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Abstract

We show that the Schrödinger operator eit� is bounded from Wα,q(Rn) to Lq(Rn × [0,1]) for all
α > 2n(1/2 − 1/q) − 2/q and q � 2 + 4/(n + 1). This is almost sharp with respect to the Sobolev in-
dex. We also show that the Schrödinger maximal operator sup0<t<1 |eit�f | is bounded from Hs(Rn) to
L2

loc(R
n) when s > s0 if and only if it is bounded from Hs(Rn) to L2(Rn) when s > 2s0. A corollary is

that sup0<t<1 |eit�f | is bounded from Hs(R2) to L2(R2) when s > 3/4.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The solution to the wave equation, ∂ttu = �u, with initial data u(·,0) = f and u′(·,0) = 0,
can be formally written as the real part of

eit
√−�f (x) =

∫
Rn

f̂ (ξ)e2πi(x·ξ−t |ξ |) dξ. (1)

Let ‖ · ‖q,α denote the inhomogeneous Sobolev norm with α derivatives in Lq(Rn). J.C. Peral
[24] proved that for any fixed time t and q ∈ (1,∞),

∥∥eit
√−�f

∥∥
Lq(Rn)

� Ct,q‖f ‖q,α
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for all α � (n − 1)| 1
2 − 1

q
|, and this is sharp. Sogge [30] conjectured that

∥∥eit
√−�f

∥∥
Lq(Rn×[1,2]) � Cq,α‖f ‖q,α

for all α > (n−1)( 1
2 − 1

q
)− 1

q
and q > 2+ 2

n−1 . This is known as the local smoothing conjecture
due to the potential gain of 1/q derivatives.

In two spatial dimensions, Mockenhaupt, Seeger and Sogge [22] showed that the local
smoothing estimate holds at the critical exponent q = 4 for all α > 1/8, and this was improved
by Bourgain [2], Tao and Vargas [33], and Wolff [38] to α > 5/44.

Moving away from the critical exponent, but remaining in two spatial dimensions, Wolff [37]
proved the (almost) sharp estimate in the range q > 74, and Łaba and Wolff [16] generalised this
to higher dimensions. Garrigós and Seeger [12] have recently refined their arguments, so that, in
higher dimensions for example, the (almost) sharp estimate holds in the range

q > 2 + 8

n − 3

(
1 − 1

n + 1

)
.

The Schrödinger equation, i∂tu+�u = 0, with initial datum f has solution eit�f which can
be formally written as

eit�f (x) =
∫
Rn

f̂ (ξ)e2πi(x·ξ−2πt |ξ |2) dξ. (2)

Miyachi [21] (see also [11]) proved that for any fixed time t and q ∈ (1,∞),

∥∥eit�f
∥∥

Lq(Rn)
� Ct,α‖f ‖q,α

for all α � 2n| 1
2 − 1

q
|, and this is sharp. When n � 2, square function estimates (see [3,17,20])

yield

∥∥eit�f
∥∥

Lq(Rn×[1,2]) � Cq,α‖f ‖q,α

for all α > 2n( 1
2 − 1

q
) − 2

q
and q > 2 + 4/n. We see that averaging locally in time yields a gain

of 2/q derivatives.
We extend the range of q by taking advantage of all n + 1 dimensions of curvature. This

also allows us to treat the n = 1 case for which we obtain almost sharp estimates. In higher
dimensions, it may be possible to extend the range to q > 2 + 2/n, and we shall see later that
this would follow from the restriction conjecture for paraboloids.

Theorem 1. Let q > 2 + 4
n+1 and α > 2n( 1

2 − 1
q
) − 2

q
. Then there exists a constant Cq,α such

that

∥∥eit�f
∥∥

Lq(Rn×[0,1]) � Cq,α‖f ‖q,α.
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Fig. 1. Region of local smoothing in Corollary 2.

Although there is a formal similarity between this and the estimates of Wolff et al., the ques-
tion for the Schrödinger equation is not as deep, and the arguments will bear no resemblance.
An obvious difference is that the wave operator, for finite time, is a local operator, whereas the
Schrödinger operator is not. We will see however, that one can decompose the initial data so that
the Schrödinger operator, for finite time, may essentially be treated as a local operator.

