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We will calculate (or, in some cases, bound) the global dimension of sub-
rings of M ,(R) having certain specified forms for an arbitrary ring R with
1#0. These subrings are used to provide examples of rings of finite global
dimension with certain properties.

In the first section we consider “tiled triangular rings,” i.e., rings of the
form

R I, - I,
R R :
D= :
: In—l,n

for I, two-sided ideals of R. Such rings have been considered by Fields
[F1], Tarsy [T1, T2], and V. A. Jategaonkar [J-VA1, J-VA2, J-VA3]
when R is a commutative discrete valuation ring or, in the case of [J-
VA2], a commutative Noetherian domain of finite global dimension.
Robson [R2] has been able to compute the global dimension of certain
rings which have particular tiled triangular rings as a homomorphic image.
Using quite different methods, we extend a result Jategaonkar proved when
R is a commutative Noetherian domain of finite global dimension [J-VA2,
Theorem 3.6} to show that the arbitrarily triangularly tiled ring & has
finite right global dimension if and only if rgldim R<oo and
rgldim(R/I; ;, )< oo for i=1,.,n—1 (Theorem 1.9). We calculate exactly
the right global dimension of the tiled triangular ring

R I, I, - I,
= R R I, . : :
. R . In—l
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rgldim I"=sup, <,<,_; {rgldim R, rgldim(R/I;)+ 1} (Theorem 1.6). We
also obtain bounds on the lgidim I" (Theorem 1.8). In this setting, when R
is a commutative Noetherian domain of finite global dimension,
Jategaonkar [J-VA2, Theorem 3.5] proved that when I;=17 for all i
rgldim I"=rgldim R. One of the interesting features of the noncommutative
case is that rgldim I” can be greater than rgldim R. As we will illustrate, [
provides a tool for creating prime rings of computable finite global dimen-
sion from triangular examples (where it is often easier to calculate the
global dimension).

The ring " described above is both a right and left subidealizer in
M, (R). In saying that a ring R is a right subidealizer of 4 in § we mean
that R is a subring of S, 4 is a right ideal of S, 4 is a two-sided ideal of R
and S§4=S5. Robson [R1,R2] and Goodearl [{G] among others have
shown that there are circumstances under which the rgidim R can be
calculated (or in some cases bounded) by knowing, rgldim R/A4, rgldim §,
and the R-homological dimensions of simpie factors of S/R or R/A. The
ring I provides an example of a subidealizer, whose global dimension can
be exactly computed, in M, (R) for any ring R. Some cases when

R I
F"[R R]
has computable global dimension were detailed by Robson as examples of
his idealizer theory [R1, Examples 7.1 and 7.87.

When a ring I is right hereditary, Sandomierski [ S] has shown that efe
is also right hereditary for any idempotent e /. There exist examples of
Artinian rings I” with rgldim I"=2 and rgldim e/ ¢ = oo for an idempotent
e’ [ENN, S]. We conclude the first section in Example 1.13 by con-
structing for an arbitrary positive integer #n > 2 a prime Noetherian P/ ring
I with Krull dimension 1, gldim I'=2 having an idempotent e with
gldim elz =n.

If the homological properties of R/I are to determine the homological
properties of the ring

= x x)

R R

it is necessary that R/I have global dimension at least as great as that of R,
A technical device for accomplishing this involves a generalization of a
result due to Eilenberg, Nagao, and Nakayama [ENN, Proposition 12]: if
R=T,k) is the ring of n by n lower triangular matrices over a field k£ and
N is the radical of R then gldim(R/N?)=n~— 1, while R has global dimen-
sion 1. In the second section (Lemma 2.1), we show that if R=T,(S) is the
ring of lower triangular matrices over a ring S and 7 is the ideal of R con-
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sisting of strictly lower triangular matrices then rgldim(R/I?) = rgldim(S) +
n—1. As it is well known that rgldim(R) = rgldim(S) + 1, it follows that

2

I
rgldim [ﬁ R] = rgldim(S) +n fornz=2.

Proposition 2.2 extends this result; if a given ring S of finite global dimen-
sion is the homomorphic image of a prime ring T of finite global dimen-
sion, then a prime ring I'c M, (T) is described with rgldim I'=
sup{rgldim(7), rgldim(S) +n} (and similarly on the left). Hence by choos-
ing n sufficiently large, rgldim(I") = rgldim(S) + ». Hence for a given ring S,
when such a prime ring T exists, this construction produces a prime ring I”
of finite global dimension, with rgidim(/")=rgldim(S)+# and
lgldim(I") = Igldim(S) + n.

