On two-path convexity in multipartite tournaments

Darren B. Parker ${ }^{\text {a }}$, Randy F. Westhoff ${ }^{\text {b }}$, Marty J. Wolf ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Dayton, Dayton, OH 45469, USA
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Bemidji State University, Bemidji, MN 56601, USA

Received 6 June 2005; received in revised form 3 April 2006; accepted 26 March 2007
Available online 12 April 2007

Abstract

In the context of two-path convexity, we study the rank, Helly number, Radon number, Caratheodory number, and hull number for multipartite tournaments. We show the maximum Caratheodory number of a multipartite tournament is 3 . We then derive tight upper bounds for rank in both general multipartite tournaments and clone-free multipartite tournaments. We show that these same tight upper bounds hold for the Helly number, Radon number, and hull number. We classify all clone-free multipartite tournaments of maximum Helly number, Radon number, hull number, and rank. (C) 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Convexity has been studied in many contexts. In graphs and digraphs, convex sets are usually subsets of the vertex set determined by paths within the graph. For a (directed) graph $T=(V, E)$ and a set \mathcal{P} of (directed) paths in T, a subset $A \subseteq V$ is \mathcal{P}-convex if, whenever $v, w \in A$, any (directed) path in \mathcal{P} that originates at v and ends at w can involve only vertices in A. For $S \subseteq V$, the convex hull of S, denoted $C(S)$, is defined to be the smallest convex subset containing S. We denote the set of convex subsets of T by $\mathcal{C}(T)$.

In the case \mathcal{P} is the set of geodesics in T, we get geodesic convexity, which was introduced by F. Harary and J. Nieminen in [6] (see also [2] and [1]). When \mathcal{P} is the set of all chordless paths, we get induced path convexity (see [4]). Other types of convexity include path convexity (see [8, 7]) and triangle path convexity (see [3]). This paper considers two-path convexity, in which the path set \mathcal{P} is the set of all 2-paths (see also [10,5,9]).

[^0]The most studied convex invariants are the Helly, Radon, and Caratheodory numbers (see [11, Ch. 2]). Let $T=(V, E)$ be a (directed) graph, and let $F \subseteq V$. Then F is H-independent if $\bigcap_{p \in F} C(F-\{p\})=\emptyset$. The Helly number $h(T)$ is the size of a largest H-independent set. The set F is C-independent if $C(F) \nsubseteq \bigcup_{a \in F} C(F-\{a\})$. The Caratheodory number $c(T)$ is the size of a largest C-independent set. Equivalently, it is the smallest number c such that for every $S \subseteq V$ and $p \in C(S)$, there exists $F \subseteq S$ with $|F| \leq c$ such that $p \in C(F)$. F is R-independent if F does not have a Radon partition; that is, there is no partition $F=A \cup B$ with $C(A) \cap C(B) \neq \emptyset$. The Radon number $r(T)$ is the size of a largest R-independent set. We caution the reader that the Radon number is often defined as the smallest r for which every set of size r is R-dependent. This is one larger than the definition given here.

We say F is convexly independent if, for each $p \in F$, we have $p \notin C(F-\{p\})$. The rank $d(T)$ is the size of a largest convexly independent set. Any set that is $H-, C$-, or R-independent must also be convexly independent, so rank is an upper bound for the Helly, Caratheodory, and Radon numbers. Finally, F is a hull set if $C(F)=V$. The hull number hul (T) is the size of a smallest hull set and is also bounded by the rank.

Let $T=(V, E)$ be a digraph with vertex set V and arc set E. We denote an $\operatorname{arc}(v, w) \in E$ by $v \rightarrow w$ and say that v dominates w. If $U, W \subseteq V$, then we write $U \rightarrow W$ to indicate that every vertex in U dominates every vertex in W. We denote by T^{*} the digraph with the same vertex set as T, and where (v, w) is an arc of T^{*} if and only if (w, v) is an arc of T. Recall that, for $p \geq 2$, T is a p-partite tournament if one can partition V into p partite sets such that every two vertices in different partite sets have precisely one arc between them and no arcs exist between vertices in the same partite set. Two vertices are clones if they have identical insets and outsets, and T is clone-free if it has no clones. If $u, v, w \in V$ with $u \rightarrow v \rightarrow w$, we say that v distinguishes the vertices u and w. Note that in a clone-free multipartite tournament, for every pair of vertices u, w in the same partite set there is at least one vertex (not in that partite set) that distinguishes u and w. If $A, B \in \mathcal{C}(T)$, we denote the convex hull of $A \cup B$ by $A \vee B$. If $v, w \in V$, we drop the set notation and write $\{v\} \vee\{w\}$ as $v \vee w$.

One can construct the convex hull of a set $U \subseteq V$ in the following way. Define $C_{k}(U)$ inductively by $C_{0}(U)=U$ and $C_{k}(U)=C_{k-1}(U) \cup\{w \in V: x \rightarrow w \rightarrow y$ for some $x, y \in$ $\left.C_{k-1}(U)\right\}, k \geq 1$. Then $C_{\infty}(U)=C(U)$.

To facilitate our study of bipartite tournaments, we introduce the following matrix notation. Let $P_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $P_{2}=\left\{y_{1}, \ldots, y_{\ell}\right\}$ be the partite sets of T. For i and j with $1 \leq i \leq k$ and $1 \leq j \leq \ell$, let $m_{i, j}=1$ if $x_{i} \rightarrow y_{j}$ and let $m_{i, j}=0$ otherwise. We call $M=\left(m_{i, j}\right)$ the matrix of T.

2. Inequalities involving the Caratheodory number

In this section, we explore the Caratheodory number of a multipartite tournament T. The following two results show $c(T) \leq 3$.

Lemma 2.1. Let T be a multipartite tournament. Suppose $U \subseteq V$ and $p \in C(U)$.
(i) There exists $F \subseteq U,|F| \leq 3$ with $p \in C(F)$.
(ii) If U lies in a single partite set of T then there exists $F \subseteq U,|F| \leq 2$ with $p \in C(F)$.

Proof. If $|U| \leq 2$ or if $p \in U$, the result is trivial, so assume $|U| \geq 3$ and $p \notin U$. Since $p \in C(U)$ and $p \notin U$ then there is a smallest positive integer k such that $p \in C_{k}(U)$. If U does not lie in a single partite set of T, then there exist $u, v \in U$ with u and v in different partite sets. Since k is the smallest positive integer with $p \in C_{k}(U)$ then there exist $x_{1}, y_{1} \in C_{k-1}(U)$ with
$x_{1} \rightarrow p \rightarrow y_{1}$. At least one of u or v is not in the same partite set as p, so $u \rightarrow p, v \rightarrow p$, $p \rightarrow u$ or $p \rightarrow v$. In any case, $p \in u \vee v \vee x_{1}$ or $p \in u \vee v \vee y_{1}$ so $p \in u \vee v \vee z_{1}$ for some $z_{1} \in C_{k-1}(U)$. Since k was minimal, $z_{1} \notin C_{k-2}(U)$, and so there exist $x_{2}, y_{2} \in C_{k-2}(U)$ with $x_{2} \rightarrow z_{1} \rightarrow y_{2}$. At least one of u or v is not in the same partite set as z_{1}, so $u \rightarrow z_{1}$, $v \rightarrow z_{1}, z_{1} \rightarrow u$ or $z_{1} \rightarrow v$. Thus $z_{1} \in u \vee v \vee x_{2}$ or $z_{1} \in u \vee v \vee y_{2}$, so $z_{1} \in u \vee v \vee z_{2}$ for some $z_{2} \in C_{k-2}(U)$. Now $p \in u \vee v \vee z_{1}$ implies $p \in u \vee v \vee z_{2}$. Continuing in this way we generate a sequence of vertices, $z_{1}, z_{2}, \ldots, z_{k}$ with $p \in u \vee v \vee z_{i}$ and $z_{i} \in C_{k-i}(U)$ for each i. In particular, $z_{k} \in C_{0}(U)=U$ and $p \in u \vee v \vee z_{k}$.

