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Abstract

We gives some examples of subsets of points in the projective plane associated to truncated generalized projective Reed–Muller
codes with good parameters, of dimensions 6 and 10 over GF(7), GF(8) and GF(9).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We use the standard notation [n, k, d] to denote the parameters of a linear code C over GF(q). As usual n stands for
its length, k its dimension and d its minimal distance. We say that C is an [n, k, d]-code over GF(q).

We say that the code C of parameters [n, k, d] is optimal if there is no [n, k, d+1]-code. We will refer to E. Brouwer’s
table [2] to get the known lower and upper bounds for the minimal distance (given n and k). We will say that a code
meets (resp. beats) the record if it reaches the lower bound of Brouwer (resp. if it gives a better lower bound).

In this paper, we consider truncated Reed–Muller codes obtained by evaluating polynomials at a given subset of
points in the projective plane.

Let PG(m, q) be the m-dimensional projective space over GF(q) and let Hq(m, l) be the GF(q)-vector space of
all homogeneous polynomials of degree l in m + 1-variables. Let � ⊂ PG(m, q) be a subset of cardinality |�| = �.
We consider an arbitrary ordering of the points of �, say �={A1, . . . , A�}. Then we define a GF(q)-linear evaluation
map

�� : Hq(m, l) → GF(q) �

P �→ (P (A1), . . . , P (A�)).

Its image ��(Hq(m, l)) is a linear code C�(m, l) over GF(q) of length �. Moreover, if �� is injective, then
C�(m, l) has dimension (

m+l
m

). To shorten notations in the planar case, we will denote C�(2, l) by C�(l).
When �=PG(m, q) we get the so-called projective Reed–Muller codes [3]. If � is an algebraic subset then Bézout’s

Theorem gives a bound on the minimal distance as we see in Section 1 (following [5]).
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The idea of the following sections is to take for � a (�, �)-arc in the projective plane which is a subset of � points
in PG(2, q) such that some � but no � + 1 are collinear. Then, we generalize this idea and introduce the notion of
a (�, �, 2)-arc in the projective plane and show how it produces some new codes over GF(7), GF(8), GF(9) of
dimensions 6 and 10.

2. Codes from Bézout’s Theorem

Let � be an absolutely irreducible projective curve of genus g over GF(q). The Hasse–Weil bound says that its
number of GF(q)-rational points satisfy |�(GF(q))|�q + 1 + 2g

√
q. Curves which reach the Hasse–Weil bound are

called maximal.
Table 1 gives, for small q, the maximum number of GF(q)-rational points of a projective absolutely irreducible

curve of given genus g:
Let F ∈ Hq(2, l) and denote by Z(F) the locus of zeros of F in PG(2, q) and let N(F) = |Z(F)| their number. If

F is absolutely irreducible of degree l over GF(q), we have

N(F)�q + 1 + (l − 1)(l − 2)

2
�2

√
q�,

since the genus g of the algebraic projective plane curve given by the equation F = 0 of degree l is such that g�(l −
1)(l − 2)/2 (equality holds if the curve is non-singular).

We illustrate the construction given in [5, Theorem 2.27], writing down the result obtained by Bézout’s Theorem:

Theorem 2.1. Let F ∈ Hq(3, l′) be such that F = 0 is the equation of an irreducible non-singular plane curve. Let
� = Z(F) and let l be an integer such that |�| > ll′. Then, C�(l) is a linear code over GF(q) with parameters:

• n = |�|,
• d �n − ll′

• k =

⎧⎪⎪⎨
⎪⎪⎩

(
l + 2

2

)
if l < l′

ll′ + 1 −
(

l′ − 1

2

)
if l� l′

To use Theorem 2.1, we are obviously interested in curves with many points (maximal curves for instance) in order
to get codes with good parameters.