Fossum, Griffith, and Reiten [FGR, p. 74-75] constructed PI rings S so
that Igidim S —rgldim S=m for any preassigned positive integer m > 2.
The second section concludes by using the methods described above to
provide such examples which, in addition, are prime (Example 2.6).

The third section uses the results of the preceding sections to construct in
Example 3.2 a prime PI affine ring of differing right and left global dimen-
sions. By an affine ring we mean an algebra over a commutative field which
is finitely generated as a ring over the field.

The authors wish to thank Professors L. W. Small and J. C. Robson for
useful conversations regarding this work.

I. TiLeD MATRIX RINGS

In this section we compute and give bounds for the global dimensions of
certain tiled traingular matrix rings. Throughout this section I” will be a
ring of the form

R I, I - 1,

R R I . I,
r=| . y .

: R I, .,

where each [; is an ideal of the ring R.

In calculating the global dimension of I, modules of a particular
type will play an important role. Let 4,24,2 - 2 4, be a sequence
of right R-modules such that A J,<A, for i<k, k=2,..n Let
M=[A4,,A4,., 4,]=A, P A4,® --- ® A, as R-modules, writing elements
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of M as row vectors; M can be considered a I-module by right matrix mul-
tiplication. The symbol [4,,..., 4,,] will always denote this situation.

Lemma 1.1, If A is a right R-module, then hd {4, A,.., A]=hd A.

Proof.  The proof is exactly the same as the proof that the homological
dimension of [ 4,.., 4] over M,[R] is equal to the homological dimension
of 4 over R.

LeMMA 1.2, If A is a projective R-module, then M =[A,.., A, Al ;, ...,
Al ) is I-projective.

Proof. f A=R, then M is a direct summand of I} hence the result is
true if 4 is R-free. If 4 is a direct summand of a free R-module F, then M is
a [-direct summand of the projective I-module [F,.., F, FI, ., .., FI, ,].

The following lemma will be used in determining a lower bound for the
global dimension of I'. Let e, ; denote the usual matrix units; for j</,
e el

LemMa 1.3, Consider the I'-module M =[P, K, X;,..., X, where Pis a
projective R-module. Then hd g, ,(P/K)<hd M.

Proof. The proof will be by induction on m =hd [P, K, X5,..., X,,]. For
m=0, we will prove the conclusion for M=[P K, X;,.,X,]. Let
{fy}€Hom (M, ) and [p,, k,,%,] where x, denotes the row vector
[X3,..X,], be [I-projective coordinates for M. Define R/I -
homomorphisms F,: P/K— R/[, by F(p+K)=ef ([p,0,..,0 e+ 1,
where e = ¢, in I. To show that the F,’s are well-defined it suffices to show
that ef ({k,0,..,0]) e, for all ke K. Then

J[k,0,..,0]) = f([0, &, 0,.., 0] e5,) = f,([0, %, 0,.., 07 ) e,.

Let f([0,%,0,.,0])=(a,); note that a,el;,. Then e¢f ([£,0,..0])e=
ef ([0, k,0,.,0]) e, -e=ela,) eyye=a,,. Thus F, is well-defined.

We claim that {F,} and {p,+ K} are R/I,-projective coordinates for
P/K. Identify el'e with R and [P, K, X;,.., X,,] e with P. Since {f,} and
{[p,, k,, X,]} are I'-projective coordinates for [P, K, X;,..., X,,], we have

L2, 0,... 0] =2 Pas ks, X1 £[ £, 0,..., 0F)
=201Pa koo X, 1(efu[P, 0,0, 0]) + (1 =€) £o([ 2, 0,..., 0T))
=2A[7s 0,... 01 /([ P, 0,... 01 + [0, &, X, 7 fu([ £, 0., OT}),

where ({0, k,, %,] f.([p,0,..,0])) ee K since x;,..., x, are contained in K
Hence
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2(pa+ K) Fy(p+K)
=2(Pat KNef [P, 0,... 01} e + 1,5)
=20.¢fo{[P,0,... 0]) e+ K
=20, ko, X, 1 ef ([P, 0., 0]) e+ K
=310,,0,.,01f([10,.., 0D e+ K
=([p,0,.,0]1-2[0,k,, x,1 £ ([P, 0,..,0]))e+ K (by the above)
=p+K

Therefore P/K is R/I,,-projective.
Inductively assume that whenever hd [U, V, Y;,.., Y, ] =s<m with U

R-projective, then hd ,, (U/V) <s. Suppose hd [P, K, X;,..., X, ] =m.
Consider a [-projective presentation of M

0— ker— Q"> M — 0.

