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Abstract

In the context of two-path convexity, we study the rank, Helly number, Radon number, Caratheodory
number, and hull number for multipartite tournaments. We show the maximum Caratheodory number of
a multipartite tournament is 3. We then derive tight upper bounds for rank in both general multipartite
tournaments and clone-free multipartite tournaments. We show that these same tight upper bounds hold for
the Helly number, Radon number, and hull number. We classify all clone-free multipartite tournaments of
maximum Helly number, Radon number, hull number, and rank.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Convexity has been studied in many contexts. In graphs and digraphs, convex sets are usually
subsets of the vertex set determined by paths within the graph. For a (directed) graph T = (V, E)

and a set P of (directed) paths in T , a subset A ⊆ V is P-convex if, whenever v, w ∈ A, any
(directed) path in P that originates at v and ends at w can involve only vertices in A. For S ⊆ V ,
the convex hull of S, denoted C(S), is defined to be the smallest convex subset containing S. We
denote the set of convex subsets of T by C(T ).

In the case P is the set of geodesics in T , we get geodesic convexity, which was introduced by
F. Harary and J. Nieminen in [6] (see also [2] and [1]). When P is the set of all chordless paths,
we get induced path convexity (see [4]). Other types of convexity include path convexity (see [8,
7]) and triangle path convexity (see [3]). This paper considers two-path convexity, in which the
path set P is the set of all 2-paths (see also [10,5,9]).
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The most studied convex invariants are the Helly, Radon, and Caratheodory numbers (see [11,
Ch. 2]). Let T = (V, E) be a (directed) graph, and let F ⊆ V . Then F is H -independent if⋂

p∈F C(F − {p}) = ∅. The Helly number h(T ) is the size of a largest H -independent set. The
set F is C-independent if C(F) 6⊆

⋃
a∈F C(F−{a}). The Caratheodory number c(T ) is the size

of a largest C-independent set. Equivalently, it is the smallest number c such that for every S ⊆ V
and p ∈ C(S), there exists F ⊆ S with |F | ≤ c such that p ∈ C(F). F is R-independent if F
does not have a Radon partition; that is, there is no partition F = A∪ B with C(A)∩C(B) 6= ∅.
The Radon number r(T ) is the size of a largest R-independent set. We caution the reader that
the Radon number is often defined as the smallest r for which every set of size r is R-dependent.
This is one larger than the definition given here.

We say F is convexly independent if, for each p ∈ F , we have p 6∈ C(F − {p}). The rank
d(T ) is the size of a largest convexly independent set. Any set that is H -, C-, or R-independent
must also be convexly independent, so rank is an upper bound for the Helly, Caratheodory, and
Radon numbers. Finally, F is a hull set if C(F) = V . The hull number hul (T ) is the size of a
smallest hull set and is also bounded by the rank.

Let T = (V, E) be a digraph with vertex set V and arc set E . We denote an arc (v, w) ∈ E by
v → w and say that v dominates w. If U, W ⊆ V , then we write U → W to indicate that every
vertex in U dominates every vertex in W . We denote by T ∗ the digraph with the same vertex set
as T , and where (v, w) is an arc of T ∗ if and only if (w, v) is an arc of T . Recall that, for p ≥ 2,
T is a p-partite tournament if one can partition V into p partite sets such that every two vertices
in different partite sets have precisely one arc between them and no arcs exist between vertices
in the same partite set. Two vertices are clones if they have identical insets and outsets, and T
is clone-free if it has no clones. If u, v, w ∈ V with u → v → w, we say that v distinguishes
the vertices u and w. Note that in a clone-free multipartite tournament, for every pair of vertices
u, w in the same partite set there is at least one vertex (not in that partite set) that distinguishes u
and w. If A, B ∈ C(T ), we denote the convex hull of A ∪ B by A ∨ B. If v, w ∈ V , we drop the
set notation and write {v} ∨ {w} as v ∨ w.

One can construct the convex hull of a set U ⊆ V in the following way. Define Ck(U )

inductively by C0(U ) = U and Ck(U ) = Ck−1(U ) ∪ {w ∈ V : x → w → y for some x, y ∈
Ck−1(U )}, k ≥ 1. Then C∞(U ) = C(U ).

To facilitate our study of bipartite tournaments, we introduce the following matrix notation.
Let P1 = {x1, . . . , xk} and P2 = {y1, . . . , y`} be the partite sets of T . For i and j with 1 ≤ i ≤ k
and 1 ≤ j ≤ `, let mi, j = 1 if xi → y j and let mi, j = 0 otherwise. We call M = (mi, j ) the
matrix of T .

2. Inequalities involving the Caratheodory number

In this section, we explore the Caratheodory number of a multipartite tournament T . The
following two results show c(T ) ≤ 3.

Lemma 2.1. Let T be a multipartite tournament. Suppose U ⊆ V and p ∈ C(U ).
(i) There exists F ⊆ U, |F | ≤ 3 with p ∈ C(F).
(ii) If U lies in a single partite set of T then there exists F ⊆ U, |F | ≤ 2 with p ∈ C(F).