Example. We take as an example, � = Z(X3Y + Y 3Z + Z3X) where X3Y + Y 3Z + Z3X = 0 is the equation of
a projective non-singular maximal plane curve over GF(8). Then C�(l), with l = 2, 3, 4, 5, are codes of parame-
ters [24, 6, �16], [24, 10, �12], [24, 14, �8], [24, 18, �4]. To compare with the parameters of records [24, 6, 16],
[24, 10, 12], [24, 14, 8], [24, 18, 5].

Table 1
Maximal number of GF(q)-rational points

q 2 3 4 5 7 8 9 11 13 16

g = 1 5 7 9 10 13 14 16 18 21 25
g = 2 6 8 10 12 16 18 20 24 26 33
g = 3 7 10 14 16 20 24 28 28 32 38
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3. Configuration of lines in the plane

3.1. Arcs in the plane

Concerning all the notions of this section we refer to [1,4,6] for a survey. A �-arc in PG(2, q) is a set of � points no
three of which are colinear. The maximum number of points in a �-arc is denoted by m(2, q). A maximal plane �-arc
is called an oval. We have

m(2, q) =
{

q + 1 for q odd,

q + 2 for q even.

More generally, a (�, �)-arc in PG(2, q) is a subset of � points such that some � but no � + 1 are colinear. Again, we
denote by m�(2, q) the maximum number of points in a (�, �)-arc. We have the trivial values: m2(2, q) = m(2, q),
mq+1(2, q) = q2 + q + 1 and mq(2, q) = q2 [4]. And for ��q − 1 “Table 2” is the table of values m�(2, q) for
small q:

We have also the inequality: m�(2, q)�(�−1)q +�, and there are many upper bounds when we add some conditions
on �. A (�, �)-arc which satisfies m�(2, q) = (� − 1)q + � is said to be maximal. However, we are mostly interested in
lower bound, and for instance let us state the following:

Proposition 3.1. We have

(1) if q = 2h, � = q − 2, then m�(2, q)�(� − 1)q + 2,
(2) if q is a square, then m�(2, q)�(q + √

q + 1)(� − √
q),

(3) if q is a square and � = q − √
q, then m�(2, q)�(� − 1)q + √

q.

3.2. Truncated Reed–Muller codes

Let Nq(l, �) be the maximal number of zeros in � ⊂ PG(2, q) of a polynomial in Hq(2, l). We also define arc (�)

to be the lowest integer � such that � does not contain any (�, � + 1)-arc. We have the following:

Proposition 3.2. Let � ⊂ PG(2, q) and set � = |�|. If Nq(l, �) < �, then the evaluation map �� is injective and its
image C�(l) is a code of parameters

[
�,

(l + 1)(l + 2)

2
, � − Nq(l, �)

]

over GF(q).

Table 2
m�(2, q)

� q

3 4 5 7 8 9

2 4 6 6 8 10 10
3 9 11 15 15 17
4 16 22 28 28
5 29 33 37
6 36 42 48
7 49 55
8 65
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Since it is difficult to compute Nq(l, �) in general, we may bound it. Let Iq(l) be the maximal numbers of zeros in
PG(2, q) of an absolutely irreducible polynomial in Hq(2, l). Note that we clearly have

Iq(l)�q + 1 + (l − 1)(l − 2)
√

q

by the Hasse–Weil bound.
The following result handle the situation where the maximal numbers of zeros of a polynomial on � is bounded by

those of a product of linear factors.

Lemma 3.3. Let � ⊂ PG(2, q) and set �=|�|. Let arc (�)=a. If Iq(j)�ja for all j ∈ {2, . . . , l}, then Nq(l, �)� la.

Proof. Let F ∈ Hq(2, s) with s� l and let N(F) be its number of zeros. If s = 1 then we obviously have N(F)�a

since Nq(1, �) = arc (�) = a. Assume now that s > 1.
It is enough to show that N(F)�sa. We proceed by induction on s. Let F = f1 · · · fr be the decomposition

of F into absolutely irreducible factors. If r = 1 then Nq(F )�Iq(s)�sa by assumption. Then, we may assume
that r > 1.

