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1. INTRODUCTION 

In some cases people are interested in certain kinds of networks and want them to 
be  of small size. Usually these kinds of networks are defined by certain requirements 
on  the connectivity between their inputs and outputs. One  trick that sometimes yields 
the desired networks is counting argument.  One  considers a  certain family of graphs 
of size n  and counts how many of these graphs do  not satisfy the requirements (the 
bad ones). In case the number  of bad  ones is smaller than the number  of graphs in 
the family, the existence of a  good graph (the desired network) is established. In fact, 
in many of the cases one shows that most of the graphs in the family are good. (The 
fraction of bad  graphs tends to zero as n  grows.) The  weakness of this approach is 
that it is nonconstructive: al though one knows that many of these graphs are good, he  
cannot construct one  such graph. 

An (n, m, k) concentrator is a  directed acyclic graph (dag) with n  inputs, m < n 
outputs, and  at most kn edges, such that for every subset of m inputs there are m 
vertex disjoint paths going from these m inputs to the outputs. An (n, k) superconen- 
trator (s.c.) is a  dag with n inputs, n outputs and at most kn edges, such that for every 
1  < r < it and  any two sets of r inputs and r outputs there are r vertex disjoint paths 
connecting the two sets. A family of l inear concentrators [superconcentrators] of 
density k is a  set of (n, m, k + o(l)) concentrators [(n, k + o(l)) s.c.‘s] for 1  <m < 
n<cn [for I<n<oo]. 

In (61 Pinsker constructed a  family of l inear concentrators of density 29. His 
construction uses counting argument.  Valiant [9] used Pinsker’s linear concentrators 
to construct a  family of l inear s.c.‘s of density 238. By doing so he  disproved a  
conjecture that superconcentrators require more than a  linear number  of edges (1, 
p. 450, research problem 12.371. 

Pippenger [7] has discovered a  direct way to construct a  family of l inear s.c.‘s of 
density 39. His construction used a  certain type of graphs. the existence of which is 
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established by counting argument. However, the construction of explicit linear 
concentrators and superconcentrators remained open. 

Margulis [5] made a major step forward. He found a way to construct explicit 
linear expanders defined below. An (n, 19, k, a, c) bounded strong concentrator is a 
bipartite graph with n inputs, Bn outputs and at most kn edges, such that if X is a set 
of inputs with )X1< an, then Ir,l> c 1x1, where r, is the set of outputs connected to 
X We omit the word strong and the parameter c whenever c = 1. An (n, k, d) 
expander is a bipartite graph with it inputs, n outputs and at most kn edges, such that 
for every subset X of inputs, IT,/ 2 [I + d(1 - /Xl/n)] (XI. Margulis described a 
family of explicit bipartite graphs {G,} for n = m’, m = 1,2,..., and proved: 

THEOREM 1. There exists a constant d > 0 such that for n = m2 and 
m = 1, 2 ,..., G, is an (n, 5, d) expander. 

Actually Margulis’ theorem states that G, is an (n, 1,5, a, 1 + d( 1 - a)) bounded 
strong concentrator for every 0 < a < 1. But the two statements are equivalent. 
Margulis’ proof applied first a series of reductions and finally it used several deep 
theorems from the theory of group representations. Moreover, the constant d is not 
known. Possibly, one can compute it by tracing all the E’S in the proofs. But Margulis 
states explicitly that he does not know the constant. Angluin [2] has recently pointed 
out that Margulis’ technique may yield (n, 3, d’) expanders. But d’ is not known as 
well. 

We construct a family of explicit graphs (G,) for n = m’, m = 1,2,..., and our 
main result is the following theorem. 

THEOREM 2. For n = m’, m = I,2 ,..., 
(2 - @)/4. 

G, is an (n, 5, d,) expander, where d, = 

The graphs G, are similar to G,. But unlike Margulis’ proof our proof (following 
several reductions) uses relatively elementary analysis and can be considered as self- 
contained. We give the proof of Theorem 2 in Section 2. 