Since M can be resolved using a direct sum of projective I-modules
of the types given in Lemma 1.2, we may assume that Q is the
form [Q,, 0,...,Q0,] with Q, a projective R-module. Since o 1s a
I-homomorphism, o(g) ;= a(qge;), and thus for each i we have an exact
sequence of R-modules

0-K,->Q0,-M -0,

where 0, = Qe;, K;=Ker ¢, etc. Hence we can write ker =K, K,,... K, ].
Since P is a projective R-module, the sequence
0-K,-Q,—-P->0

splits, and hence K, is a projective R-module. Since M is not projective,
hd Ker=m~1, and by the induction hypothesis hd, (K,/K,)<m— 1.
The module Q is I'-projective, so Q,/Q, is projective as an R/I,,-module.
We have an exact sequence of R/I,,-modules

0-(Q2+K,)/Qr~> 01/Q>—~ 0:/(Q2+ K,) (x P/K) - 0.
Noting that @, n K, = K,, we have the following lattice diagram.
0,+K,

9, K,
K,
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Hence (0, + K,)/0,~K,/K,. Thus the above exact sequence yields that
hd g, (P/K)<m.

The following proposition establishes a lower bound on the giobal
dimension of I. We define the global dimension of the zero-ring to be —1.
We allow the possibility that any of the dimensions in the inequality of the
following proposition might be infinite.

ProrosiTiION 14. Let

R I, I; - 11,

R R I, I,

r= :
R 1, .,

Then rgldim I > sup{rgldim R, rgldim(R/I; ,, )+ 1}.

Proof. The proof will be by induction on »n. The case n=1 is trivial.
Inductively assume that the result is true for all such tiled matrix rings of
size less than n. Let e=e,,+ -+ +e,, Then efe is isomorphic to the
(n—1)x{(n—1) tiled matrix ring

R Iy 1,
R R 134 ]3;7
R Infl‘n

and hence by induction rgldim ele > sup{rgldim R, rgldim(R/I, ;. )+ 1}.
By Harada [H] rgldim I" = rgldim e/le.

Let R>K=21I, be such that hdg,, (R/K)=rgldim R/, If
M={R K Kl,;+15,.,KL,,+1I,,], then M<e, I is a right ideal of I
which by Lemma 1.3 has hd M >hd,, (R/K)=rgldim R/I;,. Hence
rgldim I > rgldim(R/7,,) + 1.

We next consider a tiled triangular matrix ring of a special form. Let

R I, I, - I,
R R I I,
= :
R I,
R R - R

for ideals I, 21,2 -~ 21, ; of R.

481,/109/1-6
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As before we consider right Imodules of the type [4,,..,4,]. Of
course, not every right I-module is isomorphic to a module of this type,
but if M is an arbitrary /-module, M does have a homomorphic image
which is of this type. Let e,=¢; and let h;=e¢;. We claim the map
oM — [Mh,, Mh,,.., Mh,] is a [I-module homomorphism onto a
I'-module of the type described above. Since mh; ., =ml(e;, ;) h;€ Mh,, we
have Mh;, = Mh;, Next note that for ael,_, and mh,eMh,
mh;a=mh;e,a=mhlae)h, € Mh,. Hence [Mh,,., Mh,] is of the
desired type. It is not hard to check that ¢ is a I'-homomorphism. Let

R I I, - I,
I, I
s=xnr= |80 R At
R Il 12 In;l

the right ideal J is a two-sided ideal of I', J-is projective, and (ker ¢) J=0.
For an arbitrary I-module M the exact sequence 0 —kero— M —°
[Mhy,..., Mh,] -0 and the fact that ker o is a module over I'/J will be
useful in computing hd - M.

LemmA 1.5, hd [4, 4,,.., 4,]<sup;{rgldim R, rgldim(R/I;) +1}.

Proof. Consider the exact sequence

0->[4,,45,..,4,1-[4,,., A;]— Coker - 0.