The polynomial fi has coefficients in a given extension GF(qu(i)) of degree u(i) of GF(q). Considering a basis of
the GF(q)-vector space GF(qu(i)), the equation fi = 0 splits into a system of u(i) polynomial equations over GF(q)

which are either the zero equation or equations of degree equal to deg fi . Pick one such nonzero equation f̃i = 0. We
obviously have Nq(fi)�Nq(f̃i) and hence by the induction hypothesis N(fi)�N(f̃i)�a deg fi . This concludes the
proof. �

In the following, the difference between our use of Proposition 3.2 in place of Theorem 2.1 is that, instead of taking
� to be all the GF(q)-rational points of a maximal curve, we consider for � a (�, �)-arc with � as big as possible,
namely � = m�(2, q).

For instance, when l = 1, we have an easy bound for Nq(1, �). Thus, when l = 1, we may compare codes of
dimension 3 obtained by Theorem 2.1 (the Bézout construction with l′ = 2) and those obtained from Proposition 3.2
(the arc construction with � = 2).

Examples. 1. Over GF(q), the Bézout construction gives [q + 1, 3, q − 1]-codes, whereas the arc construction gives
[q + 1, 3, q − 1]-codes for q odd and [q + 2, 3, q]-codes for q even.

2. For greater length, we can produce a lot of examples where the arc construction (together with Table 2) give better
result than the Bézout construction (together with Table 1).

For instance, over GF(7), the Bézout construction yields [13, 3, 10] and [20, 3, 16]-codes, whereas the arc construc-
tion yields [15, 3, 12] and [22, 3, 18]-codes.

4. Quadric-arcs and codes

As an application of Proposition 3.2 to codes of dimension 6, we have to bound Nq(2, �), namely to bound the
number of zeros of a polynomial P of degree 2 in a subset � of PG(2, q).

If P is absolutely irreducible (P is a conic) then we know that it has at most q + 1 zeros in PG(2, q). And if P is
reducible, namely a product of two linear factors, then the number of its zeros in � is bounded by 2 arc (�).

So we get

Nq(2, �)� max(q + 1, 2 arc (�)),

which leads to the following result:

Proposition 4.1. If 2��q+1 then m�(2, q)�q+1 and there is a code with parameters [m�(2, q), 6, �m�(2, q)−2�]
over GF(q).
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Example. We have

1. Let � be a (29, 5)-arc in PG(2, 7) (such an arc exists by Table 2). By the Hasse–Weil bound, we have I7(2)�7+1=8
and hence I7(2)�2 arc (�) = 10. Which defines a [29, 6, 19]-code over GF(7) meeting the record.

2. Together with Proposition 3.1, Proposition 4.1 yields the existence of codes over GF(q) with parameters:
[(q + √

q + 1)(� − √
q), 6, (q + √

q + 1)(� − √
q) − 2�] if q is a square.

Next, to get a more precise bound on Nq(2, �) we introduce the notion of quadric-arc.

Definition. A quadric arc or a (�, �, 2)-arc is a set of � points in PG(2, q) such that some � but no � + 1 are the
zeros (not counted with multiplicity) of a polynomial of degree 2. Let m�,2(2, q) be the maximal number of points in
a (�, �, 2)-arc.

Of course, we have the following result, which can be seen as a straightforward generalization of Proposition 4.1:

Theorem 4.2. There is a code of parameters [m�,2(2, q), 6, �m�,2(2, q) − �] over GF(q).

Since it is difficult to get exact values for m�,2(2, q) in general, we give the following simple ones:

Proposition 4.3. For all q, we have m4,2(2, q) = 4, m2q,2(2, q) = q2 and m2q+1,2(2, q) = q2 + q + 1. Furthermore,
for very small q, the values of m�,2(2, q) are given by Table 3:

Proof. The values of m4,2(2, q) and m2q+1,2(2, q) are obvious. So we will focus on m2q,2(2, q).
We need the following elementary result:

Lemma 4.4. Let a be such that m�−1(2, q) < a�m�(2, q) and a − � > m�′(2, q). Then m�+�′,2(2, q) < a.

