On Pure-Projective Modules over Artin Algebras

Frank Okoh

Department of Mathematics and Statistics,
Queen's University at Kingston, Kingston, Ontario. Canada $K 7 L$ 3N6
Communicated by P. M. Cohn
Received August 13, 1979

In this paper pure-projective modules over some Artin algebras are investigated. The prototype is the Artin algebra, R, consisting of 3×3 complex matrices of the form

$$
\left[\begin{array}{lll}
\beta & 0 & \alpha_{1} \\
0 & \beta & \alpha_{2} \\
0 & 0 & \gamma
\end{array}\right]
$$

It is shown that a module over an Artin algebra is pure-projective if and only if it is a direct sum of finite-dimensional indecomposable submodules. Conditions under which an extension of a pure-projective R-module by another pure-projective R module is pure projective are given. A homological characterization of finite dimensional pure-projective R-modules is also obtained. Finally an \aleph_{r}-purcprojective is shown to be purc-projective if and only if $r \geqslant 1$.

Introdiction

In this paper we are interested in pure-projective modules over hereditary algebras of tame type. We shall let S stand for such an algebra while T will stand for an arbitrary Artin algebra. A prototype of S is the Artin algebra, R, of 3×3 complex matrices of the form:

$$
\left[\begin{array}{ccc}
\beta & 0 & \alpha_{1} \\
0 & \beta & \alpha_{2} \\
0 & 0 & \gamma
\end{array}\right]
$$

The category of R-modules is equivalent to the category of systems. (A system is a pair of complex vector spaces (V, W) together with a C-bilinear map from $\mathbb{C}^{2} \times V$ to W; see $|2|$ for details.) We begin in Section 1 by 275
proving that a module over an arbitrary Artin algebra is pure-projective if and only if it is a direct sum of finite-dimensional submodules. The proof consists of putting together known results in a correct order. A pure submodule of a pure-projective module is not always pure-projective, unless it is countable generated; see $|11|$ and Corollary 1.5 of [6]. We thank the referee for drawing our attention to [11]! Call a module \boldsymbol{N}_{r}-pure-projective if and only if every submodule of rank $\left\langle\boldsymbol{\aleph}_{r}\right.$ is pure-projective; see $| 12 \mid$ for a definition of "rank of an S-module" and [8] for that of "rank of a system." The definition in [12] restricted to R is equivalent to the definition in [8]. The example of a subsystem of a pure-projective system which is not pureprojective given in [9] is modified to establish that a torsion-free $\boldsymbol{\aleph}_{r}$-pureprojective system is always pure-projective if and only if $r \geqslant 1$.

In Section 2 extensions of pure-projective modules by pure-projective modules is investigated. To describe the results we recall the three classes of indecomposable finite-dimensional systems: systems of type I^{m}, of type II_{θ}^{m}, $\theta \in \widetilde{C}=\mathbb{C} \cup\{\infty\}$, of type III^{m}, respectively, m any positive integer. These correspond respectively to the indecomposable preinjective, indecomposable regular torsion and indecomposable preprojective modules of |12]. By abuse of language we shall say that an S-module is of type I if it is a direct sum of indecomposable preinjective submodules. Modules of type II or III are analogously defined. The former is an analogue of direct sums of cyclic groups, i.e., pure-projective torsion groups by Theorem 30.2 of |5|. In |3| it is shown that an extension of a pure-projective torsion group G_{1} by another pure-projective torsion group G_{2} is not always pure-projective except when G_{2} is bounded. The results in Section 2 have a similar flavour with the exception of Proposition 2.1.

We shall assume familiarity with [9] especially Sections 0 and 1 .

1. Submodules of Pure-Projective Modcles

ThEOREM 1.1. A module M over an Artin algebra is pure-projective if and only if it is a direct sum of finite-dimensional submodules.

Proof. Let \mathcal{F} be the class of finite-dimensional modules over the given Artin algebra and $\left\{N_{\alpha}\right\}_{\alpha \in A}$ the set of finite-dimensional indecomposable submodules of M. Let $N=\oplus_{\boldsymbol{\alpha} \in A} N_{\alpha}$. Purity as defined in [12] is F-purity. Hence as in the proof of Theorem 2.3 of [8| we have a short pure-exact sequence

$$
0 \longrightarrow K \longrightarrow N \longrightarrow M \longrightarrow 0
$$

If M is pure-projective, then N is isomorphic to $M \oplus K$. Each N_{α} has local
endomorphism ring by Corollary 11.8 of $|1|$. By the Crawley-Jønsson-Warfield theorem (see Theorem 26.5 of |1]).

$$
\begin{aligned}
M & =\oplus_{\beta \in B} M_{3}, \\
K & =\underset{\substack{ \\
\\
\oplus}}{ } K_{\gamma},
\end{aligned}
$$

where $M_{3}, K_{\text {, }}$, are countably generated modules with local endomorphism rings, hence indecomposable. By Corollary 26.6 of [1] each M_{3} is isomorphic to some N_{α}. Therefore M is a direct sum of finite-dimensional indecomposable submodules. The converse follows from the definitions as in the proof of Theorem 2.3 of $|8|$.