In Section 3 we explain how from a given family of linear expanders one can 
construct a family of certain linear bounded concentrators and how one can use the 
latter to construct a family of linear superconcentrators. The constructions depend on 
the value of d. That is why Margulis’ result did not suffice. Using the graphs G, of 
Theorem 2 we get a family of linear superconcentrators of density 504. 

Section 4 is devoted to improving the size of the superconcentrators constructed in 
Section 3. We observe that it is important to have d as large as possible. Making 
some changes in the first part of the proof of Theorem 2, we derive a new family of 
graphs (Gh} for n = m2, m = 1, 2 ,..., and a proof for the following theorem. 

THEOREM 2’. For n = m’, m = 1, 2 ,..., GA is an (n, I, db) expander, where dh = 2d,. 
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Applying the two constructions we derive a family of linear superconcentrators of 
density 273. In Appendix 1 we sketch a way how to reduce the density to approx- 
imately 271.8. Finally, Section 5 includes a list of some open problems. 

2. THE PROOF OF THEOREM 2 

Let n = m* and let A,,, be (0, l,..., m  - 1) x (0, l,..., m  - 1). The bipartite graphs 
G, are obtained from 5 permutations on A,,,. (Each permutation defines m2 edges in 
the obvious way.) The permutations are 

%(XT Y) = (x3 Yh 
u 1 (x, y ) = (x, x + y ), 

flz(x, y) = (x, x + Y + 111 

u&v Y) = (x + Y, Yh 

a‘$(-6 v) = (x + Y + 1, 4’1, 

where the + is module m. 
The theorem follows from Lemma 1 proven below. 

LEMMA 1. For every XEA,,,, ~~=, /0,(X)-X( >4&, IXIIrl/n. 

Proof of Theorem 2. By Lemma 1, for every X z A,, there is an i such that 
/~i(X)-X/~.d,IX(IXC(/n=d,IXI(l -]X(/n). But T,3XUa,(X) and T,u-XZ 
ai -x. I 

We define A to be the (0, 1) x 10, 1) torus, and two automorphisms ri: A + A, 
i= 1,2: r,(x, y) = (x, x + y), r2(x, y) = (x + y, y), where the + is modulo 1. 
Lemma 1 (the discrete version) follows from Lemma 2 (the continuous version) 
proven below. 

LEMMA 2. For every measurable XC A, Cf: I ,u(X - 5,: ‘(X)) > 2d,,u(X),u(~). 
where ,u(X) is the Lebesgue measure of X. 

Proof of Lemma 1. Fix an XC A,,,. For (x, y) E A, let A;,.,, = 
(((x + u)/m, (-y + u)/m) ] 0 < U, t’ < 1). Let X’ = U,,,A&. Note that 

,4X’) = IXllfl and /4(X”) = jr l/n. (1) 

For p E A&yjr p = ((x + u(p))/m, (y f u(p))/m). Let a E A, and p E A;. It follows 
from the definitions of r,, u, and u2 that z,(p) E A;,(,, if u(p) + u(p) < 1 and 
So E A&) otherwise. Therefore p E X’ -r;‘(X) iff [p E X’ and ri(p) & xl] iff 
(p E Ai for a E X and if u(p) + v(p) < 1 then u,(a) @  X else u2(a) 6? X] iff [p E AL 
and if u(p)+v(p)<l then aEX---a;‘(X) else aEX--o;‘(X)]. Since 
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p({(u,v)IO,<u+u < 1})=f,~(x’-t;‘(X’))=(1/2n)(~X-a;’(X)(+JX-a;’(X)(). 
Similarly for r2 and cr3, u4. Hence 

(oi is a permutation). Applying Lemma 2 to X’, substituting (2) and (1) for the left 
and right sides of the inequality of Lemma 2 yields the inequality of Lemma 1. I 

Lemma 2 follows from Lemma 3 proven below. 