Now suppose U lies in a single partite set of T. Since $C(U) \neq U$, there exist $u_{1}, u_{2} \in U$ and $v \in V$ such that $u_{1} \rightarrow v \rightarrow u_{2}$. Repeat the above argument with u_{1} and v to create a sequence $z_{1}, z_{2}, \ldots, z_{k}$ such that $z_{i} \in u_{1} \vee v \vee z_{i+1}$ for $1 \leq i \leq k-1, p \in u_{1} \vee v \vee z_{i}$ and $z_{i} \in C_{k-i}(U)$ for each i. Let $u_{3}=z_{k} \in U$. Then $p \in C\left(\left\{u_{1}, v, u_{3}\right\}\right) \subseteq C\left(\left\{u_{1}, u_{2}, u_{3}\right\}\right)$. By construction, either $u_{1} \rightarrow z_{k-1} \rightarrow u_{3}, u_{3} \rightarrow z_{k-1} \rightarrow u_{1}, v \rightarrow z_{k-1} \rightarrow u_{3}$ or $u_{3} \rightarrow z_{k-1} \rightarrow v$.

Assume that $u_{1} \rightarrow z_{k-1} \rightarrow u_{3}$. If $v \rightarrow u_{3}$ then $v \in u_{1} \vee u_{3}$ and $p \in u_{1} \vee u_{3}$, so assume $u_{3} \rightarrow v$. Similarly, if $z_{k-1} \rightarrow u_{2}$ then $z_{k-1} \in u_{1} \vee u_{2}$ and $p \in u_{1} \vee u_{2}$ so assume $u_{2} \rightarrow z_{k-1}$. Then $u_{3} \rightarrow v \rightarrow u_{2}$ and $u_{2} \rightarrow z_{k-1} \rightarrow u_{3}$ imply $v, z_{k-1} \in u_{2} \vee u_{3}$. We next show that $z_{k-2} \in u_{2} \vee u_{3}$. If z_{k-2} is in the same partite set as U then, by construction, either $v \rightarrow z_{k-2} \rightarrow z_{k-1}$ or $z_{k-1} \rightarrow z_{k-2} \rightarrow v$. On the other hand, if z_{k-2} is not in the same partite set as U then z_{k-2} is comparable to u_{1} and u_{3}. If $u_{1} \rightarrow z_{k-2} \rightarrow u_{3}$ or $u_{3} \rightarrow z_{k-2} \rightarrow u_{1}$ then $p \in C_{k-2}(U)$ which is impossible. Thus, $u_{1}, u_{3} \rightarrow z_{k-2}$ or $z_{k-2} \rightarrow u_{1}, u_{3}$. By construction, either $z_{k-1} \rightarrow z_{k-2} \rightarrow u_{1}, u_{1} \rightarrow z_{k-2} \rightarrow z_{k-1}, z_{k-1} \rightarrow z_{k-2} \rightarrow v$ or $v \rightarrow z_{k-2} \rightarrow z_{k-1}$. In any case we obtain $z_{k-2} \in u_{2} \vee u_{3}$. Continuing in this way, we obtain $p \in u_{2} \vee u_{3}$ proving (ii). The case $u_{3} \rightarrow z_{k-1} \rightarrow u_{1}$ is similar.

If $v \rightarrow z_{k-1} \rightarrow u_{3}$ then by the above argument we may assume $z_{k-1} \rightarrow u_{1}$. Since $v \in C\left(\left\{u_{1}, u_{2}\right\}\right)$, we have $z_{k-1}, p \in C\left(\left\{u_{1}, u_{2}\right\}\right)$. The case $u_{3} \rightarrow z_{k-1} \rightarrow v$ is similar.

Theorem 2.2. Let T be a multipartite tournament. Then $c(T) \leq 3$.
Since singleton subsets are convex, the Radon number of a multipartite tournament with $|V| \geq 2$ is at least 2 . If $r(T)=2$, then every triple $\{u, v, w\} \subseteq V$ has a Radon partition, which is, without loss of generality, $\{u, v\} \cup\{w\}$. Then $w \in u \vee v$, so $\{u, v, w\}$ is convexly dependent. Thus, $c(T) \leq d(T)=2=r(T)$. In general, we have the following.

Corollary 2.3. Let T be a multipartite tournament. Then $c(T) \leq h(T) \leq r(T)$.
Proof. Levi's inequality gives us $h(T) \leq r(T)$ (see e.g., [11, p. 169]), so we need only prove $c(T) \leq h(T)$. The case $h(T)=1$ is trivial, and if $h(T) \geq 3$, the result follows from Theorem 2.2. If $h(T)=2$, let $U \subseteq V$ with $p \in C(U)$. If U lies in a single partite set of T, then $p \in x \vee y$ for some $x, y \in U$ by Lemma 2.1(ii). If U does not lie in a single partite set, then we need only show that there is $F \subset U$ with $|F|=2$ such that $U \subseteq C(F)$. By Lemma 2.1(i), we need only consider U with $|U|=3$. Let $U=\{x, y, z\}$. If each vertex is in a different partite set, then the graph induced by U has a two-path, and we let F be the set of the two endpoints of this two-path. If the vertices lie in two different partite sets, we assume without loss of generality that x and y lie in the same partite set. Thus, $x \vee z=\{x, z\}$ and $y \vee z=\{y, z\}$. Since $h(T)=2$, $(x \vee z) \cap(y \vee z) \cap(x \vee y) \neq \emptyset$, implying that $z \in x \vee y$. This completes the proof.

Note that $c(T)=1$ precisely when all subsets of V are convex. This occurs when T is bipartite and every vertex in one partite set dominates all the vertices in the other partite set. The following helps identify bipartite tournaments of Caratheodory number 3.