Let
(R I, I, I I, ||
R I, I, I I, ,
| R R L& L I, ,
R I
| R R I, |

be the ideal of I" obtained from I’ by replacing the entry in the i, ith
position by -I,_,; K is a two-sided ideal of I which is projective as a
right ideal. Since (Coker) K=0, Coker is a module over I'/K. The ring
I'/K is isomorphic to (R/I) % (R/I,)x --- x (R/I,_;). Hence hd Coker <
sup{rgldim(R/I;)} +1. By Lemma 1.1, hd [4,,.,4,]=hdzA4,, hence
hd, [4,, 4,,.., 4,] <sup{rgldim R, rgldim(R/I,)+1}.
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TueoreMm 1.6. Let

'R 1, L, - 1,
R R I, :
=
R I _,
_R R - R R

Then rgldim I'=sup, ., ., {rgldim R, rgldim(R/I,) + 1}.

Proof. By Proposition 1.4 rgldim I'>sup, .,.,_,{rgldim R, rgldim
(R/I)+1}. To show the other inequality consider the sequence

0—— kerg—— M —"> [Mh,, Mh,,..., Mh,]— 0.
As noted earlier, (ker ) J=0. Since J= K"~ ' (K as defined in the previous
lemma), the factors of the filtration
Ocikero) K" *c(kerc) K" *c --- c(kerg)K<kero

are all modules over I'/K. Hence the homological dimension of each factor
is less than or equal to sup{rgldim(R//,}} + 1. Consequently hd, ker o <

sup{rgldim(R/I;)+ 1}. By Lemma 1.5 hd [ M#h,,.., Mh,] <sup{rgldim R,
rgldim(R/1;) + 1}; hence the same bound holds for hd M.

COROLLARY 1.7. Let

R I I I
R R I i
=

R R R I

R R - R R
Then

rgldim /"= sup{rgldim R, rgldim(R/7) + 1}

and

lgldim I"= sup{lgldim R, lgldim(R/T)+ 1 }.

We next obtain bounds on the left global dimension of

R I, I, - I,
R R I,

r=1. R
: I
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THEOREM 1.8.

sup{lgldim R, lgldim(R/I,) + 1} <lgldim I
< sup {lgldim R, lgldim(R/I})+n—k}.

I<ksn—1
Proof. We begin by noting that I is both a right and a left subidealizer
in S=M,(R); it is a left subidealizer at the left ideal
R I I, - I, ,
A= 1" . :
R Il 12 "ot I

n—1

and a right subidealizer at the right ideal

I

n—1

Thus by [R2] for any left S-module, hd(sM)=hd(,M). Note that Sis a
projective [-module.

We note that the lower bound holds by Proposition 1.4. The proof of the
upper bound is by induction on #n, the case n=1 being trivial and case
n=2 by above.

Consider the exact sequence 0 > 1" > S— §/'—0 and let M be an
arbitrary left 7I-module. The long exact sequence of Tor gives
0="Tor}(S, M) - Tor}(S/[,M)>T'Q®, M-SR, M- (S/INQ M- 0.
Let M be the image of I'® M in S® M. We obtain two exact sequences
of left I-modules

0— M- S® M- (S/I)QrM—0 (1)

and
0 — Tork.((S/I"), M) » M — M — 0. (2)

In sequence (1), hd (S® M) =hd o(S® M) < gldim R. Since (S/R)&® M
is a left module over I'/B and B is a projective left I-module we have

hd A((S/IY® M) < lgldim(//B) + 1.
Therefore hd(M)<sup{gldim R, gldim(//B)+1}. In sequence (2),
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Tor {(S/I"), M) is a left module over I'/B; hence hd {Tor {((S/7), M}) <
lgldim(/7/B)+ 1. Therefore since M is arbitrary,

lgldim I" < sup{lgldim R, lgldim(//B)+ 1 }.

Furthermore
R/I, LI, L, - Ly,
R/Infl R/In—l 12/],1,1
I'/B=x )
In—2/‘rn)l
R/Infl R/Infi

a ring to which the induction hypothesis applies. Hence lgldim /"<
sup{lgldim R, sup{lgldim(R/I, ), lgldim(R/I;)+n—1—k}+1} giving
the desired result.

We now obtain an upper bound on a general tiled triangular ring.