Proof. If |U | ≤ 2 or if p ∈ U , the result is trivial, so assume |U | ≥ 3 and p 6∈ U . Since
p ∈ C(U ) and p 6∈ U then there is a smallest positive integer k such that p ∈ Ck(U ). If U does
not lie in a single partite set of T , then there exist u, v ∈ U with u and v in different partite sets.
Since k is the smallest positive integer with p ∈ Ck(U ) then there exist x1, y1 ∈ Ck−1(U ) with



D.B. Parker et al. / European Journal of Combinatorics 29 (2008) 641–651 643

x1 → p → y1. At least one of u or v is not in the same partite set as p, so u → p, v → p,
p → u or p → v. In any case, p ∈ u ∨ v ∨ x1 or p ∈ u ∨ v ∨ y1 so p ∈ u ∨ v ∨ z1 for
some z1 ∈ Ck−1(U ). Since k was minimal, z1 6∈ Ck−2(U ), and so there exist x2, y2 ∈ Ck−2(U )

with x2 → z1 → y2. At least one of u or v is not in the same partite set as z1, so u → z1,
v → z1, z1 → u or z1 → v. Thus z1 ∈ u ∨ v ∨ x2 or z1 ∈ u ∨ v ∨ y2, so z1 ∈ u ∨ v ∨ z2 for
some z2 ∈ Ck−2(U ). Now p ∈ u ∨ v ∨ z1 implies p ∈ u ∨ v ∨ z2. Continuing in this way we
generate a sequence of vertices, z1, z2, . . . , zk with p ∈ u ∨ v ∨ zi and zi ∈ Ck−i (U ) for each i .
In particular, zk ∈ C0(U ) = U and p ∈ u ∨ v ∨ zk .

Now suppose U lies in a single partite set of T . Since C(U ) 6= U , there exist u1, u2 ∈ U and
v ∈ V such that u1 → v → u2. Repeat the above argument with u1 and v to create a sequence
z1, z2, . . . , zk such that zi ∈ u1 ∨ v ∨ zi+1 for 1 ≤ i ≤ k − 1, p ∈ u1 ∨ v ∨ zi and zi ∈ Ck−i (U )

for each i . Let u3 = zk ∈ U . Then p ∈ C({u1, v, u3}) ⊆ C({u1, u2, u3}). By construction, either
u1 → zk−1 → u3, u3 → zk−1 → u1, v→ zk−1 → u3 or u3 → zk−1 → v.

Assume that u1 → zk−1 → u3. If v → u3 then v ∈ u1 ∨ u3 and p ∈ u1 ∨ u3, so
assume u3 → v. Similarly, if zk−1 → u2 then zk−1 ∈ u1 ∨ u2 and p ∈ u1 ∨ u2 so assume
u2 → zk−1. Then u3 → v → u2 and u2 → zk−1 → u3 imply v, zk−1 ∈ u2 ∨ u3. We next
show that zk−2 ∈ u2 ∨ u3. If zk−2 is in the same partite set as U then, by construction, either
v → zk−2 → zk−1 or zk−1 → zk−2 → v. On the other hand, if zk−2 is not in the same partite
set as U then zk−2 is comparable to u1 and u3. If u1 → zk−2 → u3 or u3 → zk−2 → u1 then
p ∈ Ck−2(U ) which is impossible. Thus, u1, u3 → zk−2 or zk−2 → u1, u3. By construction,
either zk−1 → zk−2 → u1, u1 → zk−2 → zk−1, zk−1 → zk−2 → v or v → zk−2 → zk−1. In
any case we obtain zk−2 ∈ u2 ∨ u3. Continuing in this way, we obtain p ∈ u2 ∨ u3 proving (ii).
The case u3 → zk−1 → u1 is similar.

If v → zk−1 → u3 then by the above argument we may assume zk−1 → u1. Since
v ∈ C({u1, u2}), we have zk−1, p ∈ C({u1, u2}). The case u3 → zk−1 → v is similar. �

Theorem 2.2. Let T be a multipartite tournament. Then c(T ) ≤ 3.

Since singleton subsets are convex, the Radon number of a multipartite tournament with
|V | ≥ 2 is at least 2. If r(T ) = 2, then every triple {u, v, w} ⊆ V has a Radon partition,
which is, without loss of generality, {u, v} ∪ {w}. Then w ∈ u ∨ v, so {u, v, w} is convexly
dependent. Thus, c(T ) ≤ d(T ) = 2 = r(T ). In general, we have the following.

Corollary 2.3. Let T be a multipartite tournament. Then c(T ) ≤ h(T ) ≤ r(T ).