LEMMA 3. For every measurable XC A, 

xfl p(X - t;‘(x)) >, 4d,y(X) p(r). 
,zj 

Proof of Lemma 2. For every XC A, 

x-r;yx)s [(X-r,~‘(X)]Us,~‘[X-s;‘(x)] 

because f(A) -f(B) cf(A - B) and A - B c (A - C) U (C - B). Hence if X is 
measurable p(X - r;‘(X)) < 2p(X - r; l(X)) because ti and r,: ’ are measure 
preserving. This and Lemma 3 imply Lemma 2. m 

If r is an automorphism of A and f a function on A we define F(J) zf 0 r- ‘. 
Lemma 3 follows from Lemma 4 (the functional version) proven below. 

LEMMA 4. For every measurable function 4 on A with 

and 

we have: 

I /=O, 

I A Id’ < *9 

(31 

(4) 

’ We will use the abbreviation J, v/ for J, y(x) C+(X). 
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A lemma similar to Lemma 4 (with different transformations and with a much 
smaller constant) was independently proven in [8] (Proposition 3.3). 

Proof of Lemma 3. Fix a measurable X !Z A. Let 4 = xx --p(X), where x is the 
characteristic function on A. So 

#= @J I 
on X, 

-P(X) on X. 

Consequently, s, d = 0 and 

So # satisfies the assumptions of Lemma 4 and thus it satisfies its conclusion. Note 
that for every Y c A, Qy) = xrcYJ. Thus, z(d) - 4 = x+, -xx and 

on (r:(X) -X) U (X - t;(X)), 

otherwise. 

Hence J, ] c(d) - 41’ = p(rf(X) -X) + p(X - r:(X)) (the two sets are disjoint). But 
,~(x - 7:(x)) = p(x) -p(xn T:(X)) = ,u(T:(~)> -p(xn 5:(x)) = p(+X) - x) = 
,u(X - r;‘(X)). (Again we used the fact that rf ’ is measure preserving.) Hence 

1 (t;?(Q)) - $1’ = 2,u(X- r;‘(X)). (5) 
A 

Substituting (4)’ and (5) into the inequality of Lemma 4 yields the inequality of 
Lemma 3. I 

Lemma 4 follows from Lemma 5 (the version dealing with infinite series of 
complex numbers) proven below. 

LEMMA 5. Let k4n,n1-m<m,n<a, be a system of complex numbers such that 

a -0 0.0 - (3)’ 

and 

Then 

2: /a,,J < ~0. 
m,n 

(4)” 

X la m,n+zm -am,* I* + C IG+~~,~ - a,J 2 8do C lam,n12. 
m,n m.n m,n 

Proof of Lemma 4. By (4) d E Y*(A). So, for -co < m, n < 00, a,,,,(g), the 
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Fourier coefficient of ( with respect to A, exists and a,,,(d) = J’, d(p),~,,,(p) &(p), 
where x,,,(p) = e-2~icnrx+ny) (13 = (x, JJ)). Also 

%,“(fx$Q = ( 9K2(P)) X,.“(P) 44P) 
A 

= #(P>x,+~~(PM~P) 
I A 

=a m+2n,n(#) (6) 

because x,,,,~ o r: =x,,,+~,,~. Similarly 

%l,“mw = %,,+2,(~>. (7) 

Consider Lemma 5 with CZ,,,~ = a,,,,()). By the Parseval equality u Id]’ = 
C,,, Iu~,~[~) and by the definition of a,,,, (3)’ and (4)” follow from (3) and (4) 
respectively. Consequently, the conclusion of Lemma 5 holds and substituting into it 
(6) and (7) (using the linearity of a,,,(#)) and the Parseval equality yields the 
conclusion of Lemma 4. I 

Proof of Lemma 5. Let S = Z x Z - ((0, 0)}, where Z denotes the set of integers. 
If TE S let Z,(T) be the set of complex functions f on T satisfying 

Define two permutations o, and o2 on S by w,(m, n) = (m, n + 2m) and 02(m, n) = 
(m + 2n, n). Thus, Lemma 5 can be restated as 

CLAIM 1. For every f E 12(S), 

If-So Q4Ili + If-f o 02 11; 2 (4 - 2 d3 llfllf . 
We partition S into the c$ ’ invariant sets S, = {(a, 6) E S I gcd(u, 6) = m}, m > 1 
(where gcd(0, a) = I a 1). 