Theorem 2.4. Let T be a bipartite tournament with Caratheodory number 3. Then there exist $a, \bar{a}, b_{i}, \overline{b_{i}} \in\{0,1\}$ with $a \neq \bar{a}, b_{i} \neq \overline{b_{i}}$ such that T has an induced bipartite subtournament with one of the following matrices.

$$
\begin{gathered}
{\left[\begin{array}{cccccccc}
a & a & \bar{a} & a & a & a & \cdots & a \\
b_{0} & b_{0} & b_{1} & b_{3} & b_{5} & b_{7} & \cdots & b_{2 m-1} \\
b_{2} & b_{2} & \bar{b}_{1} & \bar{b}_{2} & b_{2} & b_{2} & \cdots & b_{2} \\
b_{4} & b_{4} & b_{1} & \bar{b}_{3} & \bar{b}_{4} & b_{4} & \cdots & b_{4} \\
b_{6} & b_{6} & b_{1} & b_{3} & \bar{b}_{5} & \bar{b}_{6} & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & b_{2 m-4} \\
b_{2 m-2} & b_{2 m-2} & b_{1} & b_{3} & b_{5} & \ddots & \ddots & \bar{b}_{2 m-2} \\
b_{2 m} & \bar{b}_{2 m} & b_{1} & b_{3} & b_{5} & \cdots & b_{2 m-3} & \bar{b}_{2 m-1}
\end{array}\right],} \\
{\left[\begin{array}{cccccccc}
a & \bar{a} & a & a & \cdots & a & a \\
b_{0} & b_{1} & b_{3} & b_{5} & \cdots & b_{2 m-1} & b_{2 m+1} \\
b_{0} & b_{1} & b_{3} & b_{5} & \cdots & b_{2 m-1} & \bar{b}_{2 m+1} \\
b_{2} & \bar{b}_{1} & \bar{b}_{2} & b_{2} & \cdots & b_{2} & b_{2} \\
b_{4} & b_{1} & \bar{b}_{3} & \bar{b}_{4} & b_{4} & \cdots & b_{4} \\
b_{6} & b_{1} & b_{3} & \bar{b}_{5} & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \bar{b}_{2 m-2} & b_{2 m-2} \\
b_{2 m} & b_{1} & \cdots & \cdots & b_{2 m-3} & \bar{b}_{2 m-1} & \bar{b}_{2 m}
\end{array}\right]}
\end{gathered}
$$

Proof. Since $c(T)=3$, there must exist a set $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $p \in C(U)$ with u_{1}, u_{2} in the same partite set and $p \notin u_{1} \vee u_{2}$. If $p=z_{0}$ is in the same partite set as u_{3}, then, as in the proof of Lemma 2.1, there exist vertices $z_{1}, \cdots, z_{2 m}$ such that z_{i} distinguishes u_{1} and z_{i+1} if i is even, z_{i} distinguishes u_{3} and z_{i+1} if i is odd, and $z_{2 m}$ distinguishes u_{1} and u_{2}. Let m be minimal with this property. We order the rows and columns of the matrix of T as follows. We let z_{0} be the first row, u_{3} the second row, with the remaining rows $z_{2}, z_{4}, \ldots, z_{2 m}$. The first column is u_{1}, the second column is u_{2}, and the remaining columns are $z_{1}, z_{3}, \ldots, z_{2 m-1}$. Denote the matrix $M=\left[a_{i j}\right]$.

Let $a=a_{11}, b_{2(k-2)}=a_{k 1}$ for each $2 \leq k \leq m+2$, and $b_{2(\ell-3)+1}=a_{2 \ell}$ for each $3 \leq \ell \leq m+2$. By the arcs already given, we have $a_{13}=\bar{a}, a_{s s}=\bar{b}_{2 s-5}, a_{t(t+1)}=\bar{b}_{2 t-4}$, and $a_{(2 m+2) 2}=\bar{b}_{2 m}$, where $3 \leq s \leq m+2$ and $3 \leq t \leq m+1$. If u_{1} and u_{2} were to distinguish any vertex represented by a row of M besides $z_{2 m}$, then either $p \in u_{1} \vee u_{2}$ (if $a_{12}=\bar{a}$ or $a_{22}=\bar{b}_{0}$) or the minimality of m is violated. Thus, $a_{12}=a$ and $a_{r 2}=b_{2(r-2)}$ for all $2 \leq r \leq m+1$. Also, if any z_{i} is distinguished by some u_{j} and z_{k}, where $i<k$, then the minimality of m is violated. This determines the rest of the entries of M, and gives us the result. The case of z_{0} in the same partite set as u_{1} and u_{2} is similar.

3. Convex independence in multipartite tournaments

Since rank is an upper bound for the Helly, Radon, and hull numbers, it is helpful to better understand convexly independent sets.

Lemma 3.1. Let T be a multipartite tournament, and suppose A is a convexly independent set.
(i) Let P_{1} and P_{2} be partite sets of T whose intersection with A is nonempty. Then either $\left(A \cap P_{1}\right) \rightarrow\left(A \cap P_{2}\right)$ or $\left(A \cap P_{2}\right) \rightarrow\left(A \cap P_{1}\right)$.
(ii) A has a nonempty intersection with at most 2 partite sets of T.

Proof. For (i), let $x \in A \cap P_{1}$ and $y \in A \cap P_{2}$. Without loss of generality, assume $x \rightarrow y$. Suppose $x^{\prime} \in A \cap P_{1}$ and $y^{\prime} \in A \cap P_{2}$ with $y^{\prime} \rightarrow x^{\prime}$. If $x \rightarrow y^{\prime}$, we have $x \rightarrow y^{\prime} \rightarrow x^{\prime}$, which contradicts convex independence. The case $y^{\prime} \rightarrow x$ is similar, so $\left(A \cap P_{1}\right) \rightarrow\left(A \cap P_{2}\right)$.

For (ii), any three vertices in distinct partite sets must have a 2-path between two of the vertices, which makes them convexly dependent.

We then say that A and B form a convexly independent set if $A \cup B$ is convexly independent and A and B are in distinct partite sets. The following is immediate.

Corollary 3.2. Let T be a tournament, $|V| \geq 2$. Then $d(T)=2$.
For a general multipartite tournament T, a trivial upper bound for $d(T)$ is $|V|$ and this bound is achieved precisely when T is bipartite and one partite set dominates the other. In this case, any two vertices in the same partite set are clones. In a clone-free multipartite tournament, every pair of vertices in a given partite set is distinguished by at least one other vertex. We are interested in the vertices that distinguish pairs of vertices in convexly independent sets. Given $A \subseteq V$, define

$$
\begin{aligned}
& D_{A}=\{z \in V: z \rightarrow x \text { for some } x \in A, y \rightarrow z \text { for all } y \in A-\{x\}\} \\
& D_{A}^{\leftarrow}=\{z \in V: z \leftarrow x \text { for some } x \in A, z \rightarrow y \text { for all } y \in A-\{x\}\}
\end{aligned}
$$

Lemma 3.3. Let A and B form a convexly independent set in a multipartite tournament T, and in the case $B \neq \emptyset$ suppose $A \rightarrow B$.
(i) If $|A| \geq 3$, then each of D_{A}^{\rightarrow} and D_{A}^{\leftarrow} intersects at most one partite set nontrivially.
(ii) If $|A| \geq 2$ and $B \neq \emptyset$, then $D_{A}^{\vec{~}}$ is a subset of the same partite set as B. If $|B| \geq 2$ and $A \neq \emptyset$, then D_{B}^{\leftarrow} is a subset of the same partite set as A.
(iii) If $|A|,|B| \geq 2$, then $D_{B}^{\leftarrow} \rightarrow D_{A}^{\vec{~}}$.

