := L(\varphi, -\overline{\varphi}), L$ being the Zakharov-Shabat operator (see [1])

$$L(\psi_1, \psi_2) := i \begin{pmatrix} 1, & 0, \\ 0, & -1, \end{pmatrix} \frac{d}{dx} + \begin{pmatrix} 0, & \psi_1, \\ \psi_2, & 0 \end{pmatrix},$$
(2)

and A_{\pm} are (rather complicated) operators, given in [2]. The periodic eigenvalues of the Zakharov-Shabat operator $L(\varphi, \overline{\varphi})$ (respectively, $L(\varphi, -\overline{\varphi})$) considered on the interval [0,2] are a complete set of conserved quantities for (NLS)₊ (respectively, (NLS)₋) on circle.

Motivated by this fact, we study in this paper the periodic spectrum of $L = L(\psi_1, \psi_2)$ for (ψ_1, ψ_2) in $H^{N,\omega}(S^1; \mathbb{C}) \times H^{N,\omega}(S^1; \mathbb{C})$.

We denote by $\sigma \equiv \sigma(\psi_1, \psi_2)$ the set of eigenvalues of $L(\psi_1, \psi_2)$ considered on the interval [0,2]. Recall that this set is discrete. Our principal result is the following theorem.

THEOREM. Let N > 0, $\omega \ge 0$ and let $\gamma := 1/2$ if N > 1/2 and $0 \le \gamma < N$, if $0 < N \le 1/2$. Then, for any bounded subset \mathcal{B} in $H^{N,\omega}(\mathcal{S}^1;\mathbb{C}) \times H^{N,\omega}(\mathcal{S}^1;\mathbb{C})$, there exist $n_0 \ge 1$ and $M \ge 1$, so that for any $|k| \ge n_0$ and $(\psi_1, \psi_2) \in \mathcal{B}$, the set $\sigma(\psi_1, \psi_2) \cap \{\lambda \in \mathbb{C}, |\lambda - k\pi| < \pi/2\}$ contains exactly one isolated pair of eigenvalues $\{\lambda_k^+, \lambda_k^-\}$. These eigenvalues satisfy the following estimates.

- (i) $\sum_{|k| \ge n_0} (1+|k|)^{2N} e^{2\omega|k|} |\lambda_k^+ \lambda_k^-|^2 \le M.$
- (ii) $\sum_{|k| \ge n_0} (1+|k|)^{2N+2\gamma} e^{2\omega|k|} |\lambda_k^+ \lambda_k^- 2(\hat{\psi}_2(n)\hat{\psi}_1(-n))^{1/2}|^2 \le M.$

Furthermore, $\sigma(\psi_1, \psi_2) \setminus \{\lambda_k^{\pm}, |k| \ge n_0\}$ is included in $\{\lambda \in \mathbb{C}, |\lambda| < n_0 \pi - \pi/2\}$ and its cardinality is $4n_0 - 2$.

Notice that L is unitary equivalent to the well-known AKNS operator (see [3]). The operator $L(\psi_1, \psi_2)$ is self-adjoint iff $\overline{\psi}_1 = \psi_2$ and in this case, (ii) can be improved

$$\sum_{|k| \ge n_0} (1+|k|)^{2N+4\gamma} e^{2\omega|k|} \left(\left(\lambda_k^+ - \lambda_k^- \right) - 2 \left| \hat{\psi}(n) \right| \right)^2 \le M.$$

Thus, our theorem is a generalization of the gap estimates established by Marčenko [4] who considered only the self-adjoint case assuming that $\omega = 0$ and $N \in \mathbb{N} \setminus \{0\}$ (see also [5]).

As an application of this theorem, we will prove in a subsequent paper that the defocusing nonlinear Schrödinger equation $i\partial_t \varphi = -\partial_x^2 \varphi + 2|\varphi|^2 \varphi$ admits globally defined, real analytic action angle variables on the phase space $H^{N,\omega}(\mathcal{S}^1;\mathbb{C})$ which can be used to prove KAM-type theorems.

2. SKETCH OF THE PROOF

We consider the eigenvalue problem on the interval [0,2],

$$L(\psi_1, \psi_2) F = \lambda F. \tag{3}$$

In order to solve (3), we adapt a method used by Kappeler and Mityagin for the Schrödinger operator (see [6]). We decompose $F \in (L^2[0,2])^2$ with respect to the orthogonal basis $(1/\sqrt{2}\binom{1}{0}e^{ik\pi x}, 1/\sqrt{2}\binom{1}{0}e^{ik\pi x})_{k\in\mathbb{Z}}$ (these functions correspond to the eigenfunctions associated to $\lambda = k\pi$ when $\psi_1 = \psi_2 = 0$) and we write $\lambda = n\pi + z$, $|z| \leq \pi/2$ and $n \in \mathbb{Z}$. Then, the couple (λ, F) is a solution of (3) if and only if there exists a nontrivial solution of the following system:

$$-zx + \widehat{\psi}_2(2n)y + \sum_{k \neq n} \widehat{\psi}_2(k+n)b_k = 0, \qquad (4)_+$$

$$\widehat{\psi}_1(-2n)x - zy + \sum_{k \neq n} \widehat{\psi}_1(-k-n)a_k = 0, \qquad (4)_-$$

$$(z - B_n) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} y \left(\widehat{\psi}_2(k+n) \right)_{k \neq n} \\ x \left(\widehat{\psi}_1(-k-n) \right)_{k \neq n} \end{pmatrix}, \tag{4}$$

where $\widehat{\psi_2}(k), k \in \mathbb{Z}$, denote the Fourier coefficients of ψ when considered as a periodic function of period 2, x, and y belong to \mathbb{C} , $a := (a_k)_{k \neq n}$ and $b := (b_k)_{k \neq n}$ are sequences in $l^2(\mathbb{Z} \setminus \{n\})$, and

$$B_{n} := \begin{pmatrix} ((k-n)\pi\delta_{kj})_{k,j\in\mathbb{Z}\setminus\{n\}} & \left(\widehat{\hat{\psi}_{22}}(k+j)\right)_{k,j\in\mathbb{Z}\setminus\{n\}} \\ \hline \left(\widehat{\hat{\psi}_{21}}(-k-j)\right)_{k,j\in\mathbb{Z}\setminus\{n\}} & ((k-n)\pi\delta_{kj})_{k,j\in\mathbb{Z}\setminus\{n\}} \end{pmatrix}.$$

We first solve $(4)_n$, for n sufficiently large, inverting $(z-B_n)$ in an appropriate space. The system $(4)_+$, $(4)_-$, and $(4)_n$ is then equivalent to the 2×2 system

$$\begin{pmatrix} -z + \alpha(n, z) & \hat{\psi}_2(n) + \beta^+(n, z) \\ \hat{\psi}_1(-n) + \beta^-(n, z) & -z + \alpha(n, z) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$
(5)

where the coefficients $\alpha(n, z)$ and $\beta^{\pm}(n, z)$ are easily determined by $(4)_+$, $(4)_-$, and $(4)_n$ (see [7]). The existence of a nontrivial solution of (5) follows from the vanishing of the determinant

$$\begin{vmatrix} -z + \alpha(n,z) & \hat{\psi}_2(n) + \beta^+(n,z) \\ \hat{\psi}_1(-n) + \beta^-(n,z) & -z + \alpha(n,z) \end{vmatrix},$$

which leads to the following analytic equation for z:

$$(z - \alpha(n, z))^{2} = \left(\hat{\psi}_{2}(n) + \beta^{+}(n, z)\right) \left(\hat{\psi}_{1}(-n) + \beta^{-}(n, z)\right).$$
(6)

Precise estimates of $\alpha(n, z)$ and $\beta^{\pm}(n, z)$ allow us to prove that equation (6) has exactly two solutions z_n^+ and z_n^- for |n| sufficiently large and

$$\sum_{|n| \ge n_0} (1+|n|)^{2N+2\gamma} e^{2\omega|n|} \left| \left(z_n^+ - z_n^- \right) - 2 \left(\hat{\psi}_2(n) \hat{\psi}_1(-n) \right)^{1/2} \right|^2 < \infty,$$

This formula leads to the statements (i) and (ii) of the theorem above. Furthermore, a counting lemma, using Rouche's theorem, proves that there are exactly $4n_0 - 2$ eigenvalues in the disc $\{\lambda \in \mathbb{C}, |\lambda| < n_0\pi - \pi/2\}.$

The details of the proof are contained in [7].

REFERENCES

- 1. V. Zakharov and A. Shabat, A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem, Functional Anal. Appl. 8, 226-235 (1974).
- L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Verlag, (1987).
 M.I. Ablowitz, D.I. Kaup, A.C. Newell and H. Segur, The inverse scattering transform—Fourier analysis for
- nonlinear problems, Stud. Appl. Math. 54, 249-315 (1974). 4. V.A. Marchenko, Sturm-Liouville operators and applications, In Operator Theory: Advances and Applica-
- tions, Volume 22, Birkhäuser, (1986).
- 5. B. Grébert and J.C. Guillot, Gaps of one dimensional periodic AKNS systems, Forum Math. 5, 459-504 (1993).
- 6. T. Kappeler and B. Mityagin, Gap estimates of the spectrum of Hill's equation and action angle variables for KdV (preprint).
- 7. B. Grébert and T. Kappeler, Gaps estimates of the spectrum of Zakharov-Shabat systems (preprint).