THEOREM 1.9. Let

R I, - I,

| R R n
: In—l,n ,
R R - R

sup{rgldim(R), rgldim(R/L;,,,)+ 1} < rgldim /" < sup{rgldim(R),
rgldim(R/L,_, )+ 1} +n—2+>" 2 reldim(R/I, ;). Hence rgldim I'< oo
if and only if rgldim(R/I, ;, )< 0 for i=1,..,n—1 and rgldim R < c0.

Proof. The lower bound follows from Proposition 1.4. The proof of the
upper bound is by induction on »; the case n=2 follows by Theorem 1.6.
Inductively assume the upper bound for matrix rings of smaller size.

Let U be an arbitrary right ideal of I We can write U~ [U,,.., U,],
where U;~ Ue;. Let e=ey+ - +e,,. The induction hypothesis applies
to

R 123 IZn
R R
ele=| . R
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and hence rgldim(ele) <sup{rgldim(R), rgldim(R/I,_, ,)+1}+n—3+
n- 2 rgldim(R/I; ;). Consider the exact sequence of right I" modules,
0-[U,, U,, Us,.., U, 1> [U,, U,,.., U,] —coker — 0.

Let
Iy, I, Iy - I,
R R Iy
J=1 . R
: In;l,n

be the two-sided ideal of " obtained from I" by replacing the R in the
1,1 position by the ideal I,,; note that I'/J= R/I,. Since coker is a
module over I/J, hd,(coker) < hd, (J)+ 1+ rgldim(R/I,). Clearly
hd (J) = hd, [I, 15, I3, I;,]. Note that [I, I, Ij30, 11,] =
(12, L1300 11,1 Qe el. Hence by [H], hd, [, I, iz I1,] =
hd, ;. [ 12, L1350 I1,]. Therefore hd,(coker) < (rgldim(efe)—1)+1+
rgldim(R/I,). Similarly hd [ U,, U,,.., U,]=hd, . [U,, Us,.., U,]. Since
[U,, Us,.., U,] is a submodule of a projective ele-module M (R)e,
hd {U,, U,,.., U, ] <rgldim(ele)— 1. Therefore hd(U)<rgldim(ele)+
rgldim(R/1,,) and hence rgldim I" < rgldim(el e} + rgldim(R/I,) + 1, giving
the result.

In the case that R is a commutative Noetherian domain of finite global
dimension, Theorem 1.9 reduces to the following result of Jategaonkar.

CororLLARY 1.10. [J-VA2, Theorem 3.6]. Let R be a commutative
Noetherian domain of global dimension d < co. Then a triangular tiled order
Iin M, (R) has finite global dimension if and only if gldim I'<(n—1)d.

Proof. When R is a commutative Noetherian domain of finite global
dimension d < oo, if gldim(R/I) < oo then gldim(R/I) < d— 1, and hence the
inequality in the preceding proposition reduces to gldim I'<d+ (n—2)+
n—20d—1)=mn—1)d

We note that in [J-VA2, Proposition 3.8 ] an example is given of ideals
I; in any regular local ring R of global dimension 2 so that a particular
triangular tiled order in M,(R) has gldim I'=2(n— 1), and hence the
upper bound above can be attained.

ExampLE 1.11. To illustrate these constructions, consider the subring of
M, (Z)
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Z 2Z - 223
Z Z .
R=
Z 27
Z Z
and the ideals ~ _
2Z 2Z ... 27 2z 2z
zZ 2z ... 2Z 22 22
I= . and J= z - ;
y . ) )
zZ - Z 2Z ' L2
\z - Z 27 27

we have gldim R=1, R/J~ T, (Z,)/N? so that gldim(R/J)=n — 1. It foilows

that I'= [} 11 is a Noetherian prime PI ring of Krull dimension 1 and global
dimension n.

The following result follows from Theorem 1.9.

ProrosiTiON 1.12. Let

I'=

P I
O~
Yo S

Jor I, J two-sided ideals of R, ’<J< I Then rgidim I"<sup{rgldim R,
rgldim(R/I)+ 1} + 1 + rgldim(R/).

We note that when R is a commutative discrete valuation ring, 7 is the

maximal ideal of R and J = I?, Tarsy [T1, Theorem 10 or 11] showed that
rgldim /"= 2; hence the upper bound above can be assumed.

