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In this paper pure-projective modules over some Artin algebras are inveatigatcd. 
The prototype is the Artin algebra, R. consisting uf 3 x 3 complex matrices of the 
form B 0 a, 

[ 1 0 P aI . 
0 0 jJ 

It is shown that a module over an Artin algebra is pure-projective if and only tf it is 
a direct sum of tinite-dimensional indecomposable submodules. Conditions under 
which an extension of a pure-projective R-module by another pure projective R- 
module is pure projective are given. A homological characteriration of finitc- 
dimensional pure-projective R-mudules is also obtained. Finally an K,-purc- 
projective is shown to be pure-projective if and only if r> 1. 

In this paper WC are interested in pure-projective modules over hereditary 
algebras of tame type. We shall let S stand for such an algebra while Twill 
stand for an arbitrary Artin algebra. A prototype of S is the Artin algebra, 
R, of 3 x 3 complex matrices of the form: 

The category of R-modules is equivalent to the category of systems. (A 
system is a pair of complex vector spaces (V, W) together with a C-bilinear 
map from Cz x V to W; see (2 1 for details.) We begin in Section I by 
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proving that a module over an arbitrary Artin algebra is pure-projective if 
and only if it is a direct sum of finite-dimensional submodules. The proof 
consists of putting together known results in a correct order. A pure 
submodule of a pure-projective module is not always pure-projective, unless 
it is countable generated; see [ 11 1 and Corollary 1.5 of [6/. We thank the 
referee for drawing our attention to [ 11 I! Call a module K,-pure-projective if 
and only if every submodule of rank <EC, is pure-projective; see I12 1 for a 
definition of “rank of an S-module” and [S] for that of “rank of a system.” 
The definition in [ 12) restricted to R is equivalent to the definition in (8 1. 
The example of a subsystem of a pure-projective system which is not pure- 
projective given in [9] is modified to establish that a torsion-free &pure- 
projective system is always pure-projective if and only if r> 1. 

In Section 2 extensions of pure-projective modules by pure-projective 
modules is investigated. To describe the results we recall the three classes of 
indecomposable finite-dimensional systems: systems of type I”, of type II:, 
0 E C = C U (co }. of type III”, respectively, m any positive integer. These 
correspond respectively to the indecomposable preinjective, indecomposable 
regular torsion and indecomposable preprojective modules of [ 121. By abuse 
of language we shall say that an S-module is of type I if it is a direct sum of 
indecomposable preinjective submodules. Modules of type II or III arc 
analogously defined. The former is an analogue of direct sums of cyclic 
groups, i.e., pure-projective torsion groups by Theorem 30.2 of 15 1. In 131 it 
is shown that an extension of a pure-projective torsion group G, by another 
pure-projective torsion group G, is not always pure-projective except when 
G, is bounded. The results in Section 2 have a similar flavour with the 
exception of Proposition 2.1. 

We shall assume familiarity with [9] especially Sections 0 and 1. 

1. SUBMODULES OF PURE-PROJECTIVE MODLLES 

THEOREM 1.1. A module M over an Artin algebra is pure-projectice if 
and only lf it is a direct sum of finite-dimensional submodules. 

Proof Let F be the class of finite-dimensional modules over the given 
Artin algebra and (N,],,, the set of finite-dimensional indecomposable 
submodules of M. Let N = OnEA N,. Purity as defined in [ 121 is Y-purity. 
Hence as in the proof of Theorem 2.3 of [8 1 we have a short pure-exact 
sequence 

0-K-+N+M-+O. 

If M is pure-projective, then N is isomorphic to IV@ K. Each N, has local 
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endomorphism ring by Corollary 11.8 of [ 11. By the Crawley- 
Jonsson-Warfield theorem (see Theorem 26.5 of [ 11). 

where M,, K, arc countably generated modules with local endomorphism 
rings. hence indecomposable. By Corollary 26.6 of (11 each M,3 is 
isomorphic to some N,. Therefore M is a direct sum of finite-dimensional 
indecomposable submodules. The converse follows from the definitions as in 
the proof of Theorem 2.3 of [ 8 ]. 1 

A straightforward modification of Example 1.5 of [ 9 ] gives a proof of 

PROPOSITION 1.2. Any unbounded pure-projective torsion-free system l1a.y 
a subsystem of rank No that is not pure-projective. 