Proof. For (i), we prove the result for $D_{A}^{\vec{~}}$. The case of D_{A}^{\leftarrow} is similar. Suppose $z_{1}, z_{2} \in D_{A}^{\vec{~}}$ with $z_{1} \rightarrow z_{2}$. Then there exist $x_{1}, x_{2} \in A$ with $z_{1} \rightarrow x_{1}$ and $z_{2} \rightarrow x_{2}$. Since $|A| \geq 3$, there exists $x_{3} \in A-\left\{x_{1}, x_{2}\right\}$. We have $x_{3} \rightarrow z_{2} \rightarrow x_{2}$, giving us $z_{2} \in x_{2} \vee x_{3}$. Similarly, $x_{3} \rightarrow z_{1} \rightarrow z_{2}$, and so $z_{1} \in x_{2} \vee x_{3}$. But $z_{1} \rightarrow x_{1} \rightarrow z_{2}$, so $x_{1} \in x_{2} \vee x_{3}$, a contradiction.

For (ii), suppose that $z \in D_{A}$ is not in the same partite set as B. Clearly, z is also not in the same partite set as A. Since $|A| \geq 2$, there exist $x_{1}, x_{2} \in A$ with $x_{1} \rightarrow z \rightarrow x_{2}$. Let $y \in B$. If $z \rightarrow y$, then $x_{1} \rightarrow z \rightarrow y$ and $z \rightarrow x_{2} \rightarrow y$ imply $x_{2} \in x_{1} \vee y$, which contradicts convex independence. If instead $y \rightarrow z$, we have $z \in x_{1} \vee x_{2}$, and so $x_{2} \rightarrow y \rightarrow z$ implies $y \in x_{1} \vee x_{2}$, which contradicts convex independence. This implies z and y are incomparable and are thus in the same partite set. The argument for D_{B}^{\leftarrow} is similar.

For (iii), suppose $z_{1} \in D_{A}, z_{2} \in D_{B}^{\overleftarrow{ }}$ with $z_{1} \rightarrow z_{2}$. Since $|A|,|B| \geq 2$, then there exist $x_{1}, x_{2} \in A, y_{1}, y_{2} \in B$ with $x_{1} \rightarrow z_{1} \rightarrow x_{2}$ and $y_{1} \rightarrow z_{2} \rightarrow y_{2}$. Then $z_{2} \in y_{1} \vee y_{2}$. We get $x_{1} \rightarrow z_{1} \rightarrow z_{2}$ and $z_{1} \rightarrow x_{2} \rightarrow y_{1}$, which implies $x_{2} \in y_{1} \vee y_{2} \vee x_{1}$, a contradiction.

We now explore lower bounds on $\left|D_{A}^{\vec{~}}\right|$ and $\left|D_{B}^{\leftarrow}\right|$.
Theorem 3.4. Let T be a clone-free multipartite tournament, and suppose A is a convexly independent subset of a partite set. If $A=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, one can order the elements in A such that either there exist $y_{2}, \ldots, y_{r} \in D_{A}^{\vec{~}}$ with $y_{i} \rightarrow x_{i}$ or there exist $y_{2}, \ldots, y_{r} \in D_{A}^{\leftarrow}$ with $x_{i} \rightarrow y_{i}$.

Proof. If we look at A as a set of vertices in both T and T^{*}, then D_{A}^{\leftarrow} in T is the same set as D_{A} in T^{*}. Thus, we need only show the result in either T or T^{*}.

The case $r=1$ is trivial. If $r=2$, let y_{2} be any vertex distinguishing x_{1} and x_{2}. By relabelling x_{1} and x_{2}, if necessary, we have $x_{1} \rightarrow y_{2} \rightarrow x_{2}$. If $r=3$, let y_{2} distinguish x_{1} and x_{2}. By relabelling and considering T^{*}, if necessary, we may assume $x_{1} \rightarrow y_{2} \rightarrow x_{2}$, and that $x_{3} \rightarrow y_{2}$. Since T is clone-free, there is some y_{3} that distinguishes x_{1} and x_{3}. By switching x_{1} and x_{3} if necessary, we may assume that $x_{1} \rightarrow y_{3} \rightarrow x_{3}$. It suffices to show that $x_{2} \rightarrow y_{3}$ If $y_{3} \rightarrow x_{2}$, then $x_{1} \rightarrow y_{2} \rightarrow x_{2}$ and $x_{1} \rightarrow y_{3} \rightarrow x_{2}$, so $y_{2}, y_{3} \in x_{1} \vee x_{2}$. But then $y_{3} \rightarrow x_{3} \rightarrow y_{2}$, so $x_{3} \in x_{1} \vee x_{2}$, a contradiction.

Inducting on m, assume the result for $r=m \geq 3$. For $r=m+1$, there exist y_{2}, \ldots, y_{m} such that $y_{i} \rightarrow x_{i}$ for all $2 \leq i \leq m$ and $x_{i} \rightarrow y_{j}$ for all $i \neq j$. Clearly, $x_{i} \vee x_{j}=y_{i} \vee y_{j}$ for all $2 \leq i \neq j \leq m$. For a contradiction, suppose $y_{i} \rightarrow x_{m+1}$ for some $i \leq m$. If $x_{m+1} \rightarrow y_{j}$, then $x_{m+1} \in y_{i} \vee y_{j}=x_{i} \vee x_{j}$, which contradicts convex independence. Thus, $y_{i} \rightarrow x_{m+1}$ for all $i \leq m$. Since $m \geq 3, y_{2}, y_{3} \rightarrow x_{m+1}$. We have $x_{1} \rightarrow\left\{y_{2}, y_{3}\right\} \rightarrow x_{m+1}$, and so $x_{2} \vee x_{3}=y_{2} \vee y_{3} \subseteq x_{1} \vee x_{m+1}$, a contradiction. Thus, $x_{m+1} \rightarrow y_{i}$ for all $i \leq m$. Now let y_{m+1} be a vertex distinguishing x_{1} and x_{m+1}. By switching x_{1} and x_{m+1}, if necessary, we can assume that $x_{1} \rightarrow y_{m+1} \rightarrow x_{m+1}$. Arguments similar to the $r=3$ case give us $x_{i} \rightarrow y_{m+1}$ for $2 \leq i \leq m$, which completes the proof.

The following lemma shows that these distinguishing sets contain all vertices that distinguish vertices in A and B.

Lemma 3.5. Suppose A and B form a convexly independent set, with $A \rightarrow B$ when $A, B \neq \emptyset$.
(i) If $|A| \geq 3$, then either $D_{A}^{\vec{A}}=\emptyset$ or $D_{A}^{\leftarrow}=\emptyset$. Moreover, any vertex that distinguishes two vertices in A must be in $D_{A} \cup \stackrel{D_{A}}{\leftarrow}$.
(ii) If $|A| \geq 2$ and $B \neq \emptyset$, then any vertex that distinguishes two vertices in A is in $D_{A} \overrightarrow{\text {. }}$.
(iii) If $A \neq \emptyset$ and $|B| \geq 2$, then any vertex that distinguishes two vertices in B must be in D_{B}^{\leftarrow}.