A straightforward modification of Example 1.5 of $\{9 \mid$ gives a proof of
Proposition 1.2. Any unbounded pure-projective torsion-free system has a subsystem of rank $\boldsymbol{\aleph}_{0}$ that is not pure-projective.

We use Proposition 1.2 to prove
Proposition 1.3. An $\boldsymbol{\aleph}_{r}$-pure-projective torsion-free system is always pure-projective if and only if $r \geqslant 1$.

Proof. The system in Proposition 1.3 of $[9]$ is $\boldsymbol{\aleph}_{0}$-pure-projective by Lemma 1.3 .3 of $[9]$ but is not pure-projective by 1.3 .2 by [9|. Suppose then that (V, W) is $\boldsymbol{\aleph}_{r}$-pure-projective, $r \geqslant 1$. We shall show that (V, W) must be bounded hence pure-projective by Theorem 1.1 of $|9|$. Since (V, W) is $\boldsymbol{\aleph}_{r}$. pure-projective $t c_{\left(V, W^{\prime}\right)}(\phi,\{w\})$ for any nonzero w in W must be of type $1 I^{m}$ by Theorem 1.1 and the fact that the systems of type III^{m} are the only indecomposable pure-projective torsion-free systems of rank 1. Suppose (V, W) is not bounded then there exist $\left\{w_{i}\right\}_{i=1}^{\infty} \subset W$ such that $\left(V_{i}, W_{i}\right)=$ $\epsilon_{\left(v, W_{1}\right)}\left(\psi,\left\{w_{i}\right\}\right)$ is of type III ${ }^{k_{i}}$ and $k_{1}<k_{2}<\cdots .$. The subsystem $\sum_{i \cdot 1}^{x}\left(V_{i}, W_{i}\right)$ is of type \oplus_{i-1}^{∞} III ${ }^{k_{i}}$: To see that the sum is direct one notes that $\left(V_{1}, W_{1}\right)+\left(V_{2}, W_{2}\right)$ is direct since if $\left(V_{1}, W_{1}\right) \cap\left(V_{2}, W_{2}\right) \neq(0,0)$. then $\left(V_{1}, W_{1}\right)=\left(V_{2}, W_{2}\right)$ by Lemma 4.1 of [8], contradicting $k_{1}<k_{2}$. We suppose that $\left(V_{1}, W_{1}\right)+\cdots+\left(V_{n}, W_{n}\right)$ is direct. Again by Lemma 4.1 of [8] if $\left(V_{n+1}, W_{n-1}\right)$ intersects $\left(V_{1}, W_{1}\right) \dot{+}+\left(V_{n}, W_{n}\right)$ nontrivially, then $\quad\left(V_{n-1}, W_{n+1}\right) \subset\left(V_{1}, W_{1}\right)+\cdots+\left(V_{n}, W_{n}\right)$. However $k_{n+1}>$ $\max \left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$ and so the inclusion is impossible by the height relation in 1.4 of $\mid 9]$. This proves that $\sum_{i=1}^{\infty}\left(V_{i}, W_{i}\right)$ is an unbounded pure-projective subsystem of (V, W). By Proposition 1.2, (V, W) would have a non-pureprojective subsystem of rank $\boldsymbol{\aleph}_{0}$ contradicting the hypothesis that (V, W) is \aleph_{r}-pure-projective, $r \geqslant 1$. Therefore (V, W) is bounded and hence pureprojective by Theorem 1.1 of [9].

Using the table in [4] we get the following characterisation of finitedimensional systems:

Proposition 1.4. A system (V, W) is finite-dimensional if and only if $\operatorname{Ext}\left((V, W), \mathrm{III}^{1}\right)$ and $\operatorname{Ext}\left(\mathrm{I}^{1},(V, W)\right)$ are finite-dimensional.

