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a b s t r a c t

Flaviviruses are RNA viruses that constitute a worrisome threat to global human and animal health. In
Europe, West Nile virus (WNV) outbreaks have dramatically increased in number and severity in recent
years, with dozens of human and horse deaths and a high avian mortality across the continent. Besides
WNV, the only clinically relevant mosquito-borne flavivirus detected so far in Europe has been the Usutu
virus (USUV), which after being reported for the first time in Austria in 2001, quickly spread across
Europe, causing a considerable number of bird deaths and neurological disorders in a few immuno-
compromised patients. Even though USUV infects multiple avian species that develop antibodies, there
is little information about USUV susceptibility, pathogenicity and cross-reactive immunity. Here, the
susceptibility of suckling and adult mice to USUV infection and the induction of cross-protective
immunity against WNV challenge have been addressed.

& 2015 Elsevier Inc. All rights reserved.

Introduction

Flaviviruses constitute a group of arboviruses that, in many
cases, represent a worrisome threat to global human and animal
health. For instance, West Nile virus (WNV) outbreaks have recently
increased in number, frequency, and severity in Europe and the
Mediterranean Basin causing a considerable number of cases of
neuroinvasive disease in animals and humans, with dozens of
human and horse deaths across the continent (Gray and Webb,
2014; Martin-Acebes and Saiz, 2012).

Besides WNV, the only clinically relevant mosquito-borne flavi-
virus detected so far in Europe has been the Usutu virus (USUV) that
was described for the first time in Austria in 2001 (Weissenbock
et al., 2002), although it was probably present since 1996 or even
earlier (Weissenbock et al., 2013). The virus has quickly spread across
the continent (Pauli et al., 2014), causing a considerable number of
bird deaths. USUV circulation has already been detected in mosqui-
toes (Rizzo et al., 2014), birds (Garigliany et al., 2014), bats (Cadar et
al., 2014), and equids (Lupulovic et al., 2011).

Even more, although only two USUV human cases had been
described in Africa during the 1980s (Nikolay et al., 2011), nowa-
days, USUV antibodies have been detected in blood donors in
Germany (Allering et al., 2012), in Italy (Gaibani et al., 2012),
where it has been associated with neurological disorders in two
immunosupressed patients (Cavrini et al., 2009; Pecorari et al.,
2009), and in clinically WNV suspected patients from Croatia
(Vilibic-Cavlek et al., 2014), where the cases of first human have
been recently reported (Santini et al., 2014). Thus, as WNV, USUV
seems to have also become a European resident pathogen.

Nowadays, there is limited information regarding the suscept-
ibility and pathogenicity of USUV in naturally or experimentally
infected animals. Only one study has reported that USUV infection
of mice younger than one week of age causes the death of the
animals, which present some neuronal disorders (Weissenbock
et al., 2004), and very recently, addressing the protective capability
of WNV vaccine candidates, no mortality due to USUV infection was
observed in a limited number of adult mice (Merino-Ramos et al.,
2014). In the case of birds, seroepidemiological studies have shown
that multitude of species can be infected and develop antibodies
against the virus, without showing signs of the disease (Pauli et al.,
2014), and that the virus presents limited pathogenicity for domes-
tic geese (Anser anser f. domestica) or chickens (Gallus domesticus)
(Chvala et al., 2005; Chvala et al., 2006).

To date, and although human vaccines are available for different
flaviviruses, including Tick-borne encephalitis virus (TBEV), Yellow
fever virus (YFV) and Japanese encephalitis virus (JEV), no human
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licensed vaccine is available for many others, such as DENV, WNV, or
USUV (Beasley, 2011; Dauphin and Zientara, 2007; Martin-Acebes and
Saiz, 2012; Thomas and Endy, 2011). Infection with a flavivirus of the
JE serocomplex, as USUV and WNV, may elicit cross-reactive anti-
bodies that can protect against other flavivirus infections (Lobigs and
Diamond, 2012). However, cross-protection after vaccination with one
flavivirus against other members of the family can be limited (Lobigs
and Diamond, 2012). Thus, it is probable that vaccination against
different related flaviviruses will not be as efficient in inducing
protection (Heinz and Stiasny, 2012). Even more, cross-reactive
immunity has also been associated with enhanced infection and
disease outcome in DENV, mainly due to antibody dependent
enhancement, ADE (Lobigs and Diamond, 2012). Experimental studies
have shown that ADE after WNV infections can be induced in vitro
(Beck et al., 2013), although no evidences of this effect have been
documented in vivo for members of the JE serocomplex (Lobigs and
Diamond, 2012). In any case, data available about cross-reactivity
between USUV andWNV and its possible consequences are scarce (De
Madrid and Porterfield, 1974; Rushton et al., 2013).