CLAIM 2. For every real f E l,(S,), 

Ilf -fo412+Ilf -f o 02112 a (4 - 2 a1 Ilf II2 (where II II = II IIs,). (8) 

Claim 1 for a complex function f follows by applying Claim 2 to the real functions 

(x7 Y> F+ Ref (mx, my) and (~,~)++Imf(mx,my) 

on S, for every m > 1. For f, g E 12(S,), let (J, g) = Cxes,f(x) g(x) be the usual 
inner product. The left-hand side of (8) equals 4 IIf I(’ - 2u,f 0 w,) - 2(f,f o q), so 
Claim 2 is equivalent to 
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CLAIM 3. For every real function f E l,(S,), 

2((f,f o 4 + w- O 4) G 2 fi 11f112* 

For any x=(m,n)ES,, define I(xIJ=max((m(,ln(). Let ~={~,,~;‘,%r~;‘\. 
By a case analysis one shows 

CLAIM 4. If II-4 = 1, then II+>ll = llxll f or t wo u E C and ~lo(x)jl > IJxIJ for the 
other two. rf (Ix (( > I, then (( a(x)11 < I( x (( f or one f-7 E Z and (( u(x)11 > ((x1( for the other 
three. 

Claim 4 implies 

CLAIM 5. For every x E S,, CoEz A(x, u(x)) < 2 fi, where 

1/a if l/XII < IIYII. 
q&Y)= 1 

1 

is II-4 = /I YIL 
d if Ilxll > IIYII. 

Note thatA(x,y)-‘=A(y,x)Vx,yES,. 

Proof of Claim 3. If a, b, I are real numbers and ,I > 0 then 2ab < Aa’ + b2/L 
since (&a - b/G)* > 0. So Vx E S, and u E Z, 

Y(xM4x)) G qx, m>f(x>2 + Wx), u- ‘(4af(W>‘. 

Summing over x E S, and u E {w,, oz} we get 

Uf o w,) + 2(&f o 02) 

= y ( ” % 4w-~~,I) < 2 vmll’ 
xes, Lzi 

by Claim 5. I 

Remark. This proof of Lemma 5 is different from the one we gave in the original 
version of our paper [4]. The present method enables us to show (in Appendix 2) that 

(i) the constant 8d, = 4 - fi is best possible, 
and 

(ii) if am,n are not all zero, then the inequality is strict. 
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3. CONSTRUCTION OF LINEAR SUPERCONCENTRATORS 

The construction includes two parts. In the first we construct a certain kind of 
bounded concentrators: Let p > 1 be a fixed integer, and let n > 0 be any natural 
number such that np/(p + 1) is an even square. We construct a bipartite graph with n 
inputs and np/(p + 1) outputs. The inputs are partitioned into two disjoints parts, the 
big one of size np/(p + 1) and the small one of size 1~ n/(p + 1). The big part and 
the outputs are connected by an (np/(p + l), k, 2/(p - 1)) expander. (Since 
np/(p + 1) is a square, for k = 5 and p = 3 1 such an expander was constructed in the 
previous section because d, >, l/15.) Every output is connected to exactly one input 
in the small part: For every j = O,..., p - 1, outputs number jl+ l,..., (j + I)1 are 
connected to inputs number I,..., 1 in the small part. 

LEMMA 6. The bipartite graph is an (n, p/(p + l), k’, $) bounded concentrator, 
where k’ = (k + l)p/(p t 1). 

Proof. Let A be the set of inputs and let S be the set of inputs in the big part. Let 
X be any set of inputs with (XI < (A[/2. Let s = [Xn .!?I and t = (Xn S’I. We now 
show that IT,1 > 1x1. If t > /Xl/p it obviously holds. Otherwise s 2 [(p - 1)/p] 1x1. 
Let Y be any subset of S n X of size 

= [f$iS/]<i/S/ ()Sl=np/(pt 1)iseven.) 

By the definition of an expander, 

Ir,l> 1 t-&~)lYl=jy~l+xl. I ( 

LEMMA 7. For all n we can construct an (n,p/(p + 1) t E,, k’, f) bounded 
concentrator, where 0 ,< E, = O(n - y2). 