Proof. If (V, W) is finite-dimensional, then $\operatorname{Ext}\left((V, W), I I I^{1}\right)$ and $\operatorname{Ext}\left(I^{1},(V, W)\right.$ are finite-dimensional by [4]. Suppose then that $\operatorname{Ext}\left((V, W)\right.$, III $\left.^{1}\right)$ and $\operatorname{Ext}\left(\mathrm{I}^{1},(V, W)\right)$ are finite-dimensional: If the divisible part of $(V, W), \operatorname{Div}(V, W)$, were infinite-dimensional, then it would either contain a system of type $\mathrm{II}_{\theta}^{\infty}$ or \mathscr{R} or a system of type $\oplus_{j \in J} \mathrm{I}^{k_{j}}, \mathrm{Card}(J)$ infinite. The hypothesis and the table in [4] rule out these possibilities. Therefore $\quad(V, W)=\operatorname{Div}(V, W) \oplus\left(V_{1}, W_{1}\right), \quad\left(V_{1}, W_{1}\right) \quad$ reduced and $\operatorname{Div}(V, W)$ finite-dimensional. Suppose $t\left(V_{1}, W_{1}\right)$ is infinite-dimensional, then again the given Ext's would be infinite-dimensional because, for any n, $t\left(V_{1}, W_{1}\right)$ would have a direct summand of type $\mathrm{II}_{\theta_{1}}^{k_{1}} \oplus \cdots \oplus \mathrm{II}_{\theta_{n}}^{k_{n}}$, θ_{i} 's not necessarily different, by Corollary $9.16(\mathrm{~b})$ of $[1]$. So $t\left(V_{1}, W_{1}\right)$ is finitedimensional. It is a direct summand of $\left(V_{1}, W_{1}\right)$ by Theorems 5.5 and 9.12 of $[1]$. So $\left(V_{1}, W_{1}\right)=t\left(V_{1}, W_{1}\right) \oplus\left(V_{2}, W_{2}\right)$, where $\left(V_{2}, W_{2}\right)$ is torsion-free. Because $\operatorname{Ext}\left((V, W), \mathrm{III}^{1}\right)$ is finite-dimensional, $\left(V_{2}, W_{2}\right)$ does not have subsystems of type III ${ }^{m}$ for arbitrarily large m, i.e., $\left(V_{2}, W_{2}\right)$ is bounded. Therefore by Theorem 1.1 of $[9],\left(V_{2}, W_{2}\right)$ is a direct sum of subsystems of type III $^{m_{j}}$. $\left(V_{2}, W_{2}\right)$ is of type $\oplus_{j \in J} \mathrm{III}^{m_{j}}$. If $\operatorname{Card}(J)$ were infinite, the hypothesis that $\operatorname{Ext}\left(I^{1},(V, W)\right)$ is finite-dimensional would be contradicted. Thus (V, W) is finite-dimensional.

In a similar vein one proves
Proposition 1.5. A system (V, W) is a direct sum of a projective system and a finite-dimensional system if and only if $\left.\operatorname{Ext}(V, W), \mathrm{III}^{1} \oplus \mathrm{III}^{2}\right)$ is finite-dimensional.

2. Extensions of Pure-Projective Modules by Pure-Projective Modules

The first two propositions dispose of cases that are already treated in the literature or readily deduced therefrom.

Proposition 2.1. Extensions of pure-projective S-modules by pureprojective S-modules are pure-projective in the following cases:
(i) Extensions of modules of type 1 by modules of type I .
(ii) Extensions of modules of type I by modules of type II.
(iii) Extensions of type I by modules of type III.
(iv) Extensions of modules of type II by modules of type III.

Proof. (i) See Proposition 3.4 of [12].
(ii) A module of type I is divisible, hence $\operatorname{Ext}(I I, I)=0$ by Corollary 3.5 of $\mid 12]$ and the fact that $\operatorname{Ext}\left(\oplus_{j \in J} A_{j}, B\right)$ is isomorphic to $\prod_{j \in J} \operatorname{Ext}\left(A_{j}, B\right)$.
(iii) Similar to (ii).
(iv) Follows from the facts that the torsion part of a module is a pure submodule of the module, Theorem 4.1 of $[12 \mid$ and a module of type III is pure-projective.

Proposition 2.2. If $0 \rightarrow G_{1} \rightarrow G \rightarrow G_{2} \rightarrow 0$ is an exact sequence with G_{1}, G_{2} of type II. Then G is always pure-projective if and only if G_{2} is bounded.

Proof. See [3].
Let M be a torsion S-module with no preinjective direct summand. Then by 4.5 of [12], $M=\sum_{t \in T} \cdot M_{t}$, where each M_{t} may be considered as a module over a principal ideal domain. We shall call M a bounded module if $M_{t}=0$ for all but a finite number of t in T, and each nonzero M_{i} is bounded as a module over a PID. For future use we note that the results on bounded R-modules, i.e., systems, proved in $\lceil 10 \mid$ generalize to torsion S-modules with only formal changes. In particular Theorems 2.9 and 3.5 are valid for S modules. Hence bounded modules are pure-projective and pure injective.

Proposilion 2.3. An extension of a bounded S-module M_{2} by an S module M_{1} of type I is pure-projective.