In the present report, we have assessed the susceptibility of
suckling and adult mice to USUV infection and the induction of
cross-protective immunity against WNV challenge.

Results

Mortality rates

Adult mice (8 weeks old) were i.p. infected with different doses
(102 or 104 pfu/mouse) of USUV or WNV. All adult mice survived to
USUV infection, independently of the infecting dose inoculated,
contrary to what was observed upon WNV infection, where 16.6%
and 8.3% surviving rates were recorded, respectively (Fig. 1A).
Surviving mice to primary infection with either virus were
challenged with a high dose (107 pfu) of WNV. Only six (25%) of
the mice that survived to USUV infection with the lower dose
(102 pfu) died between 9 and 11 days after challenge with WNV,
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Fig. 1. Survival rates (days post infection) in mice infected with 102 or 104 PFU/
mouse of either USUV or WNV. (A) Adult mice; (B) suckling mice. Statistically
significant differences are indicated with asterisk (Po0.05). Ta
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while the remaining surviving animals, either to USUV (42/48) or
WNV infection (3/3), were protected.

Contrary to that observed in adult mice, suckling animals
infected with either 102 or 104 pfu of USUV survived to the
infection in a dose dependent manner, 84.2% and 40%, respectively
(Fig. 1B), rates that are much higher than that recorded (18%)
among animals infected with a low dose (102 pfu) of WNV. All
suckling mice that survived to USUV infection were protected
against challenge with WNV.

Antibody induction

Over 50% of the adult mice inoculated with USUV presented
specific anti-USUV IgG by day 15 p.i. (Table 1). No cross-reactive
antibodies against WNV were detected up to 15 days post initial USUV
infection. In contrast, 66.67% of the PBS inoculated mice infected with
WNV elicited USUV cross-reactive antibodies from 7 d.p.i., and by day
15 all sera were cross-reactive (Table 1). All USUV infected mice
elicited detectable IgG antibodies against both antigens as early as
4 days after WNV challenge. Overall, P/N ratios were infecting-dose
dependent and increased after challenge (Table 1). In suckling mice,
anti-USUV IgG antibodies were only detected from 15 d.p.i. (data not
shown), similarly to what has been previously observed in WNV
infected suckling mice (Rodriguez-Pulido et al., 2012).

Neutralization capability of seropositive samples from adult
mice was tested against USUV and WNV by PRNT. After primary
infection with USUV, no neutralizing antibodies were detected
against any of the two viruses. However, after WNV challenge, all
tested mice infected with USUV, either with 102 pfu/mice (n¼6) or
104 pfu/mice (n¼7), neutralized both viruses with average PRNT90
titers of 130 (760) and 215 (7104) for USUV and WNV, respec-
tively. On the other hand, none of the 8 mice infected only with
WNV presented neutralizing antibodies against USUV, but they
showed the highest PRNT90 titers against WNV (average 3257155).

Viral genomic detection

Although the number of analyzed mice by time point and dose
was limited, no positive samples (0/25) for USUV-RNA were
detected in euthanized adult mice at any tested time (4 to 35
days post USUV infection). In contrast, WNV-RNA was amplified in
50% (3/6) of those USUV infected adult mice euthanized 7 days
post-WNV challenge. Among those euthanized mice infected only
with WNV tested, 25% (1/4) and 66% (2/3) were WNV-RNA
positive at 4 and 7 days post infection, respectively, with titers
ranging from 103 to 107 pfu/gram of tissue (data not shown).

On the other hand, the 2 suckling mice tested 7 days post USUV
infection resulted USUV-RNA positive, but no positivity was
recorded in any of the 6 mice tested earlier (4 days) or later (15
days) after infection.

Discussion

In Europe, besides WNV, the only other flavivirus circulating is
the USUV, which has been responsible for a noteworthy number of
bird deaths (Pauli et al., 2014), and a few human cases of
neurological disorders (Cavrini et al., 2009; Pecorari et al., 2009).
However, data about USUV pathogenesis are very limited. Avail-
ability of an animal model is important not only to assess viral
pathogenicity, but also flaviviral antigenic cross-reactivity, as
protection against antigenically related viruses has been pre-
viously reported (Beck et al., 2013); however, this is not always
the case, since protection after vaccination against one flavivirus
not always imply protection against infection with another flavi-
virus (Lobigs and Diamond, 2012). In search for a possible animal

model, we have analyzed the susceptibility of adult and suckling
mice to USUV infection, and tested whether USUV infection
elicited cross-protection against WNV infection.

Previous description of USUV pathogenesis reported a high
mortality in suckling mice (Weissenbock et al., 2004). Here, a dose
dependent mortality was observed, as 84% and 40% of the suckling
mice survived to the infection with 102 and 104 pfu, respectively.
Differences in mortality rates between both studies could be due
to the different mice and virus strains, and doses used.