Proof: Let n’ be the smallest integer larger than n such that n’p/(p + 1) is an 
even square. Obviously n’ -n = O(nV2). By Lemma 7, we can construct an 
(n’, p/(p t I), k’, f) bounded cocentrator. The desired concentrator is obtained by 
deleting n’ - n inputs (and their incident edges) from the small part. The ratio 
between the numbers of outputs and inputs is p/(p t 1) t E,, where 

O<&*=O v ( ) = O(n-“2). I 

Using counting argument, Pippenger proved the existence of an (n, 5, 6, f) bounded 
concentrator for n large enough. He then used the latter in a recursive construction to 



SUPERCONCENTRATORS 415 

FIG. I. The construction of the S.C. (1) n direct edges from inputs to outputs; (2) dotted lines 
represent identification of vertices not edges; (3) two (n, 8,, k, 4) bounded concentrators; (4) an SC. with 
0, n inputs and outputs constructed recursively. 

derive a family of linear s.c.‘s of density 39. An obvious generalization of his 
construction is stated in the following lemma. 

LEMMA 8. If we can construct for all n an (n, 9,, k, 4) bounded concentrator, 
where 8, = 8 + E,, 0 Q 8 < 1, E, = o(l), and k > 1, then we can construct a family of 
linear superconcentrators of density (2k + l)/(l - t?). 

Proof. The construction is essentially the recursive construction of 171. Figure 1 
describes how to construct an S.C. with n inputs and n outputs from an S.C. with 8, . n 
inputs and outputs. The correctness of the construction is the same as in [7]. Let 
C(n) be the number of edges of this S.C. Then C(n) = (2k + 1)n + C(e, . n), and 
C(n) < c for n < n,. By induction C(n) < ((2k + l)/(l - 19) + 6&z, where 
6, =0(l). I 

From Lemma 7 and 8 we derive the following theorem. 

THEOREM 3. Assuming we can construct for every n = m2 an (n, k, 2/(p - 1)) 
expander, then we can construct a family of linear superconcentrators of density 
(2k+3)p+ 1. 

By the results of the previous section the assumption of the theorem is satisfied by 
taking k = 5, p = 3 1. Therefore we have a family of linear superconcentrators of 
density 504. 

4. IMPROVING THE DENSITY 

It follows from Theorem 3 that if expanders with larger d are used, then the super- 
concentrators will have fewer edges. (p is chosen to be the smallest positive integer 
with d > 2/4p - 1 )e) C onsiting the proof of Theorem 2 we see that we lost a factor 
of 2 going from Lemma 3 to Lemma 2. We now sketch a way to save this loss. 

571/22/3-II 
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For (x, y) E A,,, let 
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4J(x, y) = (XT Y), 
ol,(x, Y) = (A Y + 2x1, 

&(x, y) = (x9 Y + 2x t 11, 
a;(.& y) = (x, Y + 2x + 3, 

a;(.% Y) = (x •t 99 Yh 
al,(x, y) = (x + 2Y -I- 1, Y), 
06(x, y) = (x + 2-Y + 2, Y), 

where + is mod m. These seven permutations yield the bipartite graph G:. 

LEMMA 1’. For every Xs A,,,, 

4 
iY1 

1 o;(X) -XI t 2 \’ la;(X) -XI > 16d, 1x1 ITI/n. 
if?,5 

is2.5 

Lemma 1’ follows from Lemma 3 of Section 2 in the same way Lemma 1 followed 
from Lemma 2. (In this case 

p(X - t;“(r)) = (i (X - a;(x)1 + f (X - o’,(X)1 + :1x - a$(X)()/n 

because 

p({(u, v) IO <v t 2u < 1)) =p({(u, v) 12 < v t 2u < 3))) = $ 

and 
,u({(u, v) ( 1 4 v + 2u < 2)) = 4, 

and similarly for t2, a&, al, and a: .) Similarly, Theorem 2’ stated in the introduction 
follows from Lemma 1’ in the same way Theorem 2 followed from Lemma 1. 

