Some subsets of points in the plane associated to truncated Reed-Muller codes with good parameters

Ronan Quarez
IMR (CNRS, URA 305), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

Received 27 June 2003; received in revised form 27 October 2004; accepted 21 March 2005
Available online 30 September 2005

Abstract

We gives some examples of subsets of points in the projective plane associated to truncated generalized projective Reed-Muller codes with good parameters, of dimensions 6 and 10 over $G F(7), G F(8)$ and $G F(9)$. © 2005 Elsevier B.V. All rights reserved.

Keywords: Arcs in finite plane; Bézout's theorem; Generalized Reed-Muller codes

1. Introduction

We use the standard notation $[n, k, d]$ to denote the parameters of a linear code C over $G F(q)$. As usual n stands for its length, k its dimension and d its minimal distance. We say that C is an $[n, k, d]$-code over $G F(q)$.
We say that the code C of parameters $[n, k, d]$ is optimal if there is no $[n, k, d+1]$-code. We will refer to E . Brouwer's table [2] to get the known lower and upper bounds for the minimal distance (given n and k). We will say that a code meets (resp. beats) the record if it reaches the lower bound of Brouwer (resp. if it gives a better lower bound).
In this paper, we consider truncated Reed-Muller codes obtained by evaluating polynomials at a given subset of points in the projective plane.
Let $P G(m, q)$ be the m-dimensional projective space over $G F(q)$ and let $H_{q}(m, l)$ be the $G F(q)$-vector space of all homogeneous polynomials of degree l in $m+1$-variables. Let $\Omega \subset P G(m, q)$ be a subset of cardinality $|\Omega|=\omega$. We consider an arbitrary ordering of the points of Ω, say $\Omega=\left\{A_{1}, \ldots, A_{\omega}\right\}$. Then we define a $G F(q)$-linear evaluation map

$$
\begin{array}{rlcc}
\Phi_{\Omega}: & H_{q}(m, l) & \rightarrow & G F(q)^{\omega} \\
P & \mapsto & \left(P\left(A_{1}\right), \ldots, P\left(A_{\omega}\right)\right) .
\end{array}
$$

Its image $\Phi_{\Omega}\left(H_{q}(m, l)\right)$ is a linear code $C_{\Omega}(m, l)$ over $G F(q)$ of length ω. Moreover, if Φ_{Ω} is injective, then $C_{\Omega}(m, l)$ has dimension $\binom{m+l}{m}$. To shorten notations in the planar case, we will denote $C_{\Omega}(2, l)$ by $C_{\Omega}(l)$.

When $\Omega=P G(m, q)$ we get the so-called projective Reed-Muller codes [3]. If Ω is an algebraic subset then Bézout's Theorem gives a bound on the minimal distance as we see in Section 1 (following [5]).

[^0]The idea of the following sections is to take for Ω a (κ, v)-arc in the projective plane which is a subset of κ points in $P G(2, q)$ such that some v but no $v+1$ are collinear. Then, we generalize this idea and introduce the notion of a ($\kappa, v, 2$)-arc in the projective plane and show how it produces some new codes over $G F(7), G F(8), G F(9)$ of dimensions 6 and 10 .

2. Codes from Bézout's Theorem

Let χ be an absolutely irreducible projective curve of genus g over $G F(q)$. The Hasse-Weil bound says that its number of $G F(q)$-rational points satisfy $|\chi(G F(q))| \leqslant q+1+2 g \sqrt{q}$. Curves which reach the Hasse-Weil bound are called maximal.

Table 1 gives, for small q, the maximum number of $G F(q)$-rational points of a projective absolutely irreducible curve of given genus g :

Let $F \in H_{q}(2, l)$ and denote by $Z(F)$ the locus of zeros of F in $P G(2, q)$ and let $N(F)=|Z(F)|$ their number. If F is absolutely irreducible of degree l over $G F(q)$, we have

$$
N(F) \leqslant q+1+\frac{(l-1)(l-2)}{2}\lfloor 2 \sqrt{q}\rfloor,
$$

since the genus g of the algebraic projective plane curve given by the equation $F=0$ of degree l is such that $g \leqslant(l-$ 1) $(l-2) / 2$ (equality holds if the curve is non-singular).