In contrast, as very recently described in a limited number of
animals (Merino-Ramos et al., 2014), no mortality was recorded in
adult mice at any of the doses tested. Both suckling and adult mice
similarly infected with WNV showed significantly higher mortality
rates; thus confirming the limited pathogenicity of USUV in mice.

Antibody mediated immunity is considered a major player on
protection against flavivirus infections (Vaughan, Roghanian, and
Cragg, 2010). In our study, USUV infected mice, either suckling or
adults, showed detectable IgG against the virus only from 15 d.p.i.
Even more, while none of the USUV-IgG positive samples neutralized
USUV, all WNV-infected mice presented high neutralizing titers
against WNV by day 17 p.i. that did not cross-neutralized USUV.

Differences between USUV infected suckling and adult mice
were further observed by testing the presence of viral RNA in the
brains of a limited number of animals. No USUV-RNA could be
amplified from adult mice at any tested time after infection (4 to
35 days), but positive amplification was recorded in suckling mice
tested 7 d.p.i., indicating that USUV reaches suckling mice brains.

Cross-reactive antibodies can induce cross-protection against infec-
tionwith related flaviviruses in some instances (Fang and Reisen, 2006;
Goverdhan et al., 1992; Nemeth, Bosco-Lauth, and Bowen, 2009; Price
and Thind, 1972; Tarr and Hammon, 1974; Tesh et al., 2002), but this is
not always the case (Thomas et al., 2006). In this study, no cross-
reactivity against WNV was observed in USUV-infected adult mice at
any time post infection, while all sera from WNV infected animals
cross-reacted with USUV by day 17 post-infection, confirming the
different antibody response elicited against the two viruses. Evenmore,
after WNV challenge, mice sera neutralized both viruses, although
titers were higher against WNV. Heterologous virus challenge of pre-
infected animals uses to boost neutralizing antibodies against the
immunizing virus to a higher level than to the challenging one, but,
when major differences in virulence between the two viruses exist, the
immune response against the more virulent tends to be of greater
magnitude, consistent with the greater antigenic load produced (Lobigs
and Diamond, 2012), as it seems to be the case in this study.

Almost all USUV-infected mice were protected against chal-
lenge with a high dose of a WNV neuroinvasive strain. The only
exceptions were six adult mice infected with the lower dose of
USUV. On the other hand, WNV-RNA was amplified 7 days post
WNV-challenge from 50% of the tested USUV pre-infected adult
mice, numbers similar (66%) to that recorded in animals infected
only with WNV, thus, indicating that USUV infection protects mice
against WNV disease and death, but not against infection.

The results here presented demonstrate a different susceptibility
of adult and suckling mice to the infection with the flavivirus USUV.
The cross-protective immunity elicited by USUV-infected mice
against challenge with the heterologous neurovirulent WNV high-
lights its potential as a low pathogenic flaviviral model, which may
also help to develop cross-protective flavivirus vaccine candidates.

Materials and methods

Viruses

The USUV SAAR 1776 (GenBank acc. no. AY453412.1, (Bakonyi et al.,
2004)) and a WNV NY99 strains (Gen Bank acc. no. KC407666,
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(Cordoba et al., 2007; Martin-Acebes and Saiz, 2011)) were propagated
and titrated on Vero cells as described (Martin-Acebes et al., 2011).

Mice

Groups (n¼12) of 8 weeks-old Swiss female mice were
intraperitoneally (i.p.) inoculated with either 102 or 104 plaque
forming unit (pfu)/mouse of each flavivirus (USUV and WNV) in
100 ml of PBS. As control, a group of mice was inoculated with PBS
alone. Surviving mice were i.p. challenged with a high dose
(107 pfu/mouse) of neurovirulent WNV NY-99 strain eighteen days
after primary infection. USUV-infected animals were bled prior to
infection, 4, 7 and 15 days post primary infection (d.p.i.), and 4,
7 and 17 days post challenge with WNV (corresponding to 22, 25,
35 d.p.i.). On days 4 and 7 post USUV infection and 4, 7 and 17 post
WNV challenge, 1–4 mice/group were anesthetized and eutha-
nized to collect blood and brains. Viral infections and samples
collection was conducted as described (Alonso-Padilla et al., 2011;
Blazquez and Saiz, 2010; Cordoba et al., 2007).

Additionally, litters (n¼5 to 19) of Swiss suckling mice (4–7
days-old) were i.p. infected with similar doses of USUV (102 and
104 pfu/mouse). Another group was i.p. infected with 102 pfu/
mouse of WNV, and a control group was sham-infected with PBS
alone. A similar scheme of bleeding and tissue collection as that of
adult mice was followed, including the challenge with WNV.