Proof. Levi’s inequality gives us h(T ) ≤ r(T ) (see e.g., [11, p. 169]), so we need only prove
c(T ) ≤ h(T ). The case h(T ) = 1 is trivial, and if h(T ) ≥ 3, the result follows from Theorem 2.2.
If h(T ) = 2, let U ⊆ V with p ∈ C(U ). If U lies in a single partite set of T , then p ∈ x ∨ y
for some x, y ∈ U by Lemma 2.1(ii). If U does not lie in a single partite set, then we need only
show that there is F ⊂ U with |F | = 2 such that U ⊆ C(F). By Lemma 2.1(i), we need only
consider U with |U | = 3. Let U = {x, y, z}. If each vertex is in a different partite set, then
the graph induced by U has a two-path, and we let F be the set of the two endpoints of this
two-path. If the vertices lie in two different partite sets, we assume without loss of generality that
x and y lie in the same partite set. Thus, x ∨ z = {x, z} and y ∨ z = {y, z}. Since h(T ) = 2,
(x ∨ z) ∩ (y ∨ z) ∩ (x ∨ y) 6= ∅, implying that z ∈ x ∨ y. This completes the proof. �

Note that c(T ) = 1 precisely when all subsets of V are convex. This occurs when T is bipartite
and every vertex in one partite set dominates all the vertices in the other partite set. The following
helps identify bipartite tournaments of Caratheodory number 3.
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Theorem 2.4. Let T be a bipartite tournament with Caratheodory number 3. Then there exist
a, a, bi , bi ∈ {0, 1} with a 6= a, bi 6= bi such that T has an induced bipartite subtournament
with one of the following matrices.

a a a a a a · · · a
b0 b0 b1 b3 b5 b7 · · · b2m−1

b2 b2 b1 b2 b2 b2 · · · b2

b4 b4 b1 b3 b4 b4 · · · b4

b6 b6 b1 b3 b5 b6
. . .

...
...

...
...

...
. . .

. . .
. . . b2m−4

b2m−2 b2m−2 b1 b3 b5
. . .

. . . b2m−2

b2m b2m b1 b3 b5 · · · b2m−3 b2m−1


,



a a a a · · · a a
b0 b1 b3 b5 · · · b2m−1 b2m+1

b0 b1 b3 b5 · · · b2m−1 b2m+1

b2 b1 b2 b2 · · · b2 b2

b4 b1 b3 b4 b4 · · · b4

b6 b1 b3 b5
. . .

. . .
...

...
...

. . .
. . .

. . . b2m−2 b2m−2

b2m b1 · · · · · · b2m−3 b2m−1 b2m


.

Proof. Since c(T ) = 3, there must exist a set U = {u1, u2, u3} and p ∈ C(U ) with u1, u2 in
the same partite set and p 6∈ u1 ∨ u2. If p = z0 is in the same partite set as u3, then, as in the
proof of Lemma 2.1, there exist vertices z1, · · · , z2m such that zi distinguishes u1 and zi+1 if i is
even, zi distinguishes u3 and zi+1 if i is odd, and z2m distinguishes u1 and u2. Let m be minimal
with this property. We order the rows and columns of the matrix of T as follows. We let z0 be
the first row, u3 the second row, with the remaining rows z2, z4, . . . , z2m . The first column is u1,
the second column is u2, and the remaining columns are z1, z3, . . . , z2m−1. Denote the matrix
M = [ai j ].

Let a = a11, b2(k−2) = ak1 for each 2 ≤ k ≤ m + 2, and b2(`−3)+1 = a2` for each
3 ≤ ` ≤ m + 2. By the arcs already given, we have a13 = a, ass = b2s−5, at (t+1) = b2t−4, and
a(2m+2)2 = b2m , where 3 ≤ s ≤ m + 2 and 3 ≤ t ≤ m + 1. If u1 and u2 were to distinguish any
vertex represented by a row of M besides z2m , then either p ∈ u1 ∨ u2 (if a12 = a or a22 = b0)
or the minimality of m is violated. Thus, a12 = a and ar2 = b2(r−2) for all 2 ≤ r ≤ m+ 1. Also,
if any zi is distinguished by some u j and zk , where i < k, then the minimality of m is violated.
This determines the rest of the entries of M , and gives us the result. The case of z0 in the same
partite set as u1 and u2 is similar. �

3. Convex independence in multipartite tournaments

Since rank is an upper bound for the Helly, Radon, and hull numbers, it is helpful to better
understand convexly independent sets.

Lemma 3.1. Let T be a multipartite tournament, and suppose A is a convexly independent set.
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(i) Let P1 and P2 be partite sets of T whose intersection with A is nonempty. Then either
(A ∩ P1)→ (A ∩ P2) or (A ∩ P2)→ (A ∩ P1).
(ii) A has a nonempty intersection with at most 2 partite sets of T .

Proof. For (i), let x ∈ A ∩ P1 and y ∈ A ∩ P2. Without loss of generality, assume x → y.
Suppose x ′ ∈ A ∩ P1 and y′ ∈ A ∩ P2 with y′ → x ′. If x → y′, we have x → y′ → x ′, which
contradicts convex independence. The case y′→ x is similar, so (A ∩ P1)→ (A ∩ P2).

For (ii), any three vertices in distinct partite sets must have a 2-path between two of the
vertices, which makes them convexly dependent. �

We then say that A and B form a convexly independent set if A ∪ B is convexly independent
and A and B are in distinct partite sets. The following is immediate.