ExampLE 1.13.  Applying the preceding proposition to the ring R and the
ideal I of Example 1.11, we have

R I J
I'= |R R I with gldim(R/I} =0, so gldim I"< 2.
R R R
Letting
1 00
R J .
e=10 0 0], ele= and gldim(ele)=n.
0 0 1 R R

85
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Thus, even for a Noetherian prime PI ring of Krull dimension 1 and global
dimension 2, there is no bound on gldim(el'e), even when these are finite.

II. BUILDING PRIME RINGS

In this section we will generalize a result of Eilenberg er al. [ENN,
Proposition 12] which we will then use to reduce the problem of finding a
prime P affine ring of differing right and left global dimensions to finding
an affine PI ring of differing dimensions, which is a homomorphic image of
a prime PI affine ring of finite global dimension, where the kernel of the
homomorphism is finitely generated as a two-sided ideal.

Throughout this section let S be an arbitrary ring, 7, be the ring of
lower triangular m x m matrices over S, L be the ideal of strictly lower
triangular m x m matrices over S, and W, =T,/L>. If aeT,,, we will
denote the coset a+ L? by a*; every coset of W, has a unique bidiagonal
representation of the form

= 0 0
* x 0 0
0 =

* x 0
0 0 *x =

THEOREM 2.1.
rgldim W, =rgldim S+m —1
and

lgldim W,, = lgldim S+ m — 1.

Proof. We will prove rgldim W,, < rgldim S+ m —1 by induction on m.
The case m =1 being trivial, inductively assume that the result is true for
size m— 1 by m—1 (or smaller). Let n=rgldim S.

The ring W,~[; »° 1 By Field’s results [F2, Corollary5]
rgldim W, <sup{rgldim W, _, +rthdgS+ 1, rgldim S} <n+m—1.

Let 7 be a right ideal of S with rhd7=n—1. Then

0 0
hd, | . =n—1
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For a right ideal I of S let N (I) be the right ideal of 7, N () =185.,.., S,
L 0..., 0] obtained by taking the kth row of T, and restricting the diagonal
clements to elements of I. For a right S-module Ulet M (UY=1{U, U,..., U,
0, 03 = {(tt oy ). u;eU, u;=0 for j>k}. Note that for k>3
M (UYL*=M, 2(U); by My(V) we mean C. It is not hard to see that
hd . N,(1)* =n since hd[g 07 [ 9% =n

We will next prove that hd, N, (J)* =n4k —2. The proof is by induc-
tion on k; the cases k=1, 2 having been done, take k= 3.
Let 0—» K— @ —~77-0 be a short exact sequence of S-modules with @
S-projective. Consider the exact sequence of W, -modules
0— ker 6 — My _y(SYMy_5(S)® MUQ) My 5(Q)—= N(I)* — 0
{*)

given by
G{a*, b*y=6{(51s0s Si— 15 0y, OY+ M, 5(S),
(G1oees Gis Q0o Q)+ M, (0))
={0(q )~ Sy O{Gp_ 1) — S5 _1, (g}, O, O)F.

Note that ker ¢ = {({(s(, S¢_150pe OV + M, _5(S), (g1 41, G,r G} +
M, ,(0)):q,€eK and o(q,_,)=s5,_,}. Consider the following W,-
submodule of ker g:

A= {{a*, b*)eker ¢: q,_, €K (this implies 5, , =0)}}.

We have the following exact sequence of W, -modules
O~ M, J(S)M_3(S)— N (SYM_5(S)—> N ()M 5(5)—=0.
(%)
Define a map o ker 6 » N, _ ()M, AS) by

wa*, 5*) = (0(qy)ss 0(gx 1) 0y O) + N (T} M _5(S).

It can be checked that « is well defined, onto, and that ker a = A. But
Ax M, S(SYM, (S)® M (K)/M,_ ,(K) under the W, -map that takes
(a*, b*) to (a*, (0,.,0, 9, 1, G, Oy 0) + M, ,(K)). One can check that
By, M (SYM,_(S)=k—1 and  hdy, (M UYM,_5(U))=hds(0),
Hence hd, A4 =sup{k—3,n—2}. By induction hdy, Ny ()M _5(S)=
n+k~—3 and hdy, (M, _(S)/M,_+(S})=k —3; thercfore (+x) shows that
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hdy, (N (/M _5(S))=n+k—3 (n=1). Considering the exact
sequence of W, -modules

0—A—keré— N, (I)/M,_,(5)—0

and the long exact sequence of Ext yields hd,, ker 6 =hd, N, ,(I)/
M, _5(S)=n+k—3 provided n>=2  Since M,_(S)/M,_;(S®
M (Q)/M, _,(Q)is W,-projective, sequence (x) shows that hd,, N (I)*=
n+k—2 for n=2. By considering the right ideal N,,(I)*, we have that
rgldim W =n+m— 1, and hence we have equality (n>=2).