Proof. Let $0 \rightarrow M_{2} \rightarrow^{\kappa} M \rightarrow{ }^{\oplus} M_{1} \rightarrow 0$ be an exact sequence. For any torsion-free S-module, $N, \operatorname{Ext}\left(N, M_{1}\right)=0=\operatorname{Ext}\left(N, M_{2}\right)$ by Proposition 4.7 of [12] and Theorem 3.5 of [10]. Therefore $\operatorname{Ext}(N, M)=0$ for all torsion-free S-modules N. Hence, by Theorem 3.5 of $[10 \mid, M$ is a direct sum of a divisible module and a bounded module. By 4.2 of [10], M is torsion and a torsion divisible module is a direct sum of a pure-projective module and Prüfer-type divisible modules, by Corollary 2 of 4.7 in [10]. Hence to show that M is pure-projective it is enough to show that it has no Prüfer module as a direct summand. Suppose $S^{\omega}=\bigcup_{n} S^{n}$ is such a summand of M. Let $M=S^{\omega}+M^{\prime}$. Since M_{2} is bounded, $\operatorname{proj}_{S \omega} \mid \kappa\left(M_{2}\right)$ is contained in $S^{n_{0}}$ for some n_{0}. We have the exact sequence

$$
0 \longrightarrow\left(S^{n_{0}}+M_{2}\right) / S^{n_{0}} \xrightarrow{\bar{\kappa}} S^{\omega} / S^{n_{0}} \oplus M^{\prime} \xrightarrow{\bar{\rho}} M_{1} / \rho\left(S^{n_{0}}\right) \longrightarrow 0
$$

where $\bar{\kappa}$ and $\bar{\rho}$ are induced by κ and ρ. The image of $\bar{\kappa}$ has zero component in $S^{\omega} / S^{n_{0}}$ and so $S^{\omega} / S^{n_{0}}$ is a direct summand of $M_{1} / \rho\left(S^{n_{0}}\right)$. This is impossible because the latter module is of type I by 3.4 of [12| and so cannot have the regular module $S^{\omega} / S^{n_{0}}$ as a direct summand. Therefore M is pure-projective.

For our counterexamples we shall recall the description of indecomposable finite-dimensional systems by chains: Let (V, W) be a system, $v_{i} \in V$, $w_{i} \in W$, and (a, b) a fixed basis of \mathbb{C}^{2}.
(a) A chain $\left(\left(v_{1}, v_{2}, \ldots, v_{m}\right),\left(w_{1}, w_{2}, \ldots, w_{m-1}\right)\right)$ is said to be of type I^{m} if $a v_{1}=0=b v_{m}, a v_{i .1}=b v_{i}=w_{i}, i=1, \ldots, m-1$.
(b) A chain $\left(\left(v_{1}, v_{2}, \ldots, v_{m}\right),\left(w_{1}, w_{2}, \ldots, w_{m}\right)\right)$ is said to be of type I_{∞}^{n} if $a v_{1}=0, b v_{m}=w_{m}, a v_{i+1}=b v_{i}=w_{i}, i=1, \ldots, m-1$. Let $b_{\theta}=b-\theta a$ for $\theta \in \mathbb{C}$. If $b_{\theta} v_{1}=0, a v_{m}=w_{m}, b_{\theta} v_{i+1}=a v_{i}=w_{i}$, the chain is said to be of type II_{θ}^{n}.
(c) A chain $\left(\left(v_{1}, v_{2}, \ldots, v_{m-1}\right),\left(w_{1}, w_{2}, \ldots, w_{m}\right)\right)$ is said to be of type III ${ }^{m}$ if $a v_{1}=w_{1}, b v_{m-1}=w_{m}, a v_{i}=w_{i}=b v_{i-1}, i=2, \ldots, m-1$. If $m=1$, the chain is $\left(\varnothing, w_{1}\right)$.

Let V^{1} and W^{1} be the respective spans of the v_{i}^{\prime} 's and w_{i}^{\prime} s. The subsystem (V^{1}, W^{1}) of (V, W) is called the subsystem spanned by $\left(\left(v_{i}\right),\left(w_{i}\right)\right)$. In case the v_{i} 's and w_{j}^{\prime} 's form bases of V^{1} and W^{\prime}, respectively, $\left(V^{1}, W^{1}\right)$ is itself called a subsystem of type $\mathrm{I}^{m}, \mathrm{II}_{\theta}^{m}$, or III^{m} depending on the type of chain which spans it.

We can now show that it is necessary in Proposition 2.3 that M_{2} be bounded. Using the chain representations above one sees that a system of type $\mathrm{I}^{m+1} \oplus \mathrm{II}_{\infty}^{m}$ contains a "diagonal" subsystem of type II_{∞}^{m}. We illustrate this in the case $m=1$: let $\left.\left(u_{1}, u_{2}\right),\left(z_{1}\right)\right)$ and $\left(\left(x_{1}\right),\left(y_{1}\right)\right)$ span chains of type $\mathrm{I}^{2}, \mathrm{II}_{\infty}^{1}$, respectively. The diagonal subsystem of type $\mathrm{II}_{\infty_{\infty}}^{1}$ is spanned by $\left(\left(u_{1}+x_{1}\right),\left(z_{1}+y_{1}\right)\right)$. Let (V, W) be a system of type $\oplus_{k+-1}^{x} I^{k} \oplus I_{\infty}^{\infty}$. A system of type $I I_{\infty}^{\infty}$ is an ascending union of systems of type II_{∞}^{n}. It is indecomposable. Therefore, by Theorem $1.1,(V, W)$ is not pure-projective. $\left(V_{1}, W_{1}\right)=\oplus_{k-1}^{\alpha} \cdot\left(V^{k}, W^{k}\right)$, where $\left(V^{k}, W^{k}\right)$ is the diagonal subsystem of $\mathrm{I}^{k+1} \oplus \mathrm{II}_{\infty}^{k}$ of type II_{∞}^{k}. The quotient $(V, W) /\left(V_{1}, W_{1}\right)$ is of type $\oplus_{k=1}^{\infty} \mathrm{I}^{k}$. Therefore (V, W) is a non-pure-projective extension of a system of type II by one of type I.