We illustrate the construction given in [5, Theorem 2.27], writing down the result obtained by Bézout's Theorem:
Theorem 2.1. Let $F \in H_{q}\left(3, l^{\prime}\right)$ be such that $F=0$ is the equation of an irreducible non-singular plane curve. Let $\Omega=Z(F)$ and let l be an integer such that $|\Omega|>l l^{\prime}$. Then, $C_{\Omega}(l)$ is a linear code over $G F(q)$ with parameters:

- $n=|\Omega|$,
- $d \geqslant n-l l^{\prime}$
- $k= \begin{cases}\left(\frac{l+2}{2}\right) & \text { if } l<l^{\prime} \\ l l^{\prime}+1-\left(\frac{l^{\prime}-1}{2}\right) & \text { if } l \geqslant l^{\prime}\end{cases}$

To use Theorem 2.1, we are obviously interested in curves with many points (maximal curves for instance) in order to get codes with good parameters.

Example. We take as an example, $\Omega=Z\left(X^{3} Y+Y^{3} Z+Z^{3} X\right)$ where $X^{3} Y+Y^{3} Z+Z^{3} X=0$ is the equation of a projective non-singular maximal plane curve over $G F(8)$. Then $C_{\Omega}(l)$, with $l=2,3,4,5$, are codes of parameters $[24,6, \geqslant 16],[24,10, \geqslant 12],[24,14, \geqslant 8],[24,18, \geqslant 4]$. To compare with the parameters of records $[24,6,16]$, [24, 10, 12], [24, 14, 8], [24, 18, 5].

Table 1
Maximal number of $G F(q)$-rational points

q	2	3	4	5	7	8	9	11	13	16
$g=1$	5	7	9	10	13	14	16	18	21	25
$g=2$	6	8	10	12	16	18	20	24	26	33
$g=3$	7	10	14	16	20	24	28	28	32	38

3. Configuration of lines in the plane

3.1. Arcs in the plane

Concerning all the notions of this section we refer to $[1,4,6]$ for a survey. A κ-arc in $P G(2, q)$ is a set of κ points no three of which are colinear. The maximum number of points in a κ-arc is denoted by $m(2, q)$. A maximal plane κ-arc is called an oval. We have

$$
m(2, q)= \begin{cases}q+1 & \text { for } q \text { odd } \\ q+2 & \text { for } q \text { even. }\end{cases}
$$

More generally, a (κ, v)-arc in $P G(2, q)$ is a subset of κ points such that some v but no $v+1$ are colinear. Again, we denote by $m_{v}(2, q)$ the maximum number of points in a $\left.\kappa, v\right)$-arc. We have the trivial values: $m_{2}(2, q)=m(2, q)$, $m_{q+1}(2, q)=q^{2}+q+1$ and $m_{q}(2, q)=q^{2}$ [4]. And for $v \leqslant q-1$ "Table 2 " is the table of values $m_{v}(2, q)$ for small q :

We have also the inequality: $m_{v}(2, q) \leqslant(v-1) q+v$, and there are many upper bounds when we add some conditions on v. A (κ, v)-arc which satisfies $m_{v}(2, q)=(v-1) q+v$ is said to be maximal. However, we are mostly interested in lower bound, and for instance let us state the following:

Proposition 3.1. We have

(1) if $q=2^{h}, v=q-2$, then $m_{v}(2, q) \geqslant(v-1) q+2$,
(2) if q is a square, then $m_{v}(2, q) \geqslant(q+\sqrt{q}+1)(v-\sqrt{q})$,
(3) if q is a square and $v=q-\sqrt{q}$, then $m_{v}(2, q) \geqslant(v-1) q+\sqrt{q}$.

3.2. Truncated Reed-Muller codes

Let $N_{q}(l, \Omega)$ be the maximal number of zeros in $\Omega \subset P G(2, q)$ of a polynomial in $H_{q}(2, l)$. We also define $\operatorname{arc}(\Omega)$ to be the lowest integer v such that Ω does not contain any ($\kappa, v+1$)-arc. We have the following:

Proposition 3.2. Let $\Omega \subset P G(2, q)$ and set $\omega=|\Omega|$. If $N_{q}(l, \Omega)<\omega$, then the evaluation map Φ_{Ω} is injective and its image $C_{\Omega}(l)$ is a code of parameters

$$
\left[\omega, \frac{(l+1)(l+2)}{2}, \omega-N_{q}(l, \Omega)\right]
$$

over $G F(q)$.