Since W, (S[t])~ W, (S)[t], the restriction that n be greater than or
equal to 2 can be removed.

ProrosITION 2.2. Let T be a ring and I be an ideal of T. Let I be the
subring of M (T)

T I I

T T I I

I'= :
1

T T

and let L be the ideal of T’

I I 1

I I I I
L=|T I :
: I

T --- TI 1

having I on the diagonal and subdiagonal, and let @ be the ring ®=[1%].
Then

(1) rgldim @ = sup{rgldim 7, rgldim(7/I) + n} and lgldim @ =
sup{lgldim 7, lgldim(7/I)+ n}.

(2) If T is prime and I is nonzero, then @ is prime.

(3) If Tis Plsois ®.

(4) If T is right Noetherian, then so is .

(5) If T is affine and I is finitely generated as a two-sided ideal, then @
is affine.

(6) If rgldim(7/I)=+1gldim(T/I), then for n sufficiently large,
rgldim @ # 1gldim @.
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Proof. The results follow easily from Coroliary 1.7 and Proposition 2.1
since I'/L~T,/L* for S=T/L.

This result will be used in the next section to produce a prime, affine P
ring of differing right and left global dimensions. As a simple illustration of
this proposition, we next use it to construct prime P7 (but not affine) rings
of differing right and left global dimensions. First we need the following
result of Small [Sm3].

LemMa 2.3 If R is a left subidealizer in a ring T of a left ideal M of T
then

lgldim(R) < sup {Igldim(T), lgldim(R/M) + hd o(R/M) + 1.

In particular, if T and R/M both have finite left global dimension, so does R.

The arguments of [ G, Theorem 2.107 can be used to prove the following
result.

LemmMa 24. If R is a left subidealizer in T of a left ideal M of T then
rgldim R <rgldim T+ rgldim(R/M) + 1. In particular, iff T and R/M boih
have finite right global dimension, so does R.

ExAMPLE 2.5. Let R be a commutative discrete valuation ring with
quotient field K, let T'= [ R4 GKIx1 <81 and let I be the two-sided ideal of T
I=[kbd SKF1 Then T/I=[% %] which has rgldim(T/I)=2 and
Igldim(7/1) = 1. Since

x 077! T—x 07 [R+xK[x] K[x]]

0 1 Lo 1] | xK[x] K[x]J'
T has the same right and left global dimensions. As T is a right subideaiizer
in My(K[x7), it follows from Lemma 2.3 that rgldim T < 3. Hence by choos-
ing n=3 in Proposition 2.2, we can construct a prime Pl ring @ with

rgldim @ =5 and lgldim @ =4; the ring & is a subring of M ,(K[x]) and
has the same PI degree as M ,(K[x]).

The results of this section can be used to easily produce prime PI rings I
with Igldim /" rgldim I"=m for any preassigned positive integer m = 2.

ExaMPLE 2.6. Following the Fossum, Griffith, and Reiten constriction,
let S be a commutative Noetherian integral domain of sufficient cardinality
such that its field of quotients Q has 2<hdsQ=gldim S=n<oo (see
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Osofsky [0, Corollary 6.8]). Let R=Q[x,..., X,,_ ] be the polynomial ring
in m—1 commuting indeterminates with L <m—1<n. The ring I'=[§ 3]
has 1gldim I —rgldim I"'=m [FGR, p.74]. Let T=[%] 'REl4] where
R[t] is the polynomial ring over R in the commuting indeterminate t. Then T
is a left subidealizer in M,(T[t]) of the left ideal [ {11 'RF171; hence by Lem-
mas 2.3 and 2.4 T has finite right and left global dimensions. Let I be the two-
sided ideal of T, I=[""7 k1], where M = (t, X ..., X, ) is the maximal
ideal of R[] generated by {t,x,,.,X,_}. Then T/I=[§ %]. Thus by
choosing sufficiently large matrices, Proposition 2.2 guarantees the existence
of a prime PI ring of left global dimension k + n + m and right global dimen-
sion k+n.