We use Proposition 1.2 to prove 

PROPOSITION 1.3. An K,-pure-projectice torsion-free sJ*stem is always 
pure-projectice if and only $ r > 1. 

ProoJ The system in Proposition 1.3 of [9] is &-pure-projective by 
Lemma 1.3.3 of [9] but is not pure-projective by 1.3.2 by [9 ]. Suppose then 
that (V, IV) is K,-pure-projective, r > 1. We shall show that (V. IV) must be 
bounded hence pure-projective by Thcorcm 1. I of [ 9 ]. Since (I’, IV) is KF 
pure-prolective tc(,.,, (4, (w)) for any nonzero w in W must be of type III” 
by Theorem 1.1 and the fact that the systems of type III”’ are the only 
indecomposable pure-projective torsion-free systems of rank 1. Suppose 
(I’, W) is not bounded then there exist (wi]~:, c W such that (Vi: Wi) = 
tc,,.,,,(q, {wi]) is of type IIlk; and k, <k, < ..... The subsystem 
x,i” , (Vi. Wi) is of type OF., III ‘(: To see that the sum is direct one notes 
that (I’, , W,) + (VZ, W,) is direct since if (V,, W,) f3 (VI, W,) # (0: 0). 
then (I”,, W,) = (V,, W,) by Lemma 4.1 of 181, contradicting k, < k,. We 
suppose that (Vi? W,) + . . . + (V,, W,) is direct. Again by Lemma 4.1 
of 181 if (Vn+,: W,- ,) intersects (V, , W,) $ . . . C (V,, W,) nontrivially, 
then (Vn-,, W,! ,) c (V,, W,)i ... i- (I’,, W,). However k,, , > 
max{k,, k, ,..., k,} and so the inclusion is impossible by the height relation in 
1.4 of ] 9 1. This proves that x? , (Vi, Wi) is an unbounded pure-projective 
subsystem of (V, W). By Proposition 1.2, (V, W) would have a non-pure- 
projective subsystem of rank &, contradicting the hypothesis that (V, IV) is 
EC,-pure-projective, r > 1. Therefore (V, W) is bounded and hence pure- 
projective by Theorem 1.1 of [9]. 1 
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Using the table in [4] we get the following characterisation of linite- 
dimensional systems: 

PROPOSITION 1.4. A system (V, W) is finite-dimensional if and only if 
Ext(( V, W), III’) and Ext(I’, (V, I+‘)) are finite-dimensional. 

Proof If (V, IV) is finite-dimensional, then Ext((V, w),~III’) and 
Ext(Z’, (V, IV)) are finite-dimensional by [4]. Suppose then that 
Ext((V, IV), III’) and Ext(I’, (V, w)) are finite-dimensional: If the divisible 
part of (V, IV), Div(V, W), were infinite-dimensional, then it would either 
contain a system of type II? or .%’ or a system of type OjeJ I’(], Card(J) 
infinite. The hypothesis and the table in [4] rule out these possibilities. 
Therefore (V, VP’) = Div(V, IV’)@ (V,, IV,), (V,, W,) reduced and 
Div( V, IV) finite-dimensional. Suppose t( V, , IV,) is infinite-dimensional, then 
again the given Ext’s would be infinite-dimensional because, for any n, 
t(V,, W,) would have a direct summand of type 11:; @ a.. @ II$;,. 13;s not 
necessarily different, by Corollary 9.16(b) of 111. So t(V,, IV,) is linite- 
dimensional. It is a direct summand of (V,, IV,) by Theorems 5.5 and 9.12 
of [ 11. So (V,, IV,) = t( V, 9 W,) @ (V,, IV,), where (Vz, IV,) is torsion-free. 
Because Ext((V, IV), III’) is finite-dimensional, (V,, W,) does not have 
subsystems of type IIIm for arbitrarily large m, i.e., (V,, IV,) is bounded. 
Therefore by Theorem 1.1 of 191, (V,, W,) is a direct sum of subsystems of 
type 111”~. (V2, IV,) is of type OjeJ 1II”‘j. If Card(J) were infinite, the 
hypothesis that Ext(Z’, (V, W)) is finite-dimensional would be contradicted. 
Thus (V, W’) is finite-dimensional. 1 

In a similar vein one proves 

PROPOSITION 1.5. A system (V, W) is a direct sum of a projective system 
and a finite-dimensional system tf and only tf Ext( V, W), III’ @ III*) is 
finite-dimensional. 

