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Abstract-We study the existence of positive solutions of the differential equation (-l)my(2m) 
(t) = f(t,y(t),y”(t), . . ,y(2(m-‘))(t)) with the boundary condition Y(~~)(O) = 0 = I, 0 5 i 5 
m - 1, and Y(~~)(O) = 0 = y( 2i+1)(l), 0 5 i 5 m - 1. We show the existence of at least one positive 
solution if f is either superlinear or sublinear by an application of a fixed-point theorem in a cone. 
@ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Boundary value problems for even-order differential equations can arise, especially for fourth- 

order equations, in applications such as 

(4 

(b) 

(cl 

modeling a number of axially loaded beams fastened together with boundary conditions 

involving displacement (or deflection at ends), velocity (or vibration at ends), bending 

moments, and shear forces; see [l]; 

modeling behavior of a compressed beam subjected to a load causing buckling with the 

stipulation that the ends are constrained to remain straight and there is zero end shear 

stress (such as deflection of girders in multilevel buildings as well as deflection of flat-bed 

trailers in tractor-trailer trucks); see [2]; and 

modeling the effects of soil settlement on elastically bedded building girders loaded by 

concentrated forces; see [ 31. 

For the second-order case, boundary value problems for nonlinear ordinary differential equa- 

tions have received much attention in determining conditions on the nonlinearity for which there 

are either at least one, at least two, or at least three positive solutions. Some of those results, 

along with excellent lists of references are contained in [4-111. 
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The techniques in this work will follow along the lines of those introduced by Ma [12] for fourth- 

order problems. By adapting the techniques of [12], it is easier to apply some of the fixed-point 

theorems from the cone theory than in many of the papers cited above. To some extent, this 

method involves our reducing higher even-order boundary value problems in a sense to second- 

order considerations. In turn, this then allows us to define cones in terms of lower bounds on a 

single higher-order derivative as opposed to requiring lower bounds on all lower derivatives. 

In this paper, we consider the existence of positive solutions of the equation 

(-l)“y’2”‘(t) = f (t, y(t), y”(t), . . . , p+‘))(t)) ) m 2 2, (1.1) 

with either the Lidstone boundary conditions, 

yyq = 0 = y(2i)(l), O<i<m-1, 

or the focal boundary conditions, 

y(w(()) = 0 = y(2i+‘)(l), O<i<m-1. 

(l-2) 

(1.3) 

We will mention a couple of examples. The solution of the boundary value problem, 

yC4) = -Py" + p(t, y), o<t<1, 

with boundary conditions (1.2), represents the deflection of a hinged beam column. P represents 

the axial loading and p represents the nonconservative force. We refer the reader to [l] for 

discussion. If P > 0, then the axial load is said to be applying compression. If P < 0, then the 

axial force is said to be applying tension. 

Meirovitch [13] used higher even-order boundary value problems in studying the open-loop 

control of a distributed structure whose undamped behavior is governed by 

20(z) is displacement at a point CC in the structure, H is a homogeneous differential stiffness 

operator of order 2p, m(z) is the mass density, and f(x) is a distributed control force. The 

solution WJ(X) is subject to boundary conditions, 

Bg.LJ(x) = 0, x = 0, L, llilp, 

where the Bi are differential operators of maximum order 2p - 1. 

We assume f : [0, l] x Ii x 12 x . . . x I, -t [0, co) is continuous where Ii = [0, co) if i is an odd 

integer and 1i = (-00, 0] if i is an even integer and set 

f( t, Ylr Y2,. . . ,Ym-1, (-V-lP 
f0 := lim min 

p-+0+ G[O,l] 

), 

P 

kYl,YZ,.*. , Ym-1, (-v+‘P 
fm := lim min f( > 

p-00 tE[O,l] 
7 

P 

f” := lim max f( 
t,Yl,Yz,...,Ym-lr(-l) m- ‘P) 

p-o+ te [O, 11 
, 

P 

t, Yl, Y2,. . .7 Ym-1, (-y-‘P 
f” := lim max f( > 

p-00 E[O,l] P 
, 

where fo, fm, f”, f” E (0, oo} and the above four limits are uniform in yi, ys,. . . , ~~-1. 
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We note that f” = 0 and _foo = co correspond to the superlinear case, and fo = oa and f” = 0 

correspond to the sublinear case. By a positive solution y(t) of (1.1),(1.2) (or (1.3)), we mean 

that y(t) is positive on (0,l) and satisfies (1.1),(1.2) (or (1.3), respectively). 