Proof. For (i), let $u \in D_{A}^{\vec{A}}, v \in D_{A}^{\overleftarrow{ }}$. Let $x_{1}, x_{2} \in A$ with $u \rightarrow x_{1}$ and $x_{2} \rightarrow v$. Then $A-\left\{x_{1}\right\} \rightarrow u$ and $v \rightarrow A-\left\{x_{2}\right\}$. In the case $x_{1}=x_{2}$, let $x_{3}, x_{4} \in A-\left\{x_{1}\right\}$. In the case $x_{1} \neq x_{2}$, let $x_{3}=x_{2}$, and let $x_{4} \in A-\left\{x_{1}, x_{3}\right\}$. In either case, $u, v \in x_{1} \vee x_{3}$. Then $v \rightarrow x_{4} \rightarrow u$ implies $x_{4} \in x_{1} \vee x_{3}$, a contradiction.

For (ii), let $x, y \in A, z \in V$ with $x \rightarrow z \rightarrow y$, and let $w \in B$. Then $z \in x \vee y$. If $z \notin D_{A}$ then there exists $v \in A-\{y\}$ with $z \rightarrow v$. Then $z \rightarrow v \rightarrow w$ implies $v \in x \vee y \vee w$, which contradicts convex independence. Thus, $z \in D_{A}^{\vec{~}}$. Part (iii) follows similarly.

An immediate extension of the lemma is
Corollary 3.6. Suppose A and B form a convexly independent set, and $A \rightarrow B$.
(i) If $|A| \geq 3$ and $B \neq \emptyset$ then $D_{A}^{\leftarrow}=\emptyset$.
(ii) If $|B| \geq 3$ and $A \neq \emptyset$ then $D_{B}=\emptyset$.

When T is clone-free, Corollary 3.6 and Theorem 3.4 give us the following.
Corollary 3.7. Suppose that $A \neq \emptyset$ and $B \neq \emptyset$ form a convexly independent set and that $A \rightarrow B$. Then $\left|D_{A}\right| \geq|A|-1$ and $\left|D_{B}^{\leftarrow}\right| \geq|B|-1$.

Corollary 3.7 leads to our main theorem of the section.
Theorem 3.8. Let T be a clone-free multipartite tournament. Then
(i) $d(T)$ is at most one greater than the order of the second largest partite set in T.
(ii) $d(T) \leq\left\lfloor\frac{|V|}{2}+1\right\rfloor$.

Proof. Let A and B form a maximum convexly independent set of T with $A \rightarrow B$. Also, let $P_{1} \supseteq A$ and $P_{2} \supseteq B$ be partite sets. For (i), if A and B are both nonempty, then Lemma 3.3(ii) gives us $D_{A}^{\vec{~}} \subseteq P_{2}$ and $D_{B}^{\leftarrow} \subseteq P_{1}$. We then have $\left|P_{1}\right| \geq|A|+\left|D_{B}^{\leftarrow}\right| \geq|A|+|B|-1=d(T)-1$. Thus, $d(T) \leq\left|P_{1}\right|+1$. Similarly, $d(T) \leq\left|P_{2}\right|+1$. If $B=\emptyset$, the case $d(T)=1$ or $d(T)=2$ is clear. If $d(T) \geq 3$, then Lemma 3.3(i) implies each of D_{A}^{\rightarrow} and D_{A}^{\leftarrow} lies in one partite set. Theorem 3.4 implies that $\left|D_{A}\right| \geq|A|-1$ or $\left|D_{A}^{\overleftarrow{ }}\right| \geq|A|-1$. In either case, some partite set $P_{2} \neq P_{1}$ has at least $|A|-1$ elements. Then $d(T)=|A| \leq\left|P_{1}\right|$ and $d(T)=|A| \leq\left|P_{2}\right|+1$. For (ii), the second largest partite set of T has at most $\frac{|V|}{2}$ vertices so $d(T) \leq \frac{|V|}{2}+1$ by (i).

Corollary 3.9. Let T be a clone-free multipartite tournament, and let A and B form a maximum convexly independent set of T. Then
(i) If $d(T)=\left\lfloor\frac{|V|}{2}+1\right\rfloor$, and if B is empty, then $|V|$ is odd.
(ii) Every convex subset of T is the convex hull of at most $\left\lfloor\frac{|V|}{2}+1\right\rfloor$ vertices.

Proof. For (i), we have $\left|D_{A} \cup D_{A}^{\leftarrow}\right| \geq|A|-1$ by Theorem 3.4. We then have $|V| \geq$ $|A|+|A|-1=2 d(T)-1$. This gives us $d(T) \leq \frac{|V|+1}{2}$. But this can happen only if $|V|$ is odd. Part (ii) follows from Theorem 3.8(ii) and the definition of rank.

Since rank is an upper bound for the Helly, Radon, and Caratheodory numbers, we have the following.

Corollary 3.10. Let T be a clone-free multipartite tournament. Then
(i) $h(T), r(T)$, and hul (T) are at most one larger than the cardinality of the second largest partite set.
(ii) $h(T), r(T)$, hul $(T) \leq\left\lfloor\frac{|V|}{2}+1\right\rfloor$.

We then say that a clone-free multipartite tournament T has maximum rank (resp. maximum Helly number, maximum Radon number, maximum hull number) if the rank (resp. the Helly number, Radon number, hull number) is $\left\lfloor\frac{|V|}{2}+1\right\rfloor$.

4. Classifying clone-free multipartite tournaments with maximum convexity numbers

Let T be a clone-free multipartite tournament. As before, let A and B form a convexly independent set of T with $A \rightarrow B$, and let $d=d(T)$. We begin with some examples of clone-free multipartite tournaments with maximum convexity numbers.

Example 4.1. Tournaments have rank at most 2, so all tournaments with $|V| \leq 3$ have maximum rank, Helly number, Radon number, and hull number. This includes C_{3}, the cyclic tournament on three vertices.

Example 4.2. Let $B_{2 d-1}$ have partite sets $P_{1}=\left\{x_{1}, \ldots, x_{d}\right\}, P_{2}=\left\{y_{2}, \ldots, y_{d}\right\}$, with $y_{i} \rightarrow x_{i}$ for all $2 \leq i \leq b$ and $x_{i} \rightarrow y_{j}$ otherwise. Since P_{1} is $H-, R$-, and convexly independent, $B_{2 d-1}$ has maximum rank, Helly number, and Radon number. Every hull set must include x_{1} and either x_{i} or y_{i} for $2 \leq i \leq d$, so $B_{2 d-1}$ has maximum hull number.

Let $B_{2 d-1}^{\prime}$ have partite sets $P_{1}=\left\{z, x_{1}, \ldots, x_{d-1}\right\}$ and $P_{2}=\left\{y_{1}, \ldots, y_{d-1}\right\}$, with $P_{2} \rightarrow z$, $y_{i} \rightarrow x_{i}$ for $i \geq 2$, and $x_{i} \rightarrow y_{j}$ otherwise. Then $\left\{x_{1}, \ldots, x_{d-1}, y_{1}\right\}$ is $H-, R-$, and convexly independent, and $x_{1} \vee z=V$, so $h\left(B_{2 d-1}^{\prime}\right)=r\left(B_{2 d-1}^{\prime}\right)=d\left(B_{2 d-1}^{\prime}\right)=d$ and hul $\left(B_{2 d-1}^{\prime}\right)=2$.