Proposition 2.4. An extension of a system of type III by one of type I is always pure-projective if and only if the system of type III is finitedimensional.

Proof. Suppose we have an exact sequence

$$
0 \longrightarrow\left(V_{1}, W_{1}\right) \longrightarrow(V, W) \longrightarrow\left(V_{2}, W_{2}\right) \longrightarrow 0
$$

with $\left(V_{1}, W_{1}\right)$ finite-dimensional of type III and $\left(V_{2}, W_{2}\right)$ of type I. Let $(V, W)=\left(V^{1}, W^{1}\right)+\left(V^{2}, W^{2}\right)$, where $\left(V^{1}, W^{1}\right)$ is the maximal pureprojective divisible submodule of (V, W). Since $\left(V_{1}, W_{1}\right)$ is tinitedimensional its image under the projection of (V, W) onto $\left(V^{1}, W^{1}\right)$ is finitedimensional. So we may suppose that it is contained in $\left(V_{1}^{1}, W_{1}^{1}\right)+\left(V^{2}, W^{2}\right)$. where $\left(V_{1}^{1}, W_{1}^{1}\right)$ is a finite-dimensional direct summand of $\left(V^{1}, W^{1}\right)$. So $\left.(V, W)=\left(V_{1}^{1}, W_{1}^{1}\right) \dot{+}\left(V_{2}^{1}, W_{2}^{1}\right) \dot{(} V^{2}, W^{2}\right) \quad$ with $\quad\left(V^{1}, W^{1}\right)=\left(V_{1}^{1}, W_{1}^{1}\right) \dot{+}$ (V_{2}^{1}, W_{2}^{1}). Since $\left(V_{2}^{1}, W_{2}^{1}\right)$ is pure-projective we may now suppose that $(V, W)=\left(V^{1}, W^{1}\right)+\left(V^{2}, W^{2}\right)$ with $\left(V^{1}, W^{1}\right)$ finite-dimensional. In that case we shall show that $\left(V_{2}, W_{2}\right)$ is finite-dimensional, hence (V, W) would be pure-projective. Let $t\left(V^{2}, W^{2}\right)=\sum_{\theta \in ट} \cdot t\left(V^{2}, W^{2}\right)_{\theta}$ be the decomposition of the torsion part of $\left(V^{2}, W^{2}\right)$ into its primary parts. Suppose $t\left(V^{2}, W^{2}\right)_{\theta} \neq 0$ for infinitely many θ in \mathbb{C}. As $\left(V_{1}, W_{1}\right)$ is finite dimensional, (V, W) would have a direct summand of type I_{p}^{n} (say) such that $\left(V_{1}, W_{1}\right)$ is contained in a direct complement. This would imply that $\left(V_{2}, W_{2}\right)$ which is of type l has a direct summand of type I_{r}^{n}, a contradiction. Therefore $t\left(V^{2}, W^{2}\right)$ has only finitely many eigenvalues. If $\left(V_{2}, W_{2}\right)$ is infinite dimensional. then there are infinitely many linearly independent elements which have any $\theta \in \mathbb{C}$ as an eigenvalue. Choose $v \in \mathbb{C}$ not an eigenvalue of (V^{2}, W^{2}) and v_{n} 's linearly independent elements in V^{2} such that $b_{v} v_{n}=w_{n} \in W_{1}$. We note that $w_{n} \neq 0$ since v is not an eigenvalue of $\left(V^{2}, W^{2}\right)$. Since W_{1} is finite-dimensional, there exist a positive integer k and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ nonzero complex numbers such that

$$
\sum_{i=1}^{k} \alpha_{i} w_{i}-0
$$

Thus

$$
b_{r}\left(\sum_{i=1}^{k} \alpha_{i} v_{i}\right)=0 .
$$

But $\sum_{i-1}^{\urcorner k} \alpha_{i} v_{i} \neq 0$, contradicting the assumption that v is not an cigenvalue of (V^{2}, W^{2}). Thus (V_{2}, W_{2}) is finite-dimensional as required.