We remark that the upshot to the approach taken in this paper is the ability to construct 

Green’s functions associated with (1.1),(1.2) and (1.1),(1.3) f rom Green’s functions for conjugate 

problems and right focal problems, respectively, for second-order differential equations. Because 

of this, other problems which could be approached in this manner include equation (1.1) coupled 

with a generalization of Sturm-Liouville boundary conditions for the higher-order equation. 

2. THE EXISTENCE OF SOLUTIONS OF (1.1),(1.2) 

In this section, we apply a Guo-Krasnosel’skii fixed-point theorem [14] for operators which are 

of an expansion/compression type with respect to an annular region in a cone. We now present 

the definition of a cone in a Banach space and the Guo-Kransnosel’skii fixed-point theorem. 

DEFINITION 2.1. Let B be a Banach space over R. A nonempty closed set P c B is said to be 

a cone provided the following are satisfied: 

(a) cvzl+pwEPforallu,vEPanda,p20; 

(b) if u E P and -u E P, then u = 0. 

LEMMA 2.1. Let i3 be a Banach space, and let P C B be a cone in f3. Assume fltl, Rz are open 

subsets of B with 0 E s11 C fil C Rs, and let 

A:l?n(i&\R~) --+P 

be a completely continuous operator such that either, 

(i) IlAull I: Ilull, ‘1~ E P n dfl 1, and IlAull 2 Ilull, u E Pnd%, or 
(4 IlAull 2 I141j u E P n dR1, and llAu[l i IIuII, u E P n dR2. 

Then A has a fixed point in P n (a2 \ RI). 

Our aim is to apply Lemma 2.1 to a completely continuous operator whose kernel is the Green’s 

function for the homogeneous problem 

(-l)"y@m) = 0 
(2.1) 

satisfying the Lidstone boundary conditions (1.2). For the case m = 1, the Green’s function 

for (2.1),(1.2) is 

G(t, s) = 
1 

t(l - s), 0 2 t 5 s <_ 1, 

s(1 -t), 0 5 s 5 t < 1. - 

If we let Gl(t, s) := G(t, s), then for 2 < j 5 m, we can recursively define 

Gj(t, s) = 
.I 

1 

G(t,r)G,_l(r,s)dr. 
0 

Clearly, 

It is noted that 

Gj(t,s) 2 0, for 2 5 j 5 m. 

(-1)“-’ G Gm(t, s) = G(t, s). 

As a result, Gm(t,s) is the Green’s function for (2.1),(1.2). W e will make use of the following 

inequality: 

G(t, s) 2 ; G(s, s), ;<t<;, s E [O, 11. (2.2) 

We now establish the existence of at least one positive solution of the Lidstone boundary value 

problem (1.1),(1.2). 
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THEOREM 2.2. Let f : [0, 1] x I1 x / 2  x . . -  x Im -'+ [0, c~) where I i  = [0, oo) i f i  is an odd integer 
and Ii = (-oo, 0] if i is an even integer. Then the boundary value problem (1.1),(1.2) has at least 
one positive solution in the case 

(i) f o  = 0 and  foo = ~ ,  or 
(ii) fo = co and foo = O. 

PROOF. Let  B denote  the  Banach  space in c2m-2[0 ,  1] as 

B = {y E C2m-2[0, 1][y satisfies (1.2)} 

with  the  no rm endowed by 

I/yll = Y(2(m-1) ) lo  ° • 

We note  tha t ,  for y E B and t E [0, 1], ly(t)l < f~ ly'(s)l ds < Ily'llc~. Hence, Ilylloo < Ily'l l~. 
In addit ion,  there  exists to E (0, 1) such t h a t  y'(to) = 0. Then,  for t E [0,1], ly'(t)l ___ 

I f~to ly"(s)l dsl <_ IlY"II~. In particular, IlY'II~ -< IlY"lloo. By boots t rapp ing ,  one sees t h a t  

Ilylloo -< Ily'll~ < ' " - <  y(2(m-1)) ~"  

Denote  

{ I'Y(2(m-I))N } 
P =  Y l Y E B ,  y > 0 ,  and min ( _ l ) m - l y ( 2 ( m - 1 ) ) ( t ) >  oo . 