Proof. Let � ⊂ PG(2, q) be such that |�| = a. Then, there is a line L containing � points of �. Since |�\L| = a − �,
there is a line K containing �′ + 1 points of �\L. Thus, the union of the two lines L ∪ K contains at least � + �′ + 1
points of �. �

By the inequality m�(2, q)�(� − 1)q + � and Lemma 4.4 (with (a, �, �′) = (q2 + 1, q + 1, q − 1)) we deduce that
m2q,2 �q2.

For the converse inequality, we consider q parallel lines in the affine plane, and obviously get m2q,2(2, q)�q2. In
fact it is the generic example since all (q2, q)-arcs are projectively equivalent to subsets � = PG(2, 4)\l where l is a
line in PG(2, 4) [4, 12.2.1(ii)].

Now, we compute the values of m�,2(2, 4) for � ∈ {5, 6, 7}. By Lemma 4.4 with (a, �, �′) = (10, 4, 1) we have
m5,2(2, 4)�9. Likewise m6,2(2, 4)�10 (take (a, �, �′) = (10, 4, 1)) and m7,2(2, 4)�13 (take
(a, �, �′) = (10, 4, 1)). Let

�5 = {(0, 0, 1), (0, 1, 1), (1, a, 1), (a, 1, 1), (a, 0, 1), (a + 1, a, 1), (1, 1, 1),

(0, 1, 0)},
�6 = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (0, a, 1), (a, 0, 1), (1, 1, 1), (a + 1, a, 1),

(1, 1, 0), (1, a, 0), (a, 1, 0)},
�7 = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (0, a, 1), (a, 0, 1), (1, 1, 1), (a + 1, a, 1),

(1, a, 1), (a, 1, 1), (a, 1, 1), (1, 1, 0), (1, a, 0), (a, 1, 0)}.
By a Maple computation on �5, �6, �7, we respectively deduce that m5,2(2, 4)�8, m6,2(2, 4)=10 and m7,2(2, 4)=

13. So it only remains to show that m5,2(2, 4) 
= 9.
The full list of projectively distinct (9, 3)-arcs in PG(2, 4) is given in [4, pp. 355]: a (9, 3)-arc is either of the form

PG(2, 4)\(l1 ∪ l2 ∪ l3) or PG(2, 4)\(O ∪ l ∪ l′) where l1, l2, l3 are distinct lines, O an oval, l = (PQ), l′ = (PQ′)
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Table 3
m�,2(2, q)

� q

2 3 4

5 7 7 8
6 9 10
7 13 13
8 16
9 21

with P, Q, Q′ ∈ O.

• First case: �=PG(2, 4)\(l1 ∪ l2 ∪ l3). Send l3 to infinity. Then consider the parallel lines of l1 in the affine plane
AG(2, 4) = PG(2, 4)\{l3}. They intersect l1 ∪ l2 ∪ l3 at most in one point in AG(2, 4). And hence a product of
two of them contains at least 6 points of �, a contradiction.

• Second case: � = PG(2, 4)\(O ∪ l ∪ l′). After a change of coordinates, we may assume that P = (0, 0, 1),
Q = (0, 1, 0) and (QQ′) is the line at infinity (i.e. of equation z = 0). Let Di be the line of equation x = iz,
i ∈ GF(4). Then the oval O contains exactly 3 points in AG(2, 4)\D0, where AG(2, 4) is the affine plane
PG(2, 4)\{(QQ′)}. Necessarily we can find a union of two lines Di , Dj , where i, j ∈ GF(4)\{0}, which
contains six points of � ∩ AG(2, 4).

This concludes the proof. �

5. Further examples and results

5.1. Codes of dimension 6

All the codes of this section are constructed using Theorem 4.2. Our estimates of m2�,2(2, q) mainly comes from
Lemma 4.4, and sometimes using Bézout’s Theorem (to get lower bounds), or even by a direct explicit computation.