Table 2
$m_{v}(2, q)$

v	q					
	3	4	5	7	8	9
2	4	6	6	8	10	10
3		9	11	15	15	17
4			16	22	28	28
5				29	33	37
6				36	42	48
7					49	55
8						65

Since it is difficult to compute $N_{q}(l, \Omega)$ in general, we may bound it. Let $I_{q}(l)$ be the maximal numbers of zeros in $P G(2, q)$ of an absolutely irreducible polynomial in $H_{q}(2, l)$. Note that we clearly have

$$
I_{q}(l) \leqslant q+1+(l-1)(l-2) \sqrt{q}
$$

by the Hasse-Weil bound.
The following result handle the situation where the maximal numbers of zeros of a polynomial on Ω is bounded by those of a product of linear factors.

Lemma 3.3. Let $\Omega \subset P G(2, q)$ and set $\omega=|\Omega|$. Let $\operatorname{arc}(\Omega)=a$.If $I_{q}(j) \leqslant j$ a for all $j \in\{2, \ldots, l\}$, then $N_{q}(l, \Omega) \leqslant l a$.
Proof. Let $F \in H_{q}(2, s)$ with $s \leqslant l$ and let $N(F)$ be its number of zeros. If $s=1$ then we obviously have $N(F) \leqslant a$ since $N_{q}(1, \Omega)=\operatorname{arc}(\Omega)=a$. Assume now that $s>1$.

It is enough to show that $N(F) \leqslant s a$. We proceed by induction on s. Let $F=f_{1} \cdots f_{r}$ be the decomposition of F into absolutely irreducible factors. If $r=1$ then $N_{q}(F) \leqslant I_{q}(s) \leqslant s a$ by assumption. Then, we may assume that $r>1$.
The polynomial f_{i} has coefficients in a given extension $G F\left(q^{u(i)}\right)$ of degree $u(i)$ of $G F(q)$. Considering a basis of the $G F(q)$-vector space $G F\left(q^{u(i)}\right)$, the equation $f_{i}=0$ splits into a system of $u(i)$ polynomial equations over $G F(q)$ which are either the zero equation or equations of degree equal to deg f_{i}. Pick one such nonzero equation $\tilde{f}_{i}=0$. We obviously have $N_{q}\left(f_{i}\right) \leqslant N_{q}\left(\widetilde{f}_{i}\right)$ and hence by the induction hypothesis $N\left(f_{i}\right) \leqslant N\left(\widetilde{f}_{i}\right) \leqslant a \operatorname{deg} f_{i}$. This concludes the proof.

In the following, the difference between our use of Proposition 3.2 in place of Theorem 2.1 is that, instead of taking Ω to be all the $G F(q)$-rational points of a maximal curve, we consider for Ω a (κ, ν)-arc with κ as big as possible, namely $\kappa=m_{v}(2, q)$.

For instance, when $l=1$, we have an easy bound for $N_{q}(1, \Omega)$. Thus, when $l=1$, we may compare codes of dimension 3 obtained by Theorem 2.1 (the Bézout construction with $l^{\prime}=2$) and those obtained from Proposition 3.2 (the arc construction with $v=2$).

Examples. 1. Over $G F(q)$, the Bézout construction gives $[q+1,3, q-1]$-codes, whereas the arc construction gives $[q+1,3, q-1]$-codes for q odd and $[q+2,3, q]$-codes for q even.
2. For greater length, we can produce a lot of examples where the arc construction (together with Table 2) give better result than the Bézout construction (together with Table 1).

For instance, over $G F(7)$, the Bézout construction yields [13, 3, 10] and [20, 3, 16]-codes, whereas the arc construction yields [15, 3, 12] and [22, 3, 18]-codes.

4. Quadric-arcs and codes

As an application of Proposition 3.2 to codes of dimension 6 , we have to bound $N_{q}(2, \Omega)$, namely to bound the number of zeros of a polynomial P of degree 2 in a subset Ω of $P G(2, q)$.

If P is absolutely irreducible (P is a conic) then we know that it has at most $q+1$ zeros in $P G(2, q)$. And if P is reducible, namely a product of two linear factors, then the number of its zeros in Ω is bounded by $2 \operatorname{arc}(\Omega)$.

So we get

$$
N_{q}(2, \Omega) \leqslant \max (q+1,2 \operatorname{arc}(\Omega)),
$$

which leads to the following result:
Proposition 4.1. If $2 v \geqslant q+1$ then $m_{v}(2, q) \geqslant q+1$ and there is a code with parameters $\left[m_{v}(2, q), 6, \geqslant m_{v}(2, q)-2 v\right]$ over $G F(q)$.