Corollary 3.2. Let T be a tournament, |V | ≥ 2. Then d(T ) = 2.

For a general multipartite tournament T , a trivial upper bound for d(T ) is |V | and this bound
is achieved precisely when T is bipartite and one partite set dominates the other. In this case, any
two vertices in the same partite set are clones. In a clone-free multipartite tournament, every pair
of vertices in a given partite set is distinguished by at least one other vertex. We are interested in
the vertices that distinguish pairs of vertices in convexly independent sets. Given A ⊆ V , define

D→A = {z ∈ V : z→ x for some x ∈ A, y → z for all y ∈ A − {x}}

D←A = {z ∈ V : z← x for some x ∈ A, z→ y for all y ∈ A − {x}}.

Lemma 3.3. Let A and B form a convexly independent set in a multipartite tournament T , and
in the case B 6= ∅ suppose A→ B.
(i) If |A| ≥ 3, then each of D→A and D←A intersects at most one partite set nontrivially.
(ii) If |A| ≥ 2 and B 6= ∅, then D→A is a subset of the same partite set as B. If |B| ≥ 2 and
A 6= ∅, then D←B is a subset of the same partite set as A.
(iii) If |A|, |B| ≥ 2, then D←B → D→A .

Proof. For (i), we prove the result for D→A . The case of D←A is similar. Suppose z1, z2 ∈ D→A
with z1 → z2. Then there exist x1, x2 ∈ A with z1 → x1 and z2 → x2. Since |A| ≥ 3,
there exists x3 ∈ A − {x1, x2}. We have x3 → z2 → x2, giving us z2 ∈ x2 ∨ x3. Similarly,
x3 → z1 → z2, and so z1 ∈ x2 ∨ x3. But z1 → x1 → z2, so x1 ∈ x2 ∨ x3, a contradiction.

For (ii), suppose that z ∈ D→A is not in the same partite set as B. Clearly, z is also not in the
same partite set as A. Since |A| ≥ 2, there exist x1, x2 ∈ A with x1 → z → x2. Let y ∈ B.
If z → y, then x1 → z → y and z → x2 → y imply x2 ∈ x1 ∨ y, which contradicts convex
independence. If instead y → z, we have z ∈ x1 ∨ x2, and so x2 → y → z implies y ∈ x1 ∨ x2,
which contradicts convex independence. This implies z and y are incomparable and are thus in
the same partite set. The argument for D←B is similar.

For (iii), suppose z1 ∈ D→A , z2 ∈ D←B with z1 → z2. Since |A|, |B| ≥ 2, then there exist
x1, x2 ∈ A, y1, y2 ∈ B with x1 → z1 → x2 and y1 → z2 → y2. Then z2 ∈ y1 ∨ y2. We get
x1 → z1 → z2 and z1 → x2 → y1, which implies x2 ∈ y1 ∨ y2 ∨ x1, a contradiction. �

We now explore lower bounds on |D→A | and |D←B |.

Theorem 3.4. Let T be a clone-free multipartite tournament, and suppose A is a convexly
independent subset of a partite set. If A = {x1, x2, . . . , xr }, one can order the elements in A
such that either there exist y2, . . . , yr ∈ D→A with yi → xi or there exist y2, . . . , yr ∈ D←A with
xi → yi .
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Proof. If we look at A as a set of vertices in both T and T ∗, then D←A in T is the same set as
D→A in T ∗. Thus, we need only show the result in either T or T ∗.

The case r = 1 is trivial. If r = 2, let y2 be any vertex distinguishing x1 and x2. By relabelling
x1 and x2, if necessary, we have x1 → y2 → x2. If r = 3, let y2 distinguish x1 and x2. By
relabelling and considering T ∗, if necessary, we may assume x1 → y2 → x2, and that x3 → y2.
Since T is clone-free, there is some y3 that distinguishes x1 and x3. By switching x1 and x3 if
necessary, we may assume that x1 → y3 → x3. It suffices to show that x2 → y3 If y3 → x2,
then x1 → y2 → x2 and x1 → y3 → x2, so y2, y3 ∈ x1 ∨ x2. But then y3 → x3 → y2, so
x3 ∈ x1 ∨ x2, a contradiction.

Inducting on m, assume the result for r = m ≥ 3. For r = m + 1, there exist y2, . . . , ym
such that yi → xi for all 2 ≤ i ≤ m and xi → y j for all i 6= j . Clearly, xi ∨ x j = yi ∨ y j for
all 2 ≤ i 6= j ≤ m. For a contradiction, suppose yi → xm+1 for some i ≤ m. If xm+1 → y j ,
then xm+1 ∈ yi ∨ y j = xi ∨ x j , which contradicts convex independence. Thus, yi → xm+1
for all i ≤ m. Since m ≥ 3, y2, y3 → xm+1. We have x1 → {y2, y3} → xm+1, and so
x2 ∨ x3 = y2 ∨ y3 ⊆ x1 ∨ xm+1, a contradiction. Thus, xm+1 → yi for all i ≤ m. Now let
ym+1 be a vertex distinguishing x1 and xm+1. By switching x1 and xm+1, if necessary, we can
assume that x1 → ym+1 → xm+1. Arguments similar to the r = 3 case give us xi → ym+1 for
2 ≤ i ≤ m, which completes the proof. �

The following lemma shows that these distinguishing sets contain all vertices that distinguish
vertices in A and B.