-- 1/4<t<_3/4 -- 4 

I t  is obvious t h a t  79 is a cone in B. Let  .4 : B --~ B be the  ope ra to r  

(Ay)(t) = am(t, s) f  (s, y(s), y"(s ) , . . . ,  9 (2(m-1))(s)) ds. (2.3) 

T h e n  y E B is a solut ion of (1.1),(1.2) if and only if .Ay = y. By  the  a s sumpt ion  on f and nonneg-  
a t iv i ty  of  G~, the  solut ion is positive. In order  to  app ly  L e m m a  2.1, we need to verify AP C_ P. 
Now let y E P ,  

f01 = min  G(t,s)y (s,y(s),y"(s), . . .  ,y(2m-1)(S)) ds min (-1)m-l( .Ay)(2m-2)(t)  i/4<_t<_3/4 
1/4<_t<_3/4 

> a(s,s)f  ds 

1 (Ay)(2(m_l)) ~ "  

We conclude t h a t  Ay E P. I t  is rout ine  to  see t ha t  A is comple te ly  continuous.  We now first deal 
wi th  the  super l inear  case, t ha t  is, f0  = 0 and f ~  = oo. Since f0  = 0, we m a y  choose ~1  > 0 so 

t h a t  f ( t ,  y l ,Y2, . . .  ,Ym-1, ( - 1 ) m - l P )  -< rip, Vt, y l , . . .  ,ym-1, 0 < p < 7-ll, where rl satisfies 

/o 1 ~7 G(s, s) ds < 1. (2.4) 

Thus ,  if y E 7 9 and IlYll = 7-/1, then  we have 

• 1 
(-1)m-l(.Ay)(2(m-1))(t) = min f G(t ,s)f  (s,y(s),y"(s), . . .  ,y(2(m-1))(s)) ds 

1/4<t<_3/4 Jo 

Z <_ a(8,s)f (s,y(s),y"(s),...,y(2(m-i))(s)) es 

/o ( ) <_ G(s,s)~]  ( - 1 ) m - i y ( 2 ( m - 1 ) ) ( s )  d s  

< Ilyllv a(s, s) ds 

-< Ilyll. 
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Now, if we let 

01 = {Y E 23 I IIYII < 1-111, 

then, 

IIdyll 5 11~11~ yEPndo2,. 

Further, since foe = 00, there exists fiz such that 

f(t,y~,~~,...,~~-~,(-l)~-~~) >PP, forpl%, ~GYI,...,Y,-I, 

where p is chosen so that 

(2.5) 

Let 3-12 := max{23_1r,47&} and Rz = {y E 13 I llyll < ‘Flz}. Then y E P and llyll = ‘Hz imply 

and so 

(_l)m-‘(dy)(2(m-1)) 1 - (2) -~1G(~,s)f(~,~(~),~"(~),...,~(2(m-1"(s)) ds 

~~;~G(~,s)j(s,y(s),y"(s),...,y(2(m-1~)(,)) ds 

2 1;; G (;, s) p ((-l)m-1y(2(m-1))(s)) ds 

2 pi lly(2(m-‘)) 

> ym-‘)) . - II II M 

Hence, IIdyll 2 Ilvll, for Y E P n 8%. 
Therefore, by the first part of Lemma 2.1, it follows that A has a fixed point in P n (a2 \ RI), 

such that ‘Hr 5 llyll 5 3-12. This completes the superlinear part of the theorem. 

We now establish the existence of a positive solution of (1.1),(1.2) for the sublinear case, that 

is, fe = co and f” = 0. We first choose Xr > 0 such that f(t,yr,yz,. . . ,ym_r, (-l)“-‘p) 2 7ip 

forO<pI’FIr,Vt,yr ,..., ym_r where 

t /rE”G (;,s) ds 2 1. 

Then for y E P and jlyll = 1-11, we have 

(2.6) 