During the experiments all animals were monitored daily and
received water and food ad libitum. Those mice showing signs of disease
were anesthetized and euthanized, as were all surviving animals at the
end of the experiment (35 days after initial USUV infection). All mice
were handled in strict accordance with the guidelines of the European
Community 86/609/CEE. The protocols were approved by the Commit-
tee on Ethics of animal experimentation of our Institution (INIA's permit
numbers 2011–35 and 2012–05). All experiments with infectious viruses
were conducted in the biosafety level 3 facilities of our institution.

Immunological assays

Heat-inactivated sera (1:100 dilution) were assayed for anti-
WNV IgG antibodies by enzyme-linked immunosorbent assay
(ELISA) using as antigens heat-inactivated viruses (WNV or USUV)
produced in Vero cells (Alonso-Padilla et al., 2009; Cordoba et al.,
2007). The positive cut off value was assigned using a positive/
negative (P/N) ratioZ2, calculated by dividing the mean absor-
bance of the test serum by the absorbance of the negative control
serum (Escribano-Romero et al., 2013).

Plaque reduction neutralization tests (PRNT) were conducted on
Vero cells with WNV NY-99, or USUV SAAR 1776, using 2-fold serial
sera dilutions (Alonso-Padilla et al., 2009; Petrovic et al., 2013). Titers
were calculated as the reciprocal of the serum dilution, diluted at
least 1:40, which reduced plaque formation Z90% (PRNT90), relative
to samples incubated with negative control pooled sera.

Virological assays

Viral RNA was extracted from the processed brains using a
NucleoSpin viral RNA isolation kit (Macherey-Nagel, GmbH & Co.,
Düren, Germany). WNV-RNA was quantified by real time qRT-PCR
as described (Cordoba et al., 2007; Lanciotti et al., 2000). Quanti-
fication was calculated by generating a standard curve with
previously titrated WNV (106–10�1 pfu/reaction) and samples
were considered negative when CtZ35, equivalent to 102 pfu/
gram of tissue (Blazquez and Saiz, 2010; Cordoba et al., 2007).

For quantitative analysis of USUV-RNA, a specific qRT-PCR was
developed, using primers forward 50-GCGCCACTTCGCCAAGGAGT-30

and reverse 50-CGTCTGTTCGCTTGGGCCGT-30, and 50FAM-ACTGGGTTA-
CCAAAGCCGAAAGGCC-30TAMRA as probe, corresponding to positions

10718–10737, 10808–10789 and positions 10761–10785, respectively,
according to the USUV strain SAAR 1776 (GenBank acc. no. AY453412.
1). The probe and the primers, which amplified a 91 bp fragment
of the 30–NC region, were designed upon alignment of 6 USUV
and 6 WNV sequences available at GenBank (nucleotide accession
numbers: AY453411.1, KF573410.1, AY453412.1, HM569263.1,
EF206350.1, KC754954.1, AF404757.1, AF260968.1, KC407673,
AY532665.1, KC407666, GQ851606.1) using the ClustalW (version
2.0.12, http://www.ebi.ac.uk/tools/clustalw2). The specificity of the
primers and probe was tested by BLAST analysis (http://www.ncbi.
nlm.nih.gov/blast); (Altschul et al., 1990). Real-time qRT-PCR amplifica-
tion was carried out in one step using High Scriptools-Quantimix Easy
Probes kit (Biotools, Madrid, Spain), according to the manufacturer's
protocol. Reverse transcription was carried out for 30min at 48 1C,
followed by an incubation step for 10min at 95 1C and 40 amplification
cycles (15 s at 95 1C, 1 min at 60 1C). Quantification was determined
with the construction of a plasmidwith the prototype strain SAAR 1776
cloned into PCRII-Topos (LifeTechnologies, Carlsbad, CA) using the
primers described above. Plasmid DNA was purified using Purelinks

HiPure Plasmid Filter maxiprep kit (LifeTechnologies), and in vitro
transcription was performed with the mMESSAGE mMACHINEs T7 kit
(Ambion, Austin, Tx), followed by a precipitation with phenol-
chloroform. Standard curves and validation of number of copies
obtained by transcription were generated by comparing 10-fold serial
dilutions of the purified transcript with previously titrated USUV (10–
106 pfu/reaction), and samples were considered negative when CtZ35,
equivalent to 103 pfu/gram of tissue. The specificity of the real-time
qRT-PCRs was assayed by testing dilutions of different WNV strains of
lineage 1 and 2, and USUV of known titers.

Statistical analyses

Kaplan-Meier survival data were analyzed by a logrank test
using GraphPad PRISM v.2.01 (GraphPad Software). Asterisks in
the figure denote statistically significant differences (Po0.05).
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