2. EXTENSIONS OF PURE-PROJECTIVE MODULES BY 
PURE-PROJECTIVE MODULES 

The first two propositions dispose of cases that are already treated in the 
literature or readily deduced therefrom. 

PROPOSITION 2.1. Extensions of pure-projective S-modules by pure- 
projective S-modules are pure-projective in the following cases: 

(i) Extensions of modules of type I by modules of type I. 
(ii) Extensions of modules of type I by modules of type II. 
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(iii) Extensions of type I by modules of type III. 

(iv) Extensions of modules of type II by modules of type III. 

Proof: (i) See Proposition 3.4 of ] 121. 

(ii) A module of type I is divisible. hence Ext(I1, I) = 0 by 
Corollary 3.5 of [ 121 and the fact that Ext(OicJ Aj, B) is isomorphic to 
llj., EXt(Aj 7 B). 

(iii) Similar to (ii). 

(iv) Follows from the facts that the torsion part of a module is a pure 
submodule of the module, Theorem 4.1 of [ 121 and a module of type III is 
pure-projective. I 

PROPOSITION 2.2. If 0 + G, -+ G + G, + 0 is an exact sequence with G, , 
G, of type II. Then G is always pure-projectice if and only if G, is bounded. 

Proof. See [3]. I 

Let M be a torsion S-module with no preinjective direct summand. Then 
by 4.5 of [12], M=CIQr. M,, where each M, may be considered as a 
module over a principal ideal domain. We shall call M a bounded module if 
M, = 0 for all but a finite number of t in T, and each nonzero M, is bounded 
as a module over a PID. For future use we note that the results on bounded 
R-modules, i.e., systems, proved in [lo] generalize to torsion S-modules with 
only formal changes. In particular Theorems 2.9 and 3.5 are valid for S- 
modules. Hence bounded modules are pure-projective and pure injective. 

PROPOSITION 2.3. An extension of a bounded S-module M, by an S- 
module M, of type 1 is pure-projective. 

ProoJ Let O-+M,+‘M +O M, -t 0 be an exact sequence. For any 
torsion-free S-module, N, Ext(N, M,) = 0 = Ext(N, M,) by Proposition 4.7 of 
] 121 and Theorem 3.5 of [lo]. Therefore Ext(N, M) = 0 for all torsion-free 
S-modules N. Hence, by Theorem 3.5 of [lo], M is a direct sum of a 
divisible module and a bounded module. By 4.2 of [lo], M is torsion and a 
torsion divisible module is a direct sum of a pure-projective module and 
Priifer-type divisible modules, by Corollary 2 of 4.7 in [lo]. Hence to show 
that M is pure-projective it is enough to show that it has no Priifer module as 
a direct summand. Suppose S” = U, S” is such a summand of M. Let 
M = S” $ M’. Since M, is bounded, proj,,i~(M,) is contained in S”” for 
some n,. We have the exact sequence 

0 - (9’” + M,)/S”o A Y/S”0 @ M’ -I’-+ M,/p(S”o) -- 0 
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where K and p are induced by K and p. The image of E has zero component 
in Sw/SnO and so S“/S”o is a direct summand of M,/p(S”“). This is 
impossible because the latter module is of type I by 3.4 of [ 121 and so 
cannot have the regular module ,!?“/,‘*o as a direct summand. Therefore M is 
pure-projective. 

For our counterexamples we shall recall the description of indecomposable 
finite-dimensional systems by chains: Let (V, W) be a system, ci E V. 
wi E W, and (a: 6) a fixed basis of C*. 

(a) A chain ((ul: t’2 ,... Y urn), (M’.,, w2 ,..., w,~ ,)) is said to be of type I” 
if av, = 0 = bc,, atii. , = bci = wi, i = l,..., m - 1. 

(b) A chain ((G,, u2 ,..., urn), (w,, M:* ,..., w,,,)) is said to be of type 11:; if 
m,=O, bc,=w,, aci+,=bci=wi, i=l,..., m-l. Let b,=b-$0 for 
es. If 6, u, = 0, UC,, = w,, b, ci+, = aui = wi, the chain is said to be of 
type 11;. 