Lemma 3.5. Suppose A and B form a convexly independent set, with A→ B when A, B 6= ∅.
(i) If |A| ≥ 3, then either D→A = ∅ or D←A = ∅. Moreover, any vertex that distinguishes two
vertices in A must be in D→A ∪ D←A .
(ii) If |A| ≥ 2 and B 6= ∅, then any vertex that distinguishes two vertices in A is in D→A .
(iii) If A 6= ∅ and |B| ≥ 2, then any vertex that distinguishes two vertices in B must be in D←B .

Proof. For (i), let u ∈ D→A , v ∈ D←A . Let x1, x2 ∈ A with u → x1 and x2 → v. Then
A−{x1} → u and v→ A−{x2}. In the case x1 = x2, let x3, x4 ∈ A−{x1}. In the case x1 6= x2,
let x3 = x2, and let x4 ∈ A− {x1, x3}. In either case, u, v ∈ x1 ∨ x3. Then v→ x4 → u implies
x4 ∈ x1 ∨ x3, a contradiction.

For (ii), let x, y ∈ A, z ∈ V with x → z → y, and let w ∈ B. Then z ∈ x ∨ y. If z 6∈ D→A
then there exists v ∈ A − {y} with z → v. Then z → v → w implies v ∈ x ∨ y ∨ w, which
contradicts convex independence. Thus, z ∈ D→A . Part (iii) follows similarly. �

An immediate extension of the lemma is

Corollary 3.6. Suppose A and B form a convexly independent set, and A→ B.
(i) If |A| ≥ 3 and B 6= ∅ then D←A = ∅.
(ii) If |B| ≥ 3 and A 6= ∅ then D→B = ∅.

When T is clone-free, Corollary 3.6 and Theorem 3.4 give us the following.

Corollary 3.7. Suppose that A 6= ∅ and B 6= ∅ form a convexly independent set and that
A→ B. Then |D→A | ≥ |A| − 1 and |D←B | ≥ |B| − 1.

Corollary 3.7 leads to our main theorem of the section.

Theorem 3.8. Let T be a clone-free multipartite tournament. Then
(i) d(T ) is at most one greater than the order of the second largest partite set in T .
(ii) d(T ) ≤ b

|V |
2 + 1c.
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Proof. Let A and B form a maximum convexly independent set of T with A → B. Also, let
P1 ⊇ A and P2 ⊇ B be partite sets. For (i), if A and B are both nonempty, then Lemma 3.3(ii)
gives us D→A ⊆ P2 and D←B ⊆ P1. We then have |P1| ≥ |A|+|D←B | ≥ |A|+|B|−1 = d(T )−1.
Thus, d(T ) ≤ |P1| + 1. Similarly, d(T ) ≤ |P2| + 1. If B = ∅, the case d(T ) = 1 or d(T ) = 2
is clear. If d(T ) ≥ 3, then Lemma 3.3(i) implies each of D→A and D←A lies in one partite set.
Theorem 3.4 implies that |D→A | ≥ |A| − 1 or |D←A | ≥ |A| − 1. In either case, some partite set
P2 6= P1 has at least |A| − 1 elements. Then d(T ) = |A| ≤ |P1| and d(T ) = |A| ≤ |P2| + 1. For
(ii), the second largest partite set of T has at most |V |2 vertices so d(T ) ≤

|V |
2 + 1 by (i). �

Corollary 3.9. Let T be a clone-free multipartite tournament, and let A and B form a maximum
convexly independent set of T . Then
(i) If d(T ) = b

|V |
2 + 1c, and if B is empty, then |V | is odd.

(ii) Every convex subset of T is the convex hull of at most b |V |2 + 1c vertices.

Proof. For (i), we have |D→A ∪ D←A | ≥ |A| − 1 by Theorem 3.4. We then have |V | ≥
|A| + |A| − 1 = 2d(T ) − 1. This gives us d(T ) ≤

|V |+1
2 . But this can happen only if |V | is

odd. Part (ii) follows from Theorem 3.8(ii) and the definition of rank. �

Since rank is an upper bound for the Helly, Radon, and Caratheodory numbers, we have the
following.

Corollary 3.10. Let T be a clone-free multipartite tournament. Then
(i) h(T ), r(T ), and hul (T ) are at most one larger than the cardinality of the second largest
partite set.
(ii) h(T ), r(T ), hul (T ) ≤ b

|V |
2 + 1c.

We then say that a clone-free multipartite tournament T has maximum rank (resp. maximum
Helly number, maximum Radon number, maximum hull number) if the rank (resp. the Helly
number, Radon number, hull number) is b |V |2 + 1c.