Using the expanders of Theorem 2’ in Theorem 3 we get a family of linear s.c.‘s of 
density 273 (k = 7, p = 16). In Appendix 1 we sketch a way to reduce the density to 
approximately 271.8. As we noted above, Angluin [2] has derived (n, 3, d’) 
expanders. Using Theorem 2’, the best d’ we could get is di/5 and consequently we 
do not derive smaller superconcentrators. 

5. OPEN PROBLEMS 

1. Is there an elementary proof of Theorem 1 or 2 or a similar theorem 
(something like a clever induction)? 
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2. Given k, what is the largest d such that (n, k, d) expanders exist or such that 
we can explicitly construct them? 

3. Is there a direct explicit construction for linear superconcentrators? 
4. What is the smallest superconcentrator (constructive, and nonconstructive)? 
5. IS there a direct construction of explicit linear (unbounded) concentrators, 

i.e., not using linear superconcentrators? (An obvious way to construct a concen- 
trator is to prune enough edges from a larger superconcentrator.) 

6. Is log n the best depth of a family of linear superconcentrators? 
7. What is the size-depth tradeoff for superconcentrators? 
8. Is there a linear routing algorithm for our s.c.‘s? (i.e., an algrithm that finds 

the vertex disjoint paths connecting two given subsets of inputs and outputs.) For the 
routing we need to solve a matching problem, for which no linear time algorithm is 
known. But in our case, only special graphs arise for which it may be possible to find 
a better algorithm. 

9. Can our techniques be used for other explicit constructions in other cases 
where the asymptotically best object (network or code) is nonconstructive? 

Regarding Problem 4 above, F. R. K. Chung has recently improved the density of 
Pippenger’s nonconstructive s.c.‘s to 38.5 [3] and of our constructive s.c.‘s to 263 
(by improving the construction of Section 3), and, by using the ideas of Appendix 1, 
the density was further reduced to approximately 261.5. 

Regarding Problem 9 above, N. Pippenger has told us that the expanders of 
Theorem 2’ can be used to give an explicit construction of O(n log n) nonblocking 
networks. (The existence of nonconstructive O(n log n) nonblocking networks is not 
new.) This bound matches the known lower bound. 

APPENDIX 1: SUPERCONCENTRATORS,THERMODYNAMICS 
AND SELF-REPRODUCING SYSTEMS 

We sketch a way to slightly improve the s.c.‘s of Section 3. Although the 
improvement is small, we include it because of the following reason. The construction 
of Section 3 does not make full use of db (=2&J. We chose p = 16 since this is the 
smallest integer such that db > 2/(p - 1). The construction requiredp to be integer. If 
p could be any real number, then we could choose p such that &, = 2/(p - 1) and 
would get density 271.7794... ((2k + 3)p t 1). N. Pippenger asked whether one can 
modify the construction and achive this density, thus making full use of db. We will 
sketch below a partial answer to this question. In this case we get density 
271.7819... . The reason that even a full use of db would not improve the density by 
much is that db is very close to 2/15 (0.139... versus 0.1333...). One possible way to 
improve the density is by improving Theorem 2’, i.e., by constructing (k, d, n) 
expanders with better k and d. Possibly, we would not be able to get so close to the 
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better d with 2/(p - 1) for an integer p. In that case the improvement suggested here 
might be much more useful. 

We show how to construct from the expanders of Theorem 2’ an (n, 8, k; 5) 
bounded concentrator, where e = P’AP + I), E= (k + I)p’/@’ + 1) and 
15 < p’ < 16. By Theorem 3, we obtain a family of s.c.‘s with density 
(2k + 3)~’ + 1 < 273 (k = 7, p’ < 16). As in Section 3, the inputs will be divided into 
a big part of size np’/(p’ + 1) and small part of size n/(p’ + 1) and the connection 
will be done similarly. The only difference is that since p’ is not integral, only part of 
the inputs in the small part will be connected to 16 different outputs. The rest will be 
connected to only 15. 