(c) A chain ((c,, u2 ,..., L’,-,), (wl, w? ,..., w,)) is said to be of 
type IIIm if a~,=w,, btl,,-,=w,, avi=wi=bvi_,, i=2 ,..., m-l. If 
m = 1, the chain is (0, w,). 

Let V’ and W’ be the respective spans of the ci’s and wits. The subsystem 
(V’, W’) of (V, W) . IS called the subsystem spanned by ((ci), (wi)). In case 
the zji)s and ivj’s form bases of V’ and W’, respectively, (V’, W’) is itself 
called a subsystem of type Im, II!, or IIIm depending on the type of chain 
which spans it. 

We can now show that it is necessary in Proposition 2.3 that M, be 
bounded. Using the chain representations above one sees that a system of 
type Imr’ @ II: contains a “diagonal” subsystem of type II”, . We illustrate 
this in the case m = 1: let (u,, u2), (z,)) and ((x,), (y,)) span chains of type 
12. II&, respectively. The diagonal subsystem of type II:,! is spanned by 
((u, + x,), (z, + ~7~)). Let (V. IV) be a system of type 0,” , Ik @ 112. A 
system of type II: is an ascending union of systems of type II”,:. It is 
indecomposable. Therefore, by Theorem 1.1, (V, w> is not pure-projective. 
(V, , W,) = @,“-, . ( Vk, Wk), where (Vk, W”) is the diagonal subsystem of 
Ik ’ ’ @ 11% of type 11:. The quotient (V, w>/(V,, W,) is of type @,UI, I&. 
Therefore (V, w) is a non-pure-projective extension of a system of type 11 by 
one of type I. 

PROPOSITION 2.4. An extension of a system of‘ type III by one of type I is 
always pure-projective if and only if the system of type III is Jnite- 
dimensional. 

ProoJ Suppose we have an exact sequence 

o-+ (V,, WI)--, (K w- (V2, W,)-0 
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with (V,, IV,) finite-dimensional of type III and (Vz, W,) of type I. Let 
(V: W) = (V’, W’) i (I+, W’), where (V’, IV’) is the maximal pure- 
projective divisible submodule of (I’, IV). Since (V,, W,) is finite- 
dimensional its image under the projection of (V, W) onto (I’/‘, W’) is finite- 
dimensional. So we may suppose that it is contained in (I’;. IV;) i ( V2, W’). 
where (V;, Wi) is a finite-dimensional direct summand of (I”, W’). So 
(I’. W)=(V:,W~)/(V:,W~)i (I”, W’) with (I”, W’)=(Vi, Wl)i 
(Vi, IV:). Since (vl, IV:) is pure-projective we may now suppose that 
(V, W) = (Vi, W’) + (V’, IV’) with (V’, Cl”) finite-dimensional. In that case 
we shall show that (Vz. W,) is finite-dimensional. hence (I’. W) would be 
pure-projective. Let t( V*, IV’) = CeEc . t(V2, IV*), be the decomposition of 
the torsion part of (V’, IV’) into its primary parts. Suppose t(V’, W’), f 0 
for infinitely many 0 in ;<I. As (V, . W,) is linite dimensional, (V. w) would 
!lave a direct summand of type 11: (say) such that (VI, M’,) is contained in a 
direct complement. This would imply that (1’:) W,) which is of type 1 has a 
direct summand of type II:, a contradiction. Therefore t(V’. MI*) has only 
finitely many eigenvalues. If (I’,, W,) is infinite-dimensional. then there are 
infinitely many linearly independent elements which have any 8 E a as an 
eigenvalue. Choose t’ E I? not an eigenvalue of (V’, W’) and I:,~‘s linearly 
independent elements in Yz such that b,,t~, = w, E W,. We note that M’,, # 0 
since v is not an eigenvalue of (V’. WI). Since W, is finite-dimensional, there 
exist a positive integer k and a,, a*,.... uk nonzero complex numbers such 
that 

k 

s a,w,=o. 

i= I 

Thus 

But xf-, ai L:~ # 0, contradicting the assumption that I: is not an cigenvaluc 
of (V’, W’). Thus (I’,, W,) is finite-dimensional as required. 

Suppose (V,, W,) is infinite-dimensional. We want to construct an 
extension of (Vi, W,) by a system of type I, which is not pure-projective. 