4. Classifying clone-free multipartite tournaments with maximum convexity numbers

Let T be a clone-free multipartite tournament. As before, let A and B form a convexly
independent set of T with A→ B, and let d = d(T ). We begin with some examples of clone-free
multipartite tournaments with maximum convexity numbers.

Example 4.1. Tournaments have rank at most 2, so all tournaments with |V | ≤ 3 have maximum
rank, Helly number, Radon number, and hull number. This includes C3, the cyclic tournament on
three vertices.

Example 4.2. Let B2d−1 have partite sets P1 = {x1, . . . , xd}, P2 = {y2, . . . , yd}, with yi → xi
for all 2 ≤ i ≤ b and xi → y j otherwise. Since P1 is H -, R-, and convexly independent, B2d−1
has maximum rank, Helly number, and Radon number. Every hull set must include x1 and either
xi or yi for 2 ≤ i ≤ d , so B2d−1 has maximum hull number.

Let B ′2d−1 have partite sets P1 = {z, x1, . . . , xd−1} and P2 = {y1, . . . , yd−1}, with P2 → z,
yi → xi for i ≥ 2, and xi → y j otherwise. Then {x1, . . . , xd−1, y1} is H -, R-, and convexly
independent, and x1 ∨ z = V , so h(B ′2d−1) = r(B ′2d−1) = d(B ′2d−1) = d and hul (B ′2d−1) = 2.

Let B2d−2 have partite sets P1 = {x1, . . . , xd−1} and P2 = {y1, y2, . . . , yd−1}, with yi → xi
for all i ≥ 2, and xi → y j otherwise. Then {x1, . . . , xd−1, y1} is H -, R-, and convexly
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independent, so B2d−2 has maximum rank, Helly number, and Radon number. Moreover, B2d−2
has maximum hull number, and B2d−2 ∼= B∗2d−2.

Example 4.3. Let T2d−1 = B2d−2 ∪ {z}, where z → B2d−2, and let T ′2d−1 = B2d−2 ∪ {z},
where P1 → z → P2. The maximum convexly independent sets of B2d−2 are maximum
convexly independent in T2d−1 and T ′2d−1, so both are of maximum rank. In T2d−1, the maximum
convexly independent sets are also H - and R-independent, so T2d−1 has maximum Helly and
Radon number. However, every convex subset of T ′2d−1 with more than one vertex contains z, so
h(T ′2d−1) = 2. Once can show that r(T ′3) = 2 and r(T ′2d−1) = 3 for d ≥ 3. Moreover, T ′2d−1 has
maximum hull number, and T ′2d−1

∼= (T ′2d−1)
∗.

A final example is T ′′5 = B4 ∪ {z} where z→ P1, y2 → z, and z→ y1, which has maximum
rank, Helly number, Radon number, and hull number.

We begin our classification with the case of B = ∅.

Theorem 4.4. Let T be a clone-free multipartite tournament of maximum rank, and let A and
B = ∅ form a maximum convexly independent set. Then T ∼= B2d−1 or T ∼= B∗2d−1.

Proof. By Corollary 3.9(i), n must be odd. Let A = {x1, . . . , xd}. Theorem 3.4 implies that, by
reordering the xi ’s and looking at T ∗ if necessary, there exists C = {y2, . . . , yd} ⊆ D→A such
that yi → xi . Furthermore, we have that y2, . . . , yd are all in the same partite set (if d = 2, it
follows trivially; the d ≥ 3 case follows from Lemma 3.3(i). Since n = 2d − 1, V = A∪C , and
so T ∼= B2d−1 (or, if we had to take T ∗ to get the yi , then T ∼= B∗2d−1). �

We now pursue the case of A, B 6= ∅. We first consider B2d−2.

Lemma 4.5. Suppose that A and B form a maximum convexly independent set of B2d−2. Let the
xi , y j ∈ B2d−2 be as in Example 4.2.
(i) For all i ≥ 2, we cannot have both xi ∈ A and yi ∈ B
(ii) If A→ B, then x1 ∈ A and y1 ∈ B.

Proof. For (i), suppose xi ∈ A, yi ∈ B. Since i ≥ 2, we have d ≥ 3, so |A| ≥ 2 or |B| ≥ 2. If
|A| ≥ 2, we have some x j ∈ A, j 6= i . Thus, x j → yi → xi , contradicting convex independence.
The case |B| ≥ 2 follows similarly.

For (ii), the case of d = 2 is obvious. For d ≥ 3, suppose x1 6∈ A. Since each yi dominates at
most one x j , we have A ⊆ P1 and B ⊆ P2. Let r = |A|, so |B| = d − r . We have d − r − 2
vertices among x2, . . . , xd−1 that are not in A, and one of the vertices in B can be y1, which
leaves at least d−r −1 vertices to be chosen from y2, . . . , yd−1. But there are only d−r −2yi ’s
for which xi 6∈ A. Thus, yi ∈ B and xi ∈ A for some i ≥ 2, which contradicts (i). The case
y1 ∈ B follows similarly. �

We consider the cases of |V | even and |V | odd separately.