Let $B_{2 d-2}$ have partite sets $P_{1}=\left\{x_{1}, \ldots, x_{d-1}\right\}$ and $P_{2}=\left\{y_{1}, y_{2}, \ldots, y_{d-1}\right\}$, with $y_{i} \rightarrow x_{i}$ for all $i \geq 2$, and $x_{i} \rightarrow y_{j}$ otherwise. Then $\left\{x_{1}, \ldots, x_{d-1}, y_{1}\right\}$ is $H-, R$-, and convexly
independent, so $B_{2 d-2}$ has maximum rank, Helly number, and Radon number. Moreover, $B_{2 d-2}$ has maximum hull number, and $B_{2 d-2} \cong B_{2 d-2}^{*}$.

Example 4.3. Let $T_{2 d-1}=B_{2 d-2} \cup\{z\}$, where $z \rightarrow B_{2 d-2}$, and let $T_{2 d-1}^{\prime}=B_{2 d-2} \cup\{z\}$, where $P_{1} \rightarrow z \rightarrow P_{2}$. The maximum convexly independent sets of $B_{2 d-2}$ are maximum convexly independent in $T_{2 d-1}$ and $T_{2 d-1}^{\prime}$, so both are of maximum rank. In $T_{2 d-1}$, the maximum convexly independent sets are also H - and R-independent, so $T_{2 d-1}$ has maximum Helly and Radon number. However, every convex subset of $T_{2 d-1}^{\prime}$ with more than one vertex contains z, so $h\left(T_{2 d-1}^{\prime}\right)=2$. Once can show that $r\left(T_{3}^{\prime}\right)=2$ and $r\left(T_{2 d-1}^{\prime}\right)=3$ for $d \geq 3$. Moreover, $T_{2 d-1}^{\prime}$ has maximum hull number, and $T_{2 d-1}^{\prime} \cong\left(T_{2 d-1}^{\prime}\right)^{*}$.

A final example is $T_{5}^{\prime \prime}=B_{4} \cup\{z\}$ where $z \rightarrow P_{1}, y_{2} \rightarrow z$, and $z \rightarrow y_{1}$, which has maximum rank, Helly number, Radon number, and hull number.

We begin our classification with the case of $B=\emptyset$.
Theorem 4.4. Let T be a clone-free multipartite tournament of maximum rank, and let A and $B=\emptyset$ form a maximum convexly independent set. Then $T \cong B_{2 d-1}$ or $T \cong B_{2 d-1}^{*}$.

Proof. By Corollary 3.9(i), n must be odd. Let $A=\left\{x_{1}, \ldots, x_{d}\right\}$. Theorem 3.4 implies that, by reordering the x_{i} 's and looking at T^{*} if necessary, there exists $C=\left\{y_{2}, \ldots, y_{d}\right\} \subseteq D_{A}^{\rightarrow}$ such that $y_{i} \rightarrow x_{i}$. Furthermore, we have that y_{2}, \ldots, y_{d} are all in the same partite set (if $d=2$, it follows trivially; the $d \geq 3$ case follows from Lemma 3.3(i). Since $n=2 d-1, V=A \cup C$, and so $T \cong B_{2 d-1}$ (or, if we had to take T^{*} to get the y_{i}, then $T \cong B_{2 d-1}^{*}$).

We now pursue the case of $A, B \neq \emptyset$. We first consider $B_{2 d-2}$.
Lemma 4.5. Suppose that A and B form a maximum convexly independent set of $B_{2 d-2}$. Let the $x_{i}, y_{j} \in B_{2 d-2}$ be as in Example 4.2.
(i) For all $i \geq 2$, we cannot have both $x_{i} \in A$ and $y_{i} \in B$
(ii) If $A \rightarrow B$, then $x_{1} \in A$ and $y_{1} \in B$.

Proof. For (i), suppose $x_{i} \in A, y_{i} \in B$. Since $i \geq 2$, we have $d \geq 3$, so $|A| \geq 2$ or $|B| \geq 2$. If $|A| \geq 2$, we have some $x_{j} \in A, j \neq i$. Thus, $x_{j} \rightarrow y_{i} \rightarrow x_{i}$, contradicting convex independence. The case $|B| \geq 2$ follows similarly.

For (ii), the case of $d=2$ is obvious. For $d \geq 3$, suppose $x_{1} \notin A$. Since each y_{i} dominates at most one x_{j}, we have $A \subseteq P_{1}$ and $B \subseteq P_{2}$. Let $r=|A|$, so $|B|=d-r$. We have $d-r-2$ vertices among x_{2}, \ldots, x_{d-1} that are not in A, and one of the vertices in B can be y_{1}, which leaves at least $d-r-1$ vertices to be chosen from y_{2}, \ldots, y_{d-1}. But there are only $d-r-2 y_{i}$'s for which $x_{i} \notin A$. Thus, $y_{i} \in B$ and $x_{i} \in A$ for some $i \geq 2$, which contradicts (i). The case $y_{1} \in B$ follows similarly.

We consider the cases of $|V|$ even and $|V|$ odd separately.
Lemma 4.6. Let T be a clone-free multipartite tournament of maximum rank.
(i) If $|V|$ is even, then $V=A \cup B \cup D_{A}^{\vec{~}} \cup D_{B}^{\leftarrow},\left|D_{A}^{\vec{~}}\right|=|A|-1$, and $\left|D_{B}^{\leftarrow}\right|=|B|-1$.
(ii) If $|V|$ is odd and $V \neq A \cup B \cup D_{A}^{\vec{~}} \cup D_{B}^{\leftarrow}$, then there exists a unique $z \notin A \cup B \cup D_{A} \cup D_{B}^{\leftarrow}$.

Proof. If $|V|$ is even, we have $|V|=2 d-2$. Using Corollary 3.7, we obtain

$$
\begin{aligned}
|V| & \geq|A|+|B|+\left|D_{A}^{\vec{A}}\right|+\left|D_{B}^{\overleftarrow{ }}\right| \\
& \geq|A|+|B|+(|A|-1)+(|B|-1)=2 d-2=|V|
\end{aligned}
$$

so all inequalities must be equalities, and (i) follows. If $|V|$ is odd, we still have $\mid A \cup B \cup D_{A}^{\vec{~}} \cup$ $D_{B}^{\leftarrow} \mid \geq 2 d-2$. This leaves one other possible vertex z, which proves (ii).

Theorem 4.7. If T is a clone-free multipartite tournament of maximum rank, and if $|V|=$ $2 d-2$, then $T \cong B_{2 d-2}$.

Proof. The case of $|V|=2$ is obvious, so we can assume $|V| \geq 4$ and $d \geq 3$. Since $B_{2 d-2} \cong$ $B_{2 d-2}^{*}$, we consider T^{*} if necessary. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $B=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$. Without loss of generality, $r \geq 2, s \geq 1$ and $r+s=d$. If $s \geq 2$, then by Lemma 3.3(ii), Theorem 3.4, and Lemma 4.6(i), $D_{A}^{\vec{~}}=\left\{z_{2}, \ldots, z_{r}\right\} \subseteq P_{2}$ and $D_{B}^{\leftarrow}=\left\{w_{2}, \ldots, w_{s}\right\} \subseteq P_{1}$. We can fill in the arcs using Lemma 3.3, which gives us $T \cong B_{2 b-2}$. If $s=1$ we have $B=\left\{y_{1}\right\}$ and $D_{B}^{\leftarrow}=\emptyset$. We similarly conclude that $T \cong B_{2 d-2}$.