Example. We have

1. Let Ω be a $(29,5)$-arc in $P G(2,7)$ (such an arc exists by Table 2). By the Hasse-Weil bound, we have $I_{7}(2) \leqslant 7+1=8$ and hence $I_{7}(2) \leqslant 2 \operatorname{arc}(\Omega)=10$. Which defines a $[29,6,19]$-code over $G F(7)$ meeting the record.
2. Together with Proposition 3.1, Proposition 4.1 yields the existence of codes over $G F(q)$ with parameters: $[(q+\sqrt{q}+1)(v-\sqrt{q}), 6,(q+\sqrt{q}+1)(v-\sqrt{q})-2 v]$ if q is a square.

Next, to get a more precise bound on $N_{q}(2, \Omega)$ we introduce the notion of quadric-arc.
Definition. A quadric arc or a $(\kappa, v, 2)$-arc is a set of κ points in $P G(2, q)$ such that some v but no $v+1$ are the zeros (not counted with multiplicity) of a polynomial of degree 2 . Let $m_{v, 2}(2, q)$ be the maximal number of points in a ($\kappa, v, 2$)-arc.

Of course, we have the following result, which can be seen as a straightforward generalization of Proposition 4.1:
Theorem 4.2. There is a code of parameters $\left[m_{v, 2}(2, q), 6, \geqslant m_{v, 2}(2, q)-v\right] \operatorname{over} G F(q)$.
Since it is difficult to get exact values for $m_{v, 2}(2, q)$ in general, we give the following simple ones:
Proposition 4.3. For all q, we have $m_{4,2}(2, q)=4, m_{2 q, 2}(2, q)=q^{2}$ and $m_{2 q+1,2}(2, q)=q^{2}+q+1$. Furthermore, for very small q, the values of $m_{v, 2}(2, q)$ are given by Table 3:

Proof. The values of $m_{4,2}(2, q)$ and $m_{2 q+1,2}(2, q)$ are obvious. So we will focus on $m_{2 q, 2}(2, q)$.
We need the following elementary result:
Lemma 4.4. Let a be such that $m_{v-1}(2, q)<a \leqslant m_{v}(2, q)$ and $a-v>m_{v^{\prime}}(2, q)$. Then $m_{v+v^{\prime}, 2}(2, q)<a$.
Proof. Let $\Omega \subset P G(2, q)$ be such that $|\Omega|=a$. Then, there is a line L containing v points of Ω. Since $|\Omega \backslash L|=a-v$, there is a line K containing $v^{\prime}+1$ points of $\Omega \backslash L$. Thus, the union of the two lines $L \cup K$ contains at least $v+v^{\prime}+1$ points of Ω.

By the inequality $m_{v}(2, q) \leqslant(v-1) q+v$ and Lemma 4.4 (with $\left(a, v, v^{\prime}\right)=\left(q^{2}+1, q+1, q-1\right)$) we deduce that $m_{2 q, 2} \leqslant q^{2}$.

For the converse inequality, we consider q parallel lines in the affine plane, and obviously get $m_{2 q, 2}(2, q) \geqslant q^{2}$. In fact it is the generic example since all $\left(q^{2}, q\right)$-arcs are projectively equivalent to subsets $\Omega=P G(2,4) \backslash l$ where l is a line in $P G(2,4)[4,12.2 .1$ (ii)].

Now, we compute the values of $m_{v, 2}(2,4)$ for $v \in\{5,6,7\}$. By Lemma 4.4 with $\left(a, v, v^{\prime}\right)=(10,4,1)$ we have $m_{5,2}(2,4) \leqslant 9$. Likewise $m_{6,2}(2,4) \leqslant 10 \quad$ (take $\left(a, v, v^{\prime}\right)=(10,4,1)$) and $\quad m_{7,2}(2,4) \leqslant 13 \quad$ (take $\left.\left(a, v, v^{\prime}\right)=(10,4,1)\right)$. Let

$$
\begin{aligned}
\Omega_{5}= & \{(0,0,1),(0,1,1),(1, a, 1),(a, 1,1),(a, 0,1),(a+1, a, 1),(1,1,1), \\
& (0,1,0)\}, \\
\Omega_{6}= & \{(0,0,1),(0,1,1),(1,0,1),(0, a, 1),(a, 0,1),(1,1,1),(a+1, a, 1), \\
& (1,1,0),(1, a, 0),(a, 1,0)\}, \\
\Omega_{7}= & \{(0,0,1),(0,1,1),(1,0,1),(0, a, 1),(a, 0,1),(1,1,1),(a+1, a, 1), \\
& (1, a, 1),(a, 1,1),(a, 1,1),(1,1,0),(1, a, 0),(a, 1,0)\} .
\end{aligned}
$$

By a Maple computation on $\Omega_{5}, \Omega_{6}, \Omega_{7}$, we respectively deduce that $m_{5,2}(2,4) \geqslant 8, m_{6,2}(2,4)=10$ and $m_{7,2}(2,4)=$ 13. So it only remains to show that $m_{5,2}(2,4) \neq 9$.