,(_l)m-‘(dy)(2h-1)) 1 - (2) -~1G(~,s)f(s,~(s),~"(s),...,~(2(m-1i)(s)) ds 

~~~~G(~,s)~(s,y(s),y"(s),....y(2(m-1~)(~)) ds 

1 l;;G (;,s) fj ((-l)m-1y(2(m-1))(s)) ds 

2 fi a lpw 

> ym-lH . - II II 00 
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Thus, we may let 

so that 

01 = {Y E B I llyll < ‘Hl), 

IIdyll L 11~11~ yEPndR1. 

Now, since f” = 0, there exists 7& > 0 so that f(t,Y1,y~, . . . ,ym_l, (-l)m-lp) < Xp, for 

0 < p 5 62, where A > 0 satisfies 

I 

1 

x G(s, s) ds 5 1. (2.7) 
0 

We consider two subcases. 

CASE I. Suppose f is bounded, say f(t, y1, ~2,. . . , ym) 5 N for all (t, y1, ~2,. . . , ym) E [0, l] x 

II x I2 x ... x I,. In this case, we may choose 

?-ttp =max{2X1,N11G(s,s)ds}, 

so that for y E P with ]]y]] = ‘&, we have 

(-l)m-‘(dy)(2(m-1))(t) 5 I’ G(s, s)f (3, y(s), y"(s), . . . , y(2(m-1))(s)) ds 

s 1 

IN G(s, s) ds 
0 

5 Hz, 

and therefore, ]]dy]] 5 ]]y]]. 

CASE II. If f is unbounded, then we define a function f* : [0, co) + [0, co) by 

f*(r) :=max f 
( ( 

t,y1,y2,...,ym-1,(-l) m-lp 
> 

I t E [O, l],O 2 (-l)i-‘yi < r, 

i = 1,2,... m-l, o<p<r . 
1 

It is easy to see that f* is nondecreasing and lim,,, (f*(r)/r) = 0, and 

f*(r) I xr, for T > fi2. (2.8) 

Choose ‘FI2 > max{27f1,‘&}, then we have 

f (t, Y1,Y2,. . . ,Ylm-1, (-v+‘P) I f’(‘Hz), (2.9) 

for t E [0, 11, 0 5 (-l)i-lyi 5 X2, i = 1,2,. . . m - 1, 0 < p 5 742. 

Let y E P and l/y]] = X2. We also know 

]]y]loo I ]]y’]]oo 5 .’ * I 
II 
y(2(m-‘)) 

II 
= ‘Hz. 

co 

This together with (2.8) implies that 

(-1)“-1(dy)2’“-1’(t) = Jd1G(t,s~~(~,y(~),y”~s~,...,y(2(”-1))(s~) ds 

I 
s 

1 

G(s, sLf*(‘Hz) ds 
0 

s 

1 

I x1-t2 G(s, s) ds 
0 

I x2 

= II y(2(“-‘)) . IL 
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Therefore, in either case, we may put 

a22 .= {y E 23 I IlYll < ‘F/2)7 

and for y E P n dS22, we have ljdyll 5 Ilyll. By the second part of Lemma 2.1, it follows 

that (1.1),(1.2) h as a positive solution. 

EXAMPLE. Consider the boundary value problem 

yW = 720 

[(360t2 - 360) + 11’ 
(y(‘) + qr, 

y(0) = y”(0) = y(4)(0) = 0, y(1) = y”(1) = y@)(l) = 0, 

Let f(t,yl,y2,ys) = (720/[(360t2 - 360) + llT) (ys + l)T. We see that it is superlinear if T > 1 
and sublinear if 0 < T < 1. One such solution is given by y(t) = t6 - 3t5 -I- 5t3 + 3t. 

3. THE EXISTENCE OF SOLUTIONS OF (1.1),(1.3) 

We now establish the existence of at least one positive solution of the boundary value prob- 
lem (1.1),(1.3). 

THEOREM~.~. Letf:[O,l]xIIxI2~... X I, -+ [0, 00) where 1, = [0, 00) if i is an odd integer 

and Ii = (-00, 0] if i is an even integer. Then the boundary value problem (1 .l), (1.3) has at least 

one positive solution in the case 

(i) f” = 0 and foe = co, or 
(ii) fo = co and f” = 0. 

PROOF. In order to apply Lemma 2.1, we need to assign a suitable Banach space B, cone P, and 
operator A. Let !3 denote the Banach space in C2”-2[0, l] as 

B = {y E C2”-2[0, l] 1 y satisfies (1.3)) , 

with the norm endowed by 

IIYII = ~p-‘)qm~ 

Denote 

P = 
i 

y I y E D, y 2 0, and min (-1)“-1y(2(m-1))(t) 2 Ily 
(Vm-1)) lloo 

1/2<t<1 
1 

2 

It is obvious that P is a cone in t3. Let A : I3 4 t3 be the operator 

(Ay)(t) = s’ K(t, s)f (~7 y(s), Y”(S), . . . , ~(~(~--l))b)) ds, 
0 

where K(t,s) is the Green’s function for (2.1) with boundary condition (1.3). The rest of the 

proof is essentially the same as that in Theorem 2.2, where one uses 

(-l)m-’ -g K(t, S) = H(t, s) 

and 

II(t, s) = 
{ 

t, o<t<s<1, 

s, o<s<t<1. 

This certainly establishes that (1.1),(1.3) h as at least one positive solution if f is either superlinear 

or sublinear. 

EXAMPLE. Consider the boundary value problem 

yW = 720 

[(360t2 - 720t) + llT 
(y(4) + 1)“ ) 

y(0) = y”(0) = y(4)(0) = 0, y’(1) = y”‘(l) = y@)(l) = 0. 

Let f(t, ~1, yz, y3) = (720/[(360t2 - 720t) + 11”) (~3 + l)r. We see that it is superlinear if T > 1 
and sublinear if 0 < T < 1. One such solution is given by y(t) = t6 - 6t5 + 40t3 - 96t. 
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