The final case is $|V|=2 d-1$. By Lemma 4.6(ii), there is at most one vertex $z \notin A \cup B \cup$ $D_{A}^{\rightarrow} \cup D_{B}^{\leftarrow}$. When such a z exists, let T^{\prime} be the subtournament induced by $V^{\prime}=V-\{z\}$. Then A and B form a maximum convexly independent set of T^{\prime}, so $d\left(T^{\prime}\right)=d$, and $T^{\prime} \cong B_{2 d-2}$ by Theorem 4.7. Thus, T has at least two partite sets $P_{1} \supseteq\left\{x_{1}, \ldots, x_{d-1}\right\}$ and $P_{2} \supseteq\left\{y_{1}, \ldots, y_{d-1}\right\}$ with arcs as in Example 4.2, and $V-V^{\prime}=\{z\}$.

Lemma 4.8. Let T be a clone-free multipartite tournament with $d(T)=d \geq 3$ and $|V|=$ $2 d-1$. Let P_{1} and P_{2} be partite sets of T, and let A and B form a convexly independent set with $A \subseteq P_{1}, B \subseteq P_{2}$ as above. Finally, assume that $z \notin A \cup B \cup D_{A} \cup D_{B}^{\leftarrow}$.
(i) If $z \notin P_{2}$, then $z \rightarrow B$ or $B \rightarrow z$.
(ii) If $z \notin P_{1}$, then $z \rightarrow A$ or $A \rightarrow z$.
(iii) If $z \notin P_{1} \cup P_{2}$, then we cannot have $B \rightarrow z \rightarrow A$.
(iv) If $z \notin P_{2}$, then either $z \rightarrow P_{2}, P_{2} \rightarrow z$, or there is a unique $u \in P_{2}$ with $u \rightarrow z$.
(v) If $z \notin P_{1}$, then either $z \rightarrow P_{1}, P_{1} \rightarrow z$, or there is a unique $u \in P_{1}$ with $z \rightarrow u$.

Proof. For (i), if it were not true that $z \rightarrow B$ or $B \rightarrow z$, then Lemma 3.5(iii) would imply $z \in D_{B}^{\leftarrow}$, a contradiction. Part (ii) follows similarly.

For (iii), since $d \geq 3,|A| \geq 2$ or $|B| \geq 2$. If $u, v \in A$, and $B \rightarrow z \rightarrow A$, then $B \rightarrow z \rightarrow u$ and $z \rightarrow v \rightarrow B$, so $v \in B \vee u$, a contradiction. The case $|B| \geq 2$ follows similarly.

For (iv), suppose it is not true that $z \rightarrow P_{2}$ or $P_{2} \rightarrow z$. Then there exist $u, v \in P_{2}$ with $u \rightarrow z \rightarrow v$. For contradiction, assume that there is some $w \in P_{2}-\{u\}$ with $w \rightarrow z$. In the case $z \rightarrow B$, we have $u, w \in P_{2}-B=D_{A}$, and without loss of generality, $v \in B$. Then there exist $x_{u}, x_{w} \in A$ with $u \rightarrow x_{u}$ and $w \rightarrow x_{w}$. By Lemma 4.5, $x_{1} \in A$. Thus, $x_{1} \rightarrow u \rightarrow x_{u}$ and $u \rightarrow z \rightarrow v$, so $z \in x_{1} \vee x_{u} \vee v$. But then $x_{1} \rightarrow w \rightarrow z$ and $w \rightarrow x_{w} \rightarrow v$, which implies $x_{w} \in x_{1} \vee x_{u} \vee v$, a contradiction. In the case $B \rightarrow z$, we have $v \in P_{2}-B=D_{A}$ and without loss of generality $u \in B$. Let $x_{v} \in A$ with $v \rightarrow x_{v}$. If $w \in B$, then $x_{1} \rightarrow v \rightarrow x_{v}$ and $u \rightarrow z \rightarrow v$, so $z \in x_{1} \vee x_{v} \vee u$. But then $x_{1} \rightarrow w \rightarrow z$, so $w \in x_{1} \vee x_{v} \vee u$, a contradiction. If $w \in P_{2}-B=D_{A}^{\vec{A}}$, let $x_{w} \in A$ with $w \rightarrow x_{w}$. We have $x_{1} \rightarrow v \rightarrow x_{v}$ and $u \rightarrow z \rightarrow v$, so $z \in x_{1} \vee x_{v} \vee u$. But then $x_{1} \rightarrow w \rightarrow z$ and $w \rightarrow x_{w} \rightarrow u$, so $x_{w} \in x_{1} \vee x_{v} \vee u$, a contradiction. Thus, $z \rightarrow P_{2}-\{u\}$.

In either case, $u \rightarrow z$ for precisely one $u \in P_{2}$, and (iv) follows. Part (v) is similar.
Corollary 4.9. Let T be a clone-free bipartite tournament with $d(T)=d,|V|=2 d-1$. Then T is isomorphic to either $B_{2 d-1}, B_{2 d-1}^{*}, B_{2 d-1}^{\prime}$, or $\left(B_{2 d-1}^{\prime}\right)^{*}$.

Proof. For the case $V=A \cup B \cup D_{A} \rightarrow D_{B}^{\leftarrow}$, since $|V|=2 d-1$, Corollary 3.7 implies that $\left|D_{A}\right|=|A|$ or $\left|D_{B}^{\overleftarrow{ }}\right|=|B|$. In the first case, $T \cong B_{2 d-1}^{*}$, and in the second, $T \cong B_{2 d-1}$.

In the case $V \neq A \cup B \cup D_{A}^{\vec{~}} \cup D_{B}^{\leftarrow}$, we have a unique $z \notin A \cup B \cup D_{A}^{\vec{~}} \cup D_{B}^{\leftarrow}$ by Lemma 4.6(ii). If $z \in P_{1}$, then we cannot have $z \rightarrow P_{2}$ because z and x_{1} would be clones. If $P_{2} \rightarrow z$, then $T \cong B_{2 d-1}^{\prime}$. Otherwise $v \rightarrow z$ for precisely one $v \in P_{2}$ by Lemma 4.8(iv). We cannot have $v=y_{i}$ for $i \geq 2$ because z would be a clone of x_{i}. Thus, $v=y_{1}$ and $z \in D_{B}^{\leftarrow}$, a contradiction. Arguments are similar if $z \in P_{2}$, where we get $T \cong\left(B_{2 d-1}^{\prime}\right)^{*}$.

This brings us to the main theorem.
Theorem 4.10. Let T be a clone-free multipartite tournament with $d(T)=\left\lfloor\frac{|V|}{2}+1\right\rfloor$. Then T is isomorphic to one of $B_{2 d-2}, B_{2 d-1}, B_{2 d-1}^{*}, B_{2 d-1}^{\prime},\left(B_{2 d-1}^{\prime}\right)^{*}, T_{2 d-1}, T_{2 d-1}^{*}, T_{2 d-1}^{\prime}, T_{5}^{\prime \prime},\left(T_{5}^{\prime \prime}\right)^{*}$, or C_{3}.