Suppose (V_{1}, W_{1}) is infinite-dimensional. We want to construct an extension of (V_{1}, W_{1}) by a system of type I, which is not pure-projective.

We first do the case where $\operatorname{rank}\left(V_{1}, W_{1}\right)=\boldsymbol{N}_{0}$. So let $\left(V_{1}, W_{1}\right)=$ $\oplus_{n=1}^{\infty}\left(V_{k_{n}}, W_{k_{n}}\right)$ where $\left(V_{k_{n}}, W_{k_{n}}\right)$ is of type III ${ }^{k_{n}}$. Let P denote the torsionfree system $(\mathbb{C} \mid \xi], \mathbb{C}|\xi|)$. We map $\left(V_{k_{1}}, W_{k_{1}}\right)$ to the subsystem of P spanned by $\left(\left(1, \xi, \ldots, \xi^{k_{1}-1}\right),\left(1, \xi, \ldots, \xi^{k_{1}}\right)\right)$, if $k_{1} \geqslant 2$. If $k_{1}=1$, map $\left(V_{k_{1}}, W_{k_{1}}\right)$ to $(0, C \cdot 1),\left(V_{k_{2}}, W_{k_{2}}\right)$ is mapped to the subsystem spanned by $\left(\left(\xi^{k_{1}-1}, \ldots ., \zeta^{k_{1}+k_{2} \cdots 1}\right),\left(\xi^{k_{1}+1}, \ldots, \xi^{k_{1} \cdots k_{2}}\right)\right)$. Other components are similarly mapped into P making sure at each stage that there is no overlap. One readily sees that $P /\left(V_{1}, W_{1}\right)$ is of type I. By taking an appropiate number of
direct sums of P one obtains an extension of an arbitrary system of type III by a system of type I with the extension not pure-projective. Systems of type $\mathrm{II}_{\theta}^{\infty}$ can also be used.

The torsion-free rank 1 system \wedge_{J} given by

$$
\begin{aligned}
V & =\left[\left\{\frac{1}{\xi-\theta}: \theta \in J \subset \mathbb{C}\right\}\right] \\
W & =[V+1]
\end{aligned}
$$

is an extension of ($0, \mathbb{C} \cdot 1$)-a system of type III ${ }^{1}$-by a system of type $\oplus_{\theta \in J} I I_{\theta}^{1} . \wedge_{J}$ is infinite-dimensional if J is infinite and so an extension of a finite-dimensional system of type III by an unbounded system of type II is not necessarily pure-projective. If the system of type II is bounded and the system of type III is not finite-dimensional the extension need not be pureprojective as the following example shows: The purely simple system of rank two in Theorem 3.1 of [8] is an extension of a system of type $\oplus_{\boldsymbol{K}_{9}}$ III ${ }^{1}$ by a system of type $\oplus_{\boldsymbol{N}_{0}} I I_{\infty}^{1}$: The system of type $\oplus_{\boldsymbol{\kappa}_{0}}$ III ${ }^{1}$ is $\left(0,\left[\left\{\xi^{k}+\alpha_{2 k} w_{2}\right.\right.\right.$: $k=0,1,2, \ldots\} \mid)$.

However we have

Lemma 2.5. Let $0 \rightarrow\left(V_{1}, W_{1}\right) \rightarrow(V, W) \rightarrow\left(V_{2}, W_{2}\right) \rightarrow 0$ be an exact sequence in which $\left(V_{1}, W_{1}\right)$ is torsion-free and finite-dimensional and $\left(V_{2}, W_{2}\right)$ is bounded and of type II. Then (V, W) is pure-projective.

Proof. From the facts that $\left(V_{1}, W_{1}\right)$ is finite-dimensional and $\left(V_{2}, W_{2}\right)$ contains $\left(t(V, W)+\left(V_{1}, W_{1}\right)\right) /\left(V_{1}, W_{1}\right)$ which is isomorphic to $t(V, W) /\left(V_{1}, W_{1}\right) \cap t(V, W)$ we conclude that $t(V, W)$ is also bounded. So $(V, W)=t(V, W) \dot{+}(X, Y)$ for some torsion-free subsystem, (X, Y), of (V, W) by Theorem 3.3 of [10]. As in the proof of Proposition 2.4 we may suppose that $t(V, W)$ is finite-dimensional and under that assumption prove that $\left(V_{2}, W_{2}\right)$ is finite-dimensional. Suppose $\operatorname{dim}\left(V_{2}, W_{2}\right)=r$ (say). The exact sequence

$$
0 \longrightarrow t(V, W) \longrightarrow(V, W) \longrightarrow(V, W) / t(V, W) \longrightarrow 0
$$

gives the exact sequence

$$
\begin{aligned}
\operatorname{Ext}\left((V, W) / t(V, W),\left(V_{2}, W_{2}\right)\right) & \longrightarrow \operatorname{Ext}\left((V, W),\left(V_{2}, W_{2}\right)\right) \\
& \longrightarrow \operatorname{Ext}\left(t(V, W),\left(V_{2}, W_{2}\right)\right) \longrightarrow 0
\end{aligned}
$$