Consider any set of inputs X with x = ]x]/n < f. Let x=x0 +x,, where 
x,, = ]Xn S]/n (S is the big part). So 0 Q x,, < 0 and 0 <x, < 1 - 8. ]rx,,]/n > 
x,[l +2d,(l -x0/B)]= g,,,,(x,). Also ~&Jn=sup{15xl, 16x,-(16- 178)jz 
f(xi). The first term in the supremum is due to the fact that all inputs in the small 
part are connected to 15 outputs. The second term is due to the fact that the number 
of inputs that are not connected to 16 outputs is (16 - 170)n (16( 1 - 8)n - en). So in 
order that this network will be an (n, 8, k, 4) bounded concentrator, we need the 
following: 

vxogx& 

we have 

vx,, x, x = x0 + Xl, 0 G x0 G e, ogx,<i-e, 

suPV(x,), g+9(xo)J 2 x. (1) 

Iff(x,) > x then (1) holds. Otherwise f(x,) < x, xi < f - i(x) and x0 > x - f - ‘(x). By 
choosing B such that 

(2) 
we will have (1). We look for do, the minimal 0 that satisfies (2). It turns out that 
8, = 0.9403275, p’ = 15.92834 and the density of the S.C. is 271.7819. 

By showing that 273 is not the best density, we disprove a possible connection 
(suggested by Nick Pippneger) between s.c.‘s, thermodynamics (-273OC is the 
absolute zero) and reproduction (273 is the average number of days in pregnancy). 

APPENDIX 2: LEMMA 5 IS BEST POSSIBLE 

We now show that 

(i) the constant 8do = 4 - fi is best possible, 
and 

(ii) if am,” are not all zero, then the inequality is strict. 
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Proof of (i). We construct a sequence of nonzero real functions f,, n >, 1, in II(S) 
such that 

llfn -fn o 415 + llf, -fn 0 41:= [4-2~+owllfnll5. (*) 

Consequently, Lemma 5 is false for a constant >8d,. The function f,, will vanish 
outside S,. As in the reduction of Claim 2 to Claim 3, (*) holds iff 

Q(fn> = (fn,fn 0 0,) + (f,,,fn 0 4 = (6 41)) llfnll’. 

Let G  be the directed graph on vertex set S, having set of edges 
E= ((x,o(x))]x~Si, aEC, /Ix]] < ]]a(~)]]}. (Recall C= (o,,w;‘,o~,w;‘}.) G  
contains exactly eight vertices x with ]]x]] = 1: V, = {(*LO), (0, kl), (~tl, kl)}. By 
Claim 4, each x E V0 is connected to two distinct vertices with ]]x]] > 1, and the 
resulting 16 vertices are roots of complete infinite ternary trees. For all i > 0 let Vi be 
the set of vertices in the (i - 1)st level of these trees (at distance i from I/,); so 
( Vi1 = 16 . 3’-‘. Given n > 0 define f,: S, -+ R (the real numbers) 

fn(x) = p-1” 

and 

Q(fJ = 2 ,y;cE f(x)f(Y)* 
i=2 . 

.~Ev;,yEvi~, 

The inner- sum consists of ] Vi] terms each of which equals- / Vi] - 1’2 I Vi-i / - “*, so it 
equals d/3 (I I’-,] = I Vi(/3) and Q(f,)= (n - 1). \/3 = [d3 -o(l)] . llf,ll’. I 

Proof of (ii). By arguing as in the reduction to Claim 3, it suffices to show that if 
0 # f E Z,(S,), then the inequality of Cl+m 3 is strict. If 35 E I’, with f (4) # 0 then 
using CoEr A(& u(t)) = 2 + Z/\/3 < 2 \/3 we see that the final inequality in the proof 
of Claim 3 is strict. If f Iv0 = 0 but f # 0 then since every vertex of G  can be reached 
by a directed path from a vertex in V,, we see that there exists a pair (x, wi(x)) (i = 1 
or 2) such that exactly one of f(x), f(wi(x)) is 0. Then the inequality 
<dA<x? wi(x)f (x) - f (wi(x))/\/)(x, wi(x)))2 2 OT which contributes to the first 
inequality in the proof of Claim 3, is strict. I 
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