We first do the case where rank( V,, W,) = No. So let (V, , W,) = 
0,3”;, (Vk,, IV, ) where ( Vk,, W,“) is of type IIIkn. Let P denote the torsion- 
free system (CT<], Cl<]). We map (V, ,, W,,) to the subsystem of P spanned 
by ((1, < ,..., tkl-‘)l (I, c ,..., tkl)), if k, > 2. If k-, = 1, map (Vk,, W,,) to 
to , C . l), ( Vkz, Wkz) is mapped to the subsystem spanned by 
((<kr ‘,..., (h ikz- ‘), @I t ’ ,..., rk’ “‘)). Other components are similarly 
mapped into P making sure at each stage that there is no overlap. One 
readily sets that P/( V, , W,) is of type I. By taking an appropiate number of 
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direct sums of P one obtains an extension of an arbitrary system of type III 
by a system of type I with the extension not pure-projective. Systems of 
type 11: can also be used. i 

The torsion-free rank 1 system A, given by 

v= 
[I 

1 -:BEJcC ) 
r-0 II 

w= iv+ 11, 

is an extension of (0, C . 1)---a system of type III ‘-by a system of type 
GJesJ II;. A, is infinite-dimensional if J is infinite and so an extension of a 
finite-dimensional system of type III by an unbounded system of type II is 
not necessarily pure-projective. If the system of type II is bounded and the 
system of type III is not finite-dimensional the extension need not be pure- 
projective as the following example shows: The purely simple system of rank 
two in Theorem 3.1 of [S 1 is an extension of a system of type @ III’ by a 
system of type &,IIfic: Kx The system of type Cl&, III’ is (0, [(r + aZkw2: 
k = 0, 1, 2 ,... } I). 

However we have 

LEMMA 2.5. Let O+(V,, W,)-(V, w>+(V,, W,)+O be an exact 
sequence in which (V,, W,) is torsion-free and finite-dimensional and 
(V,, W,) is bounded and of type II. Then (V, W) is pure-projective. 

Proof: From the facts that (V,, W,) is finite-dimensional and (V,, W,) 
contains (t(V, W) + (V,, W,))/(V,, W,) which is isomorphic to 
t( V, W)/(V,, W,) f7 t(V, W) we conclude that t(V? W) is also bounded. So 
(V, W) = t(V, W) i (X, Y) for some torsion-free subsystem, (X5 Y), of 
(V, W) by Theorem 3.3 of [lo]. As in the proof of Proposition 2.4 we may 
suppose that t(V, W) is finite-dimensional and under that assumption prove 
that (V,, W,) is finite-dimensional. Suppose dim(V,, W,) = r (say). The 
exact sequence 

o-f(V, w)-+(V. w)-(V, w)/t(V. W)-0 

gives the exact sequence 

Ext((V, W/t(K W), (V,, WA)- Ext((K W, (Vz, W,)) 

- Ext(t(V, w), (V, , WA> - 0. 

The first entry is 0 because (V,, W,) is bounded; hence pure-projective 
(Theorem 3.3 of [ 101). If r is an infinite cardinal, then dim Ext((V. W), 
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(V,, IV,)) = dim Ext(t( V, IV’), (V,, IV,)) < r. because t( V. W) is linite- 
dimensional. On the other hand. the exact sequence 

o- (V,. W,)+ (V. Iv)-+ (If*, W,)-+O 

leads to the exact sequence 

Hom((V,, W,), (V2, W,)>--+ W(V,, W,), (V2, W,)> 

- W(K w), (Vz, W,)) - W(V,, W,>, (Vz, W,)). 

The last entry is 0 because ( V2, IV,) is pure-injective while the first entry is 
r-dimensional, if r is an infinite cardinal, and the second entry is 2’. 
dimensional; see table in 141. Therefore dim Ext((V, IV), ( Vz, IV,)) is 2’, a 
contradiction. Therefore r must be finite. As in Proposition 2.4 (I’: IV) is 
pure-projective. I 

We note that it is easy to show that any extension of a pure-projective 
system by a finite-dimensional system is pure-projective. 

We summarise everything after Proposition 2.4 in 

THEOREM 2.6. An extension of a system of type III by a system of type I1 
is alwavs pure-projective only in the following cases: 

(i) The system of type III isJnite-dimensional while that of type II is 
bounded. 