The first entry is 0 because $\left(V_{2}, W_{2}\right)$ is bounded; hence pure-projective (Theorem 3.3 of $[10 \mid$). If r is an infinite cardinal, then $\operatorname{dim} \operatorname{Ext}(V, W)$,
$\left.\left(V_{2}, W_{2}\right)\right)=\operatorname{dim} \operatorname{Ext}\left(t(V, W),\left(V_{2}, W_{2}\right)\right) \leqslant r$, because $t(V, W)$ is finitedimensional. On the other hand, the exact sequence

$$
0 \longrightarrow\left(V_{1}, W_{1}\right) \longrightarrow(V, W) \longrightarrow\left(V_{2}, W_{2}\right) \longrightarrow 0
$$

leads to the exact sequence

$$
\begin{aligned}
& \operatorname{Hom}\left(\left(V_{1}, W_{1}\right),\left(V_{2}, W_{2}\right)\right) \longrightarrow \operatorname{Ext}\left(\left(V_{2}, W_{2}\right),\left(V_{2}, W_{2}\right)\right) \\
& \quad \longrightarrow \operatorname{Ext}\left((V, W),\left(V_{2}, W_{2}\right)\right) \longrightarrow \operatorname{Ext}\left(\left(V_{1}, W_{1}\right),\left(V_{2}, W_{2}\right)\right) .
\end{aligned}
$$

The last entry is 0 because $\left(V_{2}, W_{2}\right)$ is pure-injective while the first entry is r-dimensional, if r is an infinite cardinal, and the second entry is 2^{r} dimensional; see table in $|4|$. Therefore $\operatorname{dim} \operatorname{Ext}\left((V, W),\left(V_{2}, W_{2}\right)\right)$ is 2^{r}, a contradiction. Therefore r must be finite. As in Proposition $2.4(V, W)$ is pure-projective.

We note that it is easy to show that any extension of a pure-projective system by a finite-dimensional system is pure-projective.

We summarise everything after Proposition 2.4 in
Theorem 2.6. An extension of a system of type III by a system of type II is always pure-projective only in the following cases:
(i) The system of type III is finite-dimensional while that of type II is bounded.
(ii) The system of type II is finite-dimensional.

Lemma 2.7. Let $\left(V_{1}, W_{1}\right)$ and $\left(V_{2}, W_{2}\right)$ be torsion-free systems of bounded height not exceeding m. Then any extension (V, W) of $\left(V_{1}, W_{1}\right)$ by $\left(V_{2}, W_{2}\right)$ is also of bounded height not exceeding m.

Proof. Suppose (V, W) has a subsystem (X, Y) of type III^{m+2}. Then by Lemma 4.1 of $[8]$ and the height relation in the proof of Lemma 1.4 of $|9|$ we conclude that $(X, Y) \cap\left(V_{1}, W_{1}\right)=0$. Thus, $\left((X, Y)+\left(V_{i}, W_{1}\right)\right) /\left(V_{1}, W_{1}\right)$ is a subsystem of $\left(V_{2}, W_{2}\right)$ of type III ${ }^{m+2}$ contradicting the hypothesis that $\left(V_{2}, W_{2}\right)$ is of bounded height not exceeding m. Therefore, (V, W) is of bounded height not exceeding m.

Proposition 2.8. An extension of a system of type III by a bounded system of type III is pure-projective.

Proof. Let (V, W) be an extension of $\left(V_{1}, W_{1}\right)$ by $\left(V_{2}, W_{2}\right)$ where $\left(V_{1}, W_{1}\right),\left(V_{2}, W_{2}\right)$ are of type III and the latter is of bounded height not exceeding m (say). Put $\left(V_{1}, W_{1}\right)=\left(V_{3}, W_{3}\right) \dot{+}\left(V_{4}, W_{4}\right)$ with $\left(V_{3}, W_{3}\right)$ a direct sum of systems of type $\mathrm{III}^{k}, k \leqslant m$, and $\left(V_{4}, W_{4}\right)$ a direct sum of
systems of type $\mathrm{III}^{\prime}, l>m$. The projection of $\left(V_{1}, W_{1}\right)$ onto $\left(V_{3}, W_{3}\right)$ and the inclusion of $\left(V_{1}, W_{1}\right)$ in (V, W) yield by pushout the following commutative diagram of exact sequences:

By Lemma 2.7, (U, Z) is of bounded height not exceeding m. Hence by Lemma 2.8 of $[10]$ it is direct sum of systems of type $\mathrm{III}^{k}, k \leqslant m$. Since (π, ρ) is onto, so is (Φ, Ψ). Moreover, $\operatorname{Ker}(\Phi, \Psi)$ is isomorphic to $\operatorname{Ker}(\pi, \rho)=\left(V_{4}, W_{4}\right)$. The last two statements follow from the definition of the pushout and the fact that (κ, λ) is monic. We now have an exact sequence

$$
0 \longrightarrow\left(V_{4}, W_{4}\right) \longrightarrow(V, W) \longrightarrow(U, Z) \longrightarrow 0
$$

By Proposition 1E(b) and (c) of $\mid 12]$ and the table in 14$]$ this sequence splits. Therefore, (V, W) is pure-projective.