ITI. AN AFFINE EXAMPLE

In this section we will use the results of the previous sections to construct
an affine prime PJI ring with differing right and left global dimensions.
Auslander [A] showed that for right and left Noetherian rings the right
and left global dimensions are equal; elsewhere we have shown [KK] that
affine PI right hereditary rings are left hereditary. Kaplansky [K] gave the
first example of a ring with differing global dimensions; other examples
were given by Small [Sm1, Sm2]. Jategaonkar [J-AV ] has shown for all
m,n, l<m<n<oo there is a left Noetherian ring R with Igldim R =m,
and rgldim R =n; as mentioned in the preceding section, Fossum, Griffith,
and Reiten [FGR] produced PI rings whose right and left global dimen-
sion differ by any preassigned integer greater than or equal to 2. We
first note that since affine rings are countable dimension vector spaces
over a field, the right and left dimensions of an affine ring can differ by
at most 1 [Je].

The constructions [Sml, Sm2, FGR] are based on triangular matrix
rings; our present construction is as well. By the results of the previous sec-
tions, it suffices to produce an affine PI ring 4 of differing right and left
global dimensions, an affine prime PI ring I” of finite right and left global
dimensions with two-sided ideal L, with L finitely generated as a two-sided
ideal of I', and I'/L ~ A. To construct 4 we use the following lemma, which
is an immediate consequence of Corollaire to Theoréme 1 [PR].

LemMA 3.1.- The ring A=1[5§ 7] with Mg a bimodule and gldim S=0
has lgldim A =sup{lgldim R, hdxM +1} and rgldim 4 =sup{rgldim R,
wdxM+1}.

The ring 4 is now easily constructed. Let R=[*[y1 jlx= %] and
=[§ “Tx¢""1] for any field k; it is not difficult to show that R 1s an affine
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ring of rgldim R =lgldim R=2, N is a two-sided ideal of R with hd ;N =1,
and wd ,N=0. Let

R R/N

A= k 0 ;
o |5 ¢l

i

then A is an affine PI ring with rgldim 4 =2 and lgldim 4 =3.

ExamprLe 3.2. To construct an affine prime PI ring I” of finite giobal
dimension having 4 as a homomorphic image, we begin by defining such a
ring T mapping onto R. Let S=k[x, x~ ', 1] and T=[*Ix]+5 $7. Clearly
T is an affine prime PI ring, and by Lemma 2.3, Igldim 7< 3 (it can be
shown by other methods that lgldim T=2). Since in M,(Q(S))
[4 91" 714 91 =[5 ], lgldim T'=rgldim 7. Now =[5 57 is a
two-sided ideal of T with T//a~ R; it is easy to check that [ is finitely
generated as a two-sided ideal of 7. Furthermore /=[5 51 is a finitely
generated two-sided ideal of T with T/J~ R/N; note that 17T <7< J. Next
let

T T
k 0 ;

tT l: 0 k] + zTJ

one can check that ¥ is an affine, prime (it contains M ,(1>S), an essential
ideal of M4(S)) PI ring. Lemmas 2.3 and 2.4 show that 3 has finite right
and left global dimensions, since it is a right subidealizer of the right ideal
U=[}5 51in M,(T) and 3 /U and M,(T) both have finite right and left
global dimensions. Let K=1[/ 71; it is easily checked that K is a two-
sided ideal of 3" and > /K~ 4. We would be done if K is finitely generated
as a two-sided ideal of 3", but it is not. However, the only problem in
generating K is producing all of S in the first row, fourth column entry of
K; the matrix unit e, generates only k[x]+ 5. Hence we modify 3 as
follows. Consider the ring @ =[7 7753; it is not hard to check that £ is
an affine prime PI ring; since both 7 and 7/~ 4 have finite global dimen-
sions, so does 2 by Corollary 1.7. Furthermore, X is a right ideal of £ and
s K, is finitely generated as a bimodule. Finally, consider the ring
I'=[% K7; it is easily checked that I"is an affine prime P/ ring which has
finite global dimensions because it is a right subidealizer of L=[5 &7 in
M,(£2), a ring of finite global dimensions, and 7/L =3 /K~ A. The ring 7,
a subring of M,(S), may itself have differing right and left giobal dimen-
sions, but Proposition 2.2 guarantees the existence of an affine prime P/
ring of differing right and left global dimensions.

Y=
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