Proof. We have already proven the case where T is bipartite. Since $A, B, D_{A}^{\vec{A}}$, and D_{B}^{\leftarrow} are all contained in two partite sets, and there is at most one other vertex, only the case of T tripartite remains. In this case, $|V|$ is odd, the third partite set is $P_{3}=\{z\}$, and the bipartite tournament induced by $V-\{z\}$ is isomorphic to $B_{2 d-2}$. Thus, the other partite sets are $P_{1}=\left\{x_{1}, \ldots, x_{d-1}\right\}$ and $P_{2}=\left\{y_{1}, \ldots, y_{d-1}\right\}$ with $y_{i} \rightarrow x_{i}$ for $i \geq 2$ and $x_{i} \rightarrow y_{j}$ otherwise. By Lemma 4.5, $x_{1} \in A$ and $y_{1} \in B$.

Suppose T is not isomorphic to any of $T_{2 d-1}, T_{2 d-1}^{*}$, or $T_{2 d-1}^{\prime}$. By Lemma 4.8(iii), we cannot have $P_{2} \rightarrow z \rightarrow P_{1}$ unless $d=2$. In this case, $|V|=3$ and so $T \cong C_{3}$. Thus, we can assume $d \geq 3$. By Lemma 4.8(iv), (v), either there exists a unique $v \in P_{2}$ with $v \rightarrow z$ or there exists a unique $v \in P_{1}$ with $z \rightarrow v$. In the first case, we assume, for contradiction that $v \in B$. Then $B \rightarrow z$, so $B=\{v\}$. Thus, $|A| \geq 2$, and there is some $u \in D_{A}$. Let $x_{u} \in A$ with $u \rightarrow x_{u}$. If $A \rightarrow z$, then $x_{1} \rightarrow u \rightarrow x_{u}$ and $x_{u} \rightarrow z \rightarrow u$, so $z \in x_{1} \vee x_{u}$. But then $x_{1} \rightarrow v \rightarrow z$, so $v \in x_{1} \vee x_{u}$, a contradiction. Thus, $z \rightarrow A$ by Lemma 4.8(ii). But then $B \rightarrow z \rightarrow A$, contradicting Lemma 4.8(iii). This leaves us with $v \in P_{2}-B=D_{A}$. Since $D_{A} \neq \emptyset$, this implies that $|A| \geq 2$.

Let $x_{v} \in A$ with $v \rightarrow x_{v}$. As before, either $A \rightarrow z$ or $z \rightarrow A$. If $A \rightarrow z$, then $z \rightarrow B$ implies $x_{1} \rightarrow z \rightarrow y_{1}$ and $x_{1} \rightarrow v \rightarrow z$, so $v \in x_{1} \vee y_{1}$. But then $v \rightarrow x_{v} \rightarrow y_{1}$, so $x_{v} \in x_{1} \vee y_{1}$, a contradiction. Thus, $z \rightarrow A$. Since $|A| \geq 2$ and $z \rightarrow A$, Lemma 4.8(v), implies that $z \rightarrow P_{1}$.

We now claim that $|A|=2$. Suppose that $|A| \geq 3$, and let $x \in A-\left\{x_{1}, x_{v}\right\}$. Then $x_{1} \rightarrow v \rightarrow x_{v}, v \rightarrow z \rightarrow x_{1}$, and $z \rightarrow x \rightarrow y_{1}$ imply $x \in x_{1} \vee x_{v} \vee y_{1}$, a contradiction. Thus, $|A|=2$. This along with Lemma 4.8(v), imply $z \rightarrow P_{1}$.

Suppose $|B| \geq 2$. Then there exists $y \in B-\left\{y_{1}\right\}$ and an $x_{y} \in D_{B}^{\leftarrow}$ such that $y \rightarrow x_{y}$. As above $z \in x_{1} \vee x_{v}$. Then $z \rightarrow x_{y} \rightarrow y_{1}$ and $z \rightarrow y \rightarrow x_{y}$, so $y \in x_{1} \vee x_{v} \vee y_{1}$, a contradiction. Thus $d=3$ and $|V|=5$, so $T \cong T_{5}^{\prime \prime}$.

In the case of a unique $v \in P_{1}$ with $z \rightarrow v$, apply the above to T^{*}. Then $T^{*} \cong T_{5}^{\prime \prime}$, and so $T \cong\left(T_{5}^{\prime \prime}\right)^{*}$.

We get a similar result for the, Helly, Radon, and hull numbers.
Theorem 4.11. Let T be a clone-free multipartite tournament with n vertices.
(i) If $h(T)=\left\lfloor\frac{n}{2}+1\right\rfloor$, then T or T^{*} is isomorphic to $B_{2 d-1}, B_{2 d-1}^{\prime}, B_{2 d-2}, T_{2 d-1}, T_{5}^{\prime \prime}$ or C_{3}.
(ii) If $r(T)=\left\lfloor\frac{n}{2}+1\right\rfloor$, then one of T or T^{*} is isomorphic to $B_{2 d-1}, B_{2 d-1}^{\prime}, B_{2 d-2}, T_{2 d-1}, T_{5}^{\prime}$, $T_{5}^{\prime \prime}$ or C_{3}.
(iii) If hul $(T)=\left\lfloor\frac{n}{2}+1\right\rfloor$, then T or T^{*} is isomorphic to $B_{2 d-1}, B_{3}^{\prime}, B_{2 d-2}, T_{2 d-1}^{\prime}$ or C_{3}.

References

[1] G. Chartrand, A. Chichisan, P. Zhang, On convexity in graphs, Congr. Numer. 148 (2001) 33-41.
[2] G. Chartrand, J.F. Fink, P. Zhang, Convexity in oriented graphs, Discrete Appl. Math. 116 (2002) 115-126.
[3] M. Changat, J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95.
[4] P. Duchet, Convexity in graphs II. Minimal path convexity, J. Combin. Theory Ser. B 44 (1988) 307-316.
[5] P. Erdös, E. Fried, A. Hajnal, E.C. Milner, Some remarks on simple tournaments, Algebra Univers. 2 (1972) 238-245.
[6] F. Harary, J. Nieminen, Convexity in graphs, J. Differential Geom. 16 (1981) 185-190.
[7] J. Nieminen, On path- and geodesic-convexity in digraphs, Glas. Mat. 16 (1981) 193-197.
[8] J.L. Pfaltz, Convexity in directed graphs, J. Combin. Theory 10 (1971) 143-152.
[9] D.B. Parker, R.F. Westhoff, M.J. Wolf, Two-path convexity in clone-free regular multipartite tournaments, Australas. J. Combin. 36 (2006) 177-196.
[10] J.C. Varlet, Convexity in tournaments, Bull. Soc. Roy. Sci. Liege 45 (1976) 570-586.
[11] M.L.J. van de Vel, Theory of Convex Structures, North Holland, Amsterdam, 1993.

[^0]: E-mail addresses: dbparker@udayton.edu (D.B. Parker), rwesthoff@bemidjistate.edu (R.F. Westhoff), mjwolf@bemidjistate.edu (M.J. Wolf).

 URLs: http//academic.udayton.edu/darrenparker (D.B. Parker), http//cs.bemidjistate.edu/mjwolf (M.J. Wolf).