Lemma 4.6. Let T be a clone-free multipartite tournament of maximum rank.
(i) If |V | is even, then V = A ∪ B ∪ D→A ∪ D←B , |D→A | = |A| − 1, and |D←B | = |B| − 1.
(ii) If |V | is odd and V 6= A∪ B∪D→A ∪D←B , then there exists a unique z 6∈ A∪ B∪D→A ∪D←B .

Proof. If |V | is even, we have |V | = 2d − 2. Using Corollary 3.7, we obtain

|V | ≥ |A| + |B| + |D→A | + |D
←

B |

≥ |A| + |B| + (|A| − 1)+ (|B| − 1) = 2d − 2 = |V |
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so all inequalities must be equalities, and (i) follows. If |V | is odd, we still have |A ∪ B ∪ D→A ∪
D←B | ≥ 2d − 2. This leaves one other possible vertex z, which proves (ii). �

Theorem 4.7. If T is a clone-free multipartite tournament of maximum rank, and if |V | =
2d − 2, then T ∼= B2d−2.

Proof. The case of |V | = 2 is obvious, so we can assume |V | ≥ 4 and d ≥ 3. Since B2d−2 ∼=

B∗2d−2, we consider T ∗ if necessary. Let A = {x1, x2, . . . , xr } and B = {y1, y2, . . . , ys}. Without
loss of generality, r ≥ 2, s ≥ 1 and r + s = d . If s ≥ 2, then by Lemma 3.3(ii), Theorem 3.4,
and Lemma 4.6(i), D→A = {z2, . . . , zr } ⊆ P2 and D←B = {w2, . . . , ws} ⊆ P1. We can fill in the
arcs using Lemma 3.3, which gives us T ∼= B2b−2. If s = 1 we have B = {y1} and D←B = ∅. We
similarly conclude that T ∼= B2d−2. �

The final case is |V | = 2d − 1. By Lemma 4.6(ii), there is at most one vertex z 6∈ A ∪ B ∪
D→A ∪ D←B . When such a z exists, let T ′ be the subtournament induced by V ′ = V − {z}. Then
A and B form a maximum convexly independent set of T ′, so d(T ′) = d, and T ′ ∼= B2d−2 by
Theorem 4.7. Thus, T has at least two partite sets P1 ⊇ {x1, . . . , xd−1} and P2 ⊇ {y1, . . . , yd−1}

with arcs as in Example 4.2, and V − V ′ = {z}.

Lemma 4.8. Let T be a clone-free multipartite tournament with d(T ) = d ≥ 3 and |V | =
2d−1. Let P1 and P2 be partite sets of T , and let A and B form a convexly independent set with
A ⊆ P1, B ⊆ P2 as above. Finally, assume that z 6∈ A ∪ B ∪ D→A ∪ D←B .
(i) If z 6∈ P2, then z→ B or B → z.
(ii) If z 6∈ P1, then z→ A or A→ z.
(iii) If z 6∈ P1 ∪ P2, then we cannot have B → z→ A.
(iv) If z 6∈ P2, then either z→ P2, P2 → z, or there is a unique u ∈ P2 with u → z.
(v) If z 6∈ P1, then either z→ P1, P1 → z, or there is a unique u ∈ P1 with z→ u.

Proof. For (i), if it were not true that z → B or B → z, then Lemma 3.5(iii) would imply
z ∈ D←B , a contradiction. Part (ii) follows similarly.

For (iii), since d ≥ 3, |A| ≥ 2 or |B| ≥ 2. If u, v ∈ A, and B → z → A, then B → z → u
and z→ v→ B, so v ∈ B ∨ u, a contradiction. The case |B| ≥ 2 follows similarly.

For (iv), suppose it is not true that z → P2 or P2 → z. Then there exist u, v ∈ P2 with
u → z → v. For contradiction, assume that there is some w ∈ P2 − {u} with w → z. In the
case z → B, we have u, w ∈ P2 − B = D→A , and without loss of generality, v ∈ B. Then there
exist xu, xw ∈ A with u → xu and w → xw. By Lemma 4.5, x1 ∈ A. Thus, x1 → u → xu
and u → z → v, so z ∈ x1 ∨ xu ∨ v. But then x1 → w → z and w → xw → v, which
implies xw ∈ x1 ∨ xu ∨ v, a contradiction. In the case B → z, we have v ∈ P2 − B = D→A and
without loss of generality u ∈ B. Let xv ∈ A with v → xv . If w ∈ B, then x1 → v → xv and
u → z → v, so z ∈ x1 ∨ xv ∨ u. But then x1 → w → z, so w ∈ x1 ∨ xv ∨ u, a contradiction.
If w ∈ P2 − B = D→A , let xw ∈ A with w → xw. We have x1 → v → xv and u → z → v, so
z ∈ x1∨ xv ∨ u. But then x1 → w→ z and w→ xw → u, so xw ∈ x1∨ xv ∨ u, a contradiction.
Thus, z→ P2 − {u}.