Note that we have explicit generating matrices of the codes given below, since the construction of maximal (�, �)-arcs
and (�, �, 2)-arcs of Tables 2 and 3 can be made explicit.

• Over GF(7):We have the elementary inequalities 13�m6,2(2, 7)�15. Since there is no code of parameters
[15, 6, 9] we deduce that m6,2(2, 7)�14. Furthermore, if m6,2(2, 7)=14 then we would get a new code [14, 6, 8].
Although, all the computation we have done show only m6,2(7, 2)�13.
We have also m8,2(2, 7)�22 since I7(2) = 8.
Results: We construct 10 codes of dimension 6 and length �29 which meet the record.

• Over GF(8) = GF(2)[b] with b3 = b + 1: We have 14�m6,2(2, 8)�15.
We have also the elementary inequalities 24�m8,2(2, 8)�28. In fact, a computation on the set

{(0, 1, 0), (b2, b, 1), (b, 1, 1), (b + b2, b, 1), (1, b + b2, 1), (1 + b2, 1 + b2, 1),

(1 + b, b + b2, 1), (1 + b + b2, 1 + b2, 1), (1, 1, 0), (0, 1 + b, 1),

(b2, b + b2, 1), (b, 1 + b, 1), (b + b2, b + b2, 1), (1, 1, 1), (1 + b2, b2, 1),

(1 + b, 1, 1), (1 + b + b2, b2, 1), (0, b2, 1), (b2, 1 + b, 1),

(b, b2, 1), (b + b2, 1 + b, 1), (1, 1 + b2, 1), (1 + b2, b, 1),

(1 + b, 1 + b2, 1), (1 + b + b2, b, 1), (b2 + b, 1, 0), (b2 + b + 1, 1, 0)}
shows that m8,2(2, 8)�27.
Results: We construct codes with parameters [27 − i, 6, 19 − i] which beat the record for i ∈ {0, 1, 2},

• Over GF(9): We have the elementary inequalities 16�m6,2(2, 9)�17.
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Table 4
m�,2(2, q)

� q

2 3 4 5 7 8 9

6 9 10 11 13–14 14–15 16–17
7 13 13 12–15 14–19 15–19 17–21
8 16 16 22 27–28 28
9 21 17–24 23–27 29–33 29–33

10 25 29 33–34 37
11 31 30–35 34–39 38–43
12 36 42 48

We have also m8,2(2, 9) = 28 and m12,2(2, 9) = 48, m13,2(2, 9)�49.
Results: We construct codes of parameters [48 − i, 6, 36 − i] for i ∈ {0, 1, 2}, and also [49, 6, 36], which beat the
record.

We end this section by a table of very loose possible ranges of values for m�,2(2, q) (Table 4):
To get these values, we mainly used Lemma 4.4 and Table 2.

5.2. Codes of dimension 10

Using Proposition 3.2 with l = 3, we may construct codes of dimension 10. To estimate the minimal distance, we
have to bound Nq(3, �) for � ⊂ PG(2, q). For instance, the Hasse–Weil bound gives

Nq(3, �)� max(q + 1 + 2
√

q, arc (�) + Nq(2, �)).

and also

Nq(3, �)� max(q + 1 + 2
√

q, arc (�) + q + 1, 3 arc (�)).

Results: Over GF(8), we construct [27 − i, 10, 15 − i]-codes which beat the record for i ∈ {0, 1, 2}.
We construct also, over GF(7), GF(8) and GF(9), few other codes of dimension 10 which meet the record.
It would be natural to try to apply Proposition 3.2 to get codes of higher dimensions (namely of dimension (l +

1)(l + 2)/2 when l�4). But when l grows, the Hasse–Weil bound gives a poor bound on Nq(l), and we get codes far
from the record. This is in contrast to the Bézout construction where the algebraic nature of the subset � ensures a
good bound on Nq(l, �) by Bézout’s Theorem.
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