The full list of projectively distinct $(9,3)$-arcs in $P G(2,4)$ is given in [4, pp. 355]: a $(9,3)$-arc is either of the form $P G(2,4) \backslash\left(l_{1} \cup l_{2} \cup l_{3}\right)$ or $P G(2,4) \backslash\left(O \cup l \cup l^{\prime}\right)$ where l_{1}, l_{2}, l_{3} are distinct lines, O an oval, $l=(P Q), l^{\prime}=\left(P Q^{\prime}\right)$

Table 3
$m_{v, 2}(2, q)$

v	q		
	2	3	4
5	7	7	8
6		9	10
7		13	13
8			16
9		21	

with $P, Q, Q^{\prime} \in O$.

- First case: $\Omega=P G(2,4) \backslash\left(l_{1} \cup l_{2} \cup l_{3}\right)$. Send l_{3} to infinity. Then consider the parallel lines of l_{1} in the affine plane $A G(2,4)=P G(2,4) \backslash\left\{l_{3}\right\}$. They intersect $l_{1} \cup l_{2} \cup l_{3}$ at most in one point in $A G(2,4)$. And hence a product of two of them contains at least 6 points of Ω, a contradiction.
- Second case: $\Omega=P G(2,4) \backslash\left(O \cup l \cup l^{\prime}\right)$. After a change of coordinates, we may assume that $P=(0,0,1)$, $Q=(0,1,0)$ and $\left(Q Q^{\prime}\right)$ is the line at infinity (i.e. of equation $z=0$). Let D_{i} be the line of equation $x=i z$, $i \in G F(4)$. Then the oval O contains exactly 3 points in $A G(2,4) \backslash D_{0}$, where $A G(2,4)$ is the affine plane $P G(2,4) \backslash\left\{\left(Q Q^{\prime}\right)\right\}$. Necessarily we can find a union of two lines D_{i}, D_{j}, where $i, j \in G F(4) \backslash\{0\}$, which contains six points of $\Omega \cap A G(2,4)$.

This concludes the proof.

5. Further examples and results

5.1. Codes of dimension 6

All the codes of this section are constructed using Theorem 4.2. Our estimates of $m_{2 v, 2}(2, q)$ mainly comes from Lemma 4.4, and sometimes using Bézout's Theorem (to get lower bounds), or even by a direct explicit computation.

Note that we have explicit generating matrices of the codes given below, since the construction of maximal (κ, v)-arcs and ($\kappa, v, 2$)-arcs of Tables 2 and 3 can be made explicit.

- Over $G F(7)$:We have the elementary inequalities $13 \leqslant m_{6,2}(2,7) \leqslant 15$. Since there is no code of parameters $[15,6,9]$ we deduce that $m_{6,2}(2,7) \leqslant 14$. Furthermore, if $m_{6,2}(2,7)=14$ then we would get a new code $[14,6,8]$. Although, all the computation we have done show only $m_{6,2}(7,2) \geqslant 13$.
We have also $m_{8,2}(2,7) \geqslant 22$ since $I_{7}(2)=8$.
Results: We construct 10 codes of dimension 6 and length $\leqslant 29$ which meet the record.
- Over $G F(8)=G F(2)[b]$ with $b^{3}=b+1$: We have $14 \leqslant m_{6,2}(2,8) \leqslant 15$.