In either case, u → z for precisely one u ∈ P2, and (iv) follows. Part (v) is similar. �

Corollary 4.9. Let T be a clone-free bipartite tournament with d(T ) = d, |V | = 2d − 1. Then
T is isomorphic to either B2d−1, B∗2d−1, B ′2d−1, or (B ′2d−1)

∗.
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Proof. For the case V = A ∪ B ∪ D→A ∪ D←B , since |V | = 2d − 1, Corollary 3.7 implies that
|D→A | = |A| or |D←B | = |B|. In the first case, T ∼= B∗2d−1, and in the second, T ∼= B2d−1.

In the case V 6= A ∪ B ∪ D→A ∪ D←B , we have a unique z 6∈ A ∪ B ∪ D→A ∪ D←B by
Lemma 4.6(ii). If z ∈ P1, then we cannot have z → P2 because z and x1 would be clones. If
P2 → z, then T ∼= B ′2d−1. Otherwise v → z for precisely one v ∈ P2 by Lemma 4.8(iv). We
cannot have v = yi for i ≥ 2 because z would be a clone of xi . Thus, v = y1 and z ∈ D←B , a
contradiction. Arguments are similar if z ∈ P2, where we get T ∼= (B ′2d−1)

∗. �

This brings us to the main theorem.

Theorem 4.10. Let T be a clone-free multipartite tournament with d(T ) = b
|V |
2 + 1c. Then T is

isomorphic to one of B2d−2, B2d−1, B∗2d−1, B ′2d−1, (B ′2d−1)
∗, T2d−1, T ∗2d−1, T ′2d−1, T ′′5 , (T ′′5 )∗,

or C3.

Proof. We have already proven the case where T is bipartite. Since A, B, D→A , and D←B are all
contained in two partite sets, and there is at most one other vertex, only the case of T tripartite
remains. In this case, |V | is odd, the third partite set is P3 = {z}, and the bipartite tournament
induced by V − {z} is isomorphic to B2d−2. Thus, the other partite sets are P1 = {x1, . . . , xd−1}

and P2 = {y1, . . . , yd−1}with yi → xi for i ≥ 2 and xi → y j otherwise. By Lemma 4.5, x1 ∈ A
and y1 ∈ B.

Suppose T is not isomorphic to any of T2d−1, T ∗2d−1, or T ′2d−1. By Lemma 4.8(iii), we cannot
have P2 → z → P1 unless d = 2. In this case, |V | = 3 and so T ∼= C3. Thus, we can assume
d ≥ 3. By Lemma 4.8(iv), (v), either there exists a unique v ∈ P2 with v → z or there exists
a unique v ∈ P1 with z → v. In the first case, we assume, for contradiction that v ∈ B. Then
B → z, so B = {v}. Thus, |A| ≥ 2, and there is some u ∈ D→A . Let xu ∈ A with u → xu .
If A → z, then x1 → u → xu and xu → z → u, so z ∈ x1 ∨ xu . But then x1 → v → z,
so v ∈ x1 ∨ xu , a contradiction. Thus, z → A by Lemma 4.8(ii). But then B → z → A,
contradicting Lemma 4.8(iii). This leaves us with v ∈ P2 − B = D→A . Since D→A 6= ∅, this
implies that |A| ≥ 2.

Let xv ∈ A with v→ xv . As before, either A→ z or z → A. If A→ z, then z → B implies
x1 → z → y1 and x1 → v → z, so v ∈ x1 ∨ y1. But then v → xv → y1, so xv ∈ x1 ∨ y1, a
contradiction. Thus, z→ A. Since |A| ≥ 2 and z→ A, Lemma 4.8(v), implies that z→ P1.

We now claim that |A| = 2. Suppose that |A| ≥ 3, and let x ∈ A − {x1, xv}. Then
x1 → v → xv , v → z → x1, and z → x → y1 imply x ∈ x1 ∨ xv ∨ y1, a contradiction.
Thus, |A| = 2. This along with Lemma 4.8(v), imply z→ P1.

Suppose |B| ≥ 2. Then there exists y ∈ B − {y1} and an xy ∈ D←B such that y → xy . As
above z ∈ x1 ∨ xv . Then z → xy → y1 and z → y → xy , so y ∈ x1 ∨ xv ∨ y1, a contradiction.
Thus d = 3 and |V | = 5, so T ∼= T ′′5 .

In the case of a unique v ∈ P1 with z → v, apply the above to T ∗. Then T ∗ ∼= T ′′5 , and so
T ∼= (T ′′5 )∗. �

We get a similar result for the, Helly, Radon, and hull numbers.

Theorem 4.11. Let T be a clone-free multipartite tournament with n vertices.
(i) If h(T ) = b n

2 + 1c, then T or T ∗ is isomorphic to B2d−1, B ′2d−1, B2d−2, T2d−1, T ′′5 or C3.
(ii) If r(T ) = b n

2 + 1c, then one of T or T ∗ is isomorphic to B2d−1, B ′2d−1, B2d−2, T2d−1, T ′5,
T ′′5 or C3.
(iii) If hul (T ) = b n

2 + 1c, then T or T ∗ is isomorphic to B2d−1, B ′3, B2d−2, T ′2d−1 or C3.
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