(ii) The system of type II is finite-dimensional, 

LEMMA 2.7. Let (V, 1 W,) and (V,, Wz) be torsion-free systems qf 
bounded height not exceeding m. Then any extension (V. W) of (V, , W,) bl 
(V,, W,) is also of bounded height not exceeding m. 

Proof: Suppose (V, W) has a subsystem (X, Y) of type III” L *. Then by 
Lcmma4.1 of [S] and the height relation in the proof of Lemma 1.4 of 19 / 
we conclude that (X, Y) f’~ (V, ? W,) = 0. Thus, ((X, Y) + (V, , W,))/( V, , W,) 
is a subsystem of (Vz, W,) of type IIIm ’ * contradicting the hypothesis that 
(V,, W,) is of bounded height not exceeding m. Therefore, (V, W) is of 
bounded height not exceeding m. 

PROPOSITION 2.8. An extension of a system of type III by a bounded 
system of type III is pure-projectice. 

ProoJ: Let (V, IV) be an extension of (V,, W,) by ( Vz, W,) where 
(V, , W,), (V,, W,) are of type III and the latter is of bounded height not 
exceeding m (say). Put (V, $ W,) = (V,, W,) $ (V,, W,) with (V,, W,) a 
direct sum of systems of type III k, k < m, and (V,, W,) a direct sum of 
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systems of type III’, I> m. The projection of (V,, IV,) onto (V,, IV,) and the 
inclusion of (V, , IV,) in (V, IV) yield by pushout the following commutative 
diagram of exact sequences: 

o- (V,, W,) i (V,, W,) (K*A) ) (VT W)- (V,, W,)-0 

I 
h,P) 

I 
(0.Y’) 

11 
o- (V3, Wd - (U9-q - (V23 W*)-0 

By Lemma 2.7, (U, Z) is of bounded height not exceeding m. Hence by 
Lemma 2.8 of [IO] it is direct sum of systems of type III!+, k < m. Since 
(n,p) is onto, so is (@, Y). Moreover, Ker(@, Y) is isomorphic to 
Ker(n, p) = (V,: W,). The last two statements follow from the definition of 
the pushout and the fact that (K, A) is manic. We now have an exact 
sequence 

o- (V4r W,) - (K w> - (U, Z) -+ 0. 

By Proposition lE(b) and (c) of [ 121 and the table in ]4] this sequence 
splits. Therefore, (V, w> is pure-projective. 

We now give an example to show that “boundcdness of (V,, WI)‘) is 
necessary in the last proposition. Let (V,, W,) = (0, Cw), wf 0 and 
(V,, W,) = @,“, (VZk, W,,) where (If,,, W,,) is of type III!+ spanned by the 
chain ((t’zl, uz2,..., v,.,-,I, (w2,, wZ2,..., wZk)). Let 

v= v, @ v,, 
w= w, @ w,. 

We make ( V3 W) a system as follows: Let (a, h) be a basis of C2. For k even 
Put 

uvzi = wzi, i = I,..., k - I, 

bv2i = c(;~.~+, . i= 1 ,..., k - 1. 

For 3 < k odd put 

k+l 
UVzi = w*i if if- 

2 ’ 

“2.(k : 1)/2 = WZ,(k I I),‘2 + w, 

bc2, = wz,i- 17 i = l,..., k - 1. 
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This makes (V, IV) an extension of (V,, W,) by (V,, IV,). For any odd 
k > 3, w is contained in the range space of a subsystem of (V, IV) that is a 
direct sum of two subsystems of type III’k _ I)/* and IIItk I)“*, respectively. 
This implies that (V: W) cannot be pure-projective for if it were, then 1~’ 
would be contained in the range space of a finite-dimensional direct 
summand (A’, Y) of (V, IV,). We now show that this is not possible. Let m, = 
max (m: (X, Y) has a direct summand of type IUrn}. 

Choose k odd such that (k - I)/2 > m,. By the height relation in the 
proof of 1.4 of [ 81 M: must be contained in the range space of a direct 
complement of (A’, Y) contradicting )t’ E Y. Therefore. (V. IV) is not pure- 
projective. I 

Remark 2.9. By using pullback and/or pushout and the results of this 
section one can obtain conditions under which an extension of an arbitrary 
pure-projective system by another pure-projective system is pure-projective. 
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