We now give an example to show that "boundcdness of $\left(V_{2}, W_{2}\right)$ " is necessary in the last proposition. Let $\left(V_{1}, W_{1}\right)=(0, C w), w \neq 0$ and $\left(V_{2}, W_{2}\right)=\oplus_{k-1}^{\infty}\left(V_{2 k}, W_{2 k}\right)$ where $\left(V_{2 k}, W_{2 k}\right)$ is of type III ${ }^{k}$ spanned by the chain $\left(\left(v_{21}, v_{22}, \ldots, v_{9, k-1}\right),\left(w_{21}, w_{22}, \ldots, w_{2 k}\right)\right)$. Let

$$
\begin{aligned}
V & =V_{1} \oplus V_{2} \\
W & =W_{1} \oplus W_{2}
\end{aligned}
$$

We make (V, W) a system as follows: Let (a, b) be a basis of \mathbb{C}^{2}. For k even put

$$
\begin{array}{ll}
a v_{2 i}=w_{2 i}, & i=1, \ldots, k-1, \\
b v_{2 i}=w_{2, i+1}, & i=1, \ldots, k-1 .
\end{array}
$$

For $3 \leqslant k$ odd put

$$
\begin{gathered}
a v_{2 i}=w_{2 i} \quad \text { if } \quad i \neq \frac{k+1}{2}, \\
a v_{2,(k+1) / 2}= \\
w_{2,(k+1) / 2}+w, \\
b v_{2 i}=w_{2, i-1}, \quad i=1, \ldots, k-1 .
\end{gathered}
$$

This makes (V, W) an extension of $\left(V_{1}, W_{1}\right)$ by $\left(V_{2}, W_{2}\right)$. For any odd $k \geqslant 3, w$ is contained in the range space of a subsystem of (V, W) that is a direct sum of two subsystems of type $I I^{(k+1) / 2}$ and III $^{(k \cdot 1) / 2}$, respectively. This implies that (V, W) cannot be pure-projective for if it were, then w would be contained in the range space of a finite-dimensional direct summand (X, Y) of (V, W). We now show that this is not possible. Let $m_{0}=$ $\max \left\{m:(X, Y)\right.$ has a direct summand of type III $\left.{ }^{m}\right\}$.

Choose k odd such that $(k-1) / 2>m_{0}$. By the height relation in the proof of 1.4 of $[8] w$ must be contained in the range space of a direct complement of (X, Y) contradicting $w \in Y$. Therefore. (V, W) is not pure projective.

Remark 2.9. By using pullback and/or pushout and the results of this section one can obtain conditions under which an extension of an arbitrary pure-projective system by another pure-projective system is pure-projective.

References

1. F. Anderson and K. R. Riliffr, "Rings and Categories of Modules. Springer Verlag. New York/Heidelberg/Berlin, 1973.
2. N. Aronslajn and U. Fixman, Algebraic spectral problems. Studia Math. 30 (1968), 273-338.
3. J. Dieldonvf. Sur les p-groupes abeliens infinis, Portugal. Math. 11 (1952), 1-5.
4. L. Fixman and F. Okoh, Extensions of pairs of linear transformations between infinitedimensional vector spaces, Linear Algebra Appl. 19 (1978), 275-291.
5. L. Flehs, "Infinite Abelian Groups," Voi. I, Academic Press, New York/London, 1970.
6. R. Kietpynski and D. Simson, On pure homological dimension, Bull. Acad. Polon. Sci. 23 (1975), 1-6.
7. S. Maclane, "Homology," Springer-Verlag, Berlin/Heidelberg/New York, 1967.
8. F. Окон, A bound on the rank of purely simple systems. Trans. Amer. Math. Soc. 232 (1977), 169-186.
9. F. Окон, Direct sums and direct products of canonical pencils of matrices, Linear Algebra Appl. 25 (1979), 1--26.
10. F. Окон, A splitting criterion for pairs of linear transformations, Illinois J. Math. 22 (1978), 379-388.
11. F. Okon, Hereditary algebras that are not pure hereditary. "Proceedings of the Inter national Congress on Representations of Algebras II," Lecture Notes in Mathematics, No. 832, pp. 432-437, Springer-Verlag, Berlin/Heideiberg/New York, 1980.
12. C. M. Ringel, Infinite-dimensional representations of finite-dimensional hereditary algebras. Symposia Math. Ins. Alta Mat. 23 (1979). 321-412.