We have also the elementary inequalities $24 \leqslant m_{8,2}(2,8) \leqslant 28$. In fact, a computation on the set

$$
\begin{aligned}
& \left\{(0,1,0),\left(b^{2}, b, 1\right),(b, 1,1),\left(b+b^{2}, b, 1\right),\left(1, b+b^{2}, 1\right),\left(1+b^{2}, 1+b^{2}, 1\right),\right. \\
& \left(1+b, b+b^{2}, 1\right),\left(1+b+b^{2}, 1+b^{2}, 1\right),(1,1,0),(0,1+b, 1), \\
& \left(b^{2}, b+b^{2}, 1\right),(b, 1+b, 1),\left(b+b^{2}, b+b^{2}, 1\right),(1,1,1),\left(1+b^{2}, b^{2}, 1\right), \\
& (1+b, 1,1),\left(1+b+b^{2}, b^{2}, 1\right),\left(0, b^{2}, 1\right),\left(b^{2}, 1+b, 1\right) \\
& \left(b, b^{2}, 1\right),\left(b+b^{2}, 1+b, 1\right),\left(1,1+b^{2}, 1\right),\left(1+b^{2}, b, 1\right), \\
& \left.\left(1+b, 1+b^{2}, 1\right),\left(1+b+b^{2}, b, 1\right),\left(b^{2}+b, 1,0\right),\left(b^{2}+b+1,1,0\right)\right\}
\end{aligned}
$$

shows that $m_{8,2}(2,8) \geqslant 27$.
Results: We construct codes with parameters [27-i,6,19-i] which beat the record for $i \in\{0,1,2\}$,

- Over $G F(9)$: We have the elementary inequalities $16 \leqslant m_{6,2}(2,9) \leqslant 17$.

Table 4
$m_{v, 2}(2, q)$

v	q						
	2	3	4	5	7	8	9
6		9	10	11	13-14	14-15	16-17
7		13	13	12-15	14-19	15-19	17-21
8			16	16	22	27-28	28
9			21	17-24	23-27	29-33	29-33
10				25	29	33-34	37
11				31	30-35	34-39	38-43
12					36	42	48

We have also $m_{8,2}(2,9)=28$ and $m_{12,2}(2,9)=48, m_{13,2}(2,9) \geqslant 49$.
Results: We construct codes of parameters $[48-i, 6,36-i]$ for $i \in\{0,1,2\}$, and also $[49,6,36]$, which beat the record.

We end this section by a table of very loose possible ranges of values for $m_{v, 2}(2, q)$ (Table 4):
To get these values, we mainly used Lemma 4.4 and Table 2.

5.2. Codes of dimension 10

Using Proposition 3.2 with $l=3$, we may construct codes of dimension 10. To estimate the minimal distance, we have to bound $N_{q}(3, \Omega)$ for $\Omega \subset P G(2, q)$. For instance, the Hasse-Weil bound gives

$$
N_{q}(3, \Omega) \leqslant \max \left(q+1+2 \sqrt{q}, \operatorname{arc}(\Omega)+N_{q}(2, \Omega)\right) .
$$

and also

$$
N_{q}(3, \Omega) \leqslant \max (q+1+2 \sqrt{q}, \operatorname{arc}(\Omega)+q+1,3 \operatorname{arc}(\Omega)) .
$$

Results: Over $G F(8)$, we construct $[27-i, 10,15-i]$-codes which beat the record for $i \in\{0,1,2\}$.
We construct also, over $G F(7), G F(8)$ and $G F(9)$, few other codes of dimension 10 which meet the record.
It would be natural to try to apply Proposition 3.2 to get codes of higher dimensions (namely of dimension $(l+$ $1)(l+2) / 2$ when $l \geqslant 4)$. But when l grows, the Hasse-Weil bound gives a poor bound on $N_{q}(l)$, and we get codes far from the record. This is in contrast to the Bézout construction where the algebraic nature of the subset Ω ensures a good bound on $N_{q}(l, \Omega)$ by Bézout's Theorem.

References

[1] S.M. Ball, Multiple blocking sets and arcs in finite planes, J. London Math. Soc. 54 (1996) 581-593.
[2] A.E. Brouwer, Server for bounds on the minimum distance of q-ary linear codes, $q=2,3,4,5,7,8,9$, available online at http://www.win.tue.nl/~aeb/voorlincod.html.
[3] P. Delsarte, J.M. Goethals, F.J. Mac Williams, On generalized Reed-Muller codes and their relatives, Inform. and Control 16 (1970) $403-442$.
[4] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Oxford, 1979.
[5] T. Hoholt, J.H. van Lint, R. Pellikaan, Algebraic geometry codes, in: Handbook of Coding Theory, vol. 1, Elsevier, Amsterdam, 1998, pp. 871-961.
[6] I.N. Landjev, Linear codes over finite fields and finite projective geometries, Discrete Math. 213 (2000) 211-244.

[^0]: E-mail address: ronan.quarez@univ-rennes1.fr.