Before proceeding further, we should mention that there are estimates for the Schrödinger
equation, independently due to Sjölin [27], Vega [35,36], and Constantin and Saut [7], which are
more deserving of the description ‘local smoothing.’ They proved that

∥∥eit�f
∥∥

L2(Bn×[0,1]) � Cs‖f ‖H−1/2(Rn),

where Bn is the unit ball in Rn, and ‖ · ‖Hs(Rn) denotes ‖ · ‖2,α . Thus, the solution is locally half a
derivative smoother than the initial datum. We will see later that this is equivalent up to endpoints
with the global estimate

∥∥eit�f
∥∥

L2(Rn×[0,1]) � Cs‖f ‖L2(Rn),

which we will refer to as simply the conservation of charge.
Interpolating between this and the bound in Theorem 1 yields the following corollary. In one

spatial dimension, it is almost sharp in the range q ∈ [1,∞], and in higher dimensions it is almost
sharp in the ranges q ∈ [1,2] and q ∈ [2 + 4

n+1 ,∞].

Corollary 2. Let q ∈ [1,∞] and α > max{2n( 1
q

− 1
2 ), (n − 1)( 1

2 − 1
q
),2n( 1

2 − 1
q
) − 2

q
}. Then

there exists a constant CT,α such that

∥∥eit�f
∥∥

Lq(Rn×[−T ,T ]) � CT,α‖f ‖q,α

(see Fig. 1).

In the second part of the article, we will consider the minimal value of s for which

∥∥∥ sup
∣∣eit�f

∣∣∥∥∥
L2(Bn)

� Cn,s‖f ‖Hs(Rn) (3)

0<t<1
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holds. By standard arguments, the estimate implies the almost everywhere convergence of eit�f

to f , as t tends to zero. The minimal s for which the global bound

∥∥∥ sup
0<t<1

∣∣eit�f
∣∣∥∥∥

L2(Rn)
� Cn,s‖f ‖Hs(Rn) (4)

holds, has also been considered in connection with the well-posedness of certain initial value
problems (see [14]).

In one spatial dimension, Carleson, Kenig and Ruiz [6,13] showed that (3) holds when
s � 1/4, and Dahlberg and Kenig [9] showed that this is sharp. Vega [14,35] (see also [28])
showed that the global bound (4) holds when s > 1/2, and this is also sharp.

In higher dimensions, it was independently proven by Sjölin [27] and Vega [36] that (3) holds
when s > 1/2, and the bound cannot hold when s < 1/4. Carbery [4] and Cowling [8] indepen-
dently showed that (4) holds when s > 1, and in this case, the bound cannot hold when s < 1/2.
It is conjectured that, the minimal value of s for which (3) holds is 1/4, and the minimal value
for which (4) holds is 1/2.

We will put these results and conjectures in context by proving the following theorem.

Theorem 3. (3) holds for s > s0 ⇔ (4) holds for s > 2s0.

In two spatial dimensions, more was known for the local bound than for the global bound.
Bourgain [1] showed that there exists an s strictly less that 1/2 for which (3) holds, and this was
improved by Moyua, Vargas and Vega [23], and Tao and Vargas [32,33]. The best known result
is due to S. Lee [19], who showed that (3) holds when s > 3/8.

Therefore, as a consequence of the equivalence, we have the following corollary, which im-
proves the result of Carbery and Cowling in two spatial dimensions.

Corollary 4. For all s > 3/4, there exists a constant Cs such that

∥∥∥ sup
0<t<1

∣∣eit�f
∣∣∥∥∥

L2(R2)
� Cs‖f ‖Hs(R2).

The result of Cowling also holds when the Laplacian is replaced by a more general class of
operators that includes

� = ∂2
x1

− ∂2
x2

± ∂2
x3

± · · · ± ∂2
xn

.

For physical applications of the nonelliptic Schrödinger equation, see for example [31]. We will
also prove the equivalence in this case, so that, by a local result of Vargas, Vega and the au-
thor [26], the global result of Cowling is almost sharp. We state this as a corollary.

Corollary 5. For all s > 1, there exists a constant Cs such that

∥∥∥ sup
0<t<1

∣∣eit�f
∣∣∥∥∥

L2(Rn)
� Cs‖f ‖Hs(Rn),

and this is not true when s < 1.
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Throughout, c and C will denote positive constants that may depend on the dimensions and
exponents of the Sobolev spaces. It will be made explicit when they depend on other factors like,
for example, the Sobolev index. Their values may change from line to line. The following are
notations that will be used frequently:

L
q
x(Rn,Lr

t (I )): the Lebesgue space with norms (
∫

Rn | ∫
I
|f (x, t)|r dt |q/r dx)1/q .

Wα,q(Rn): the inhomogeneous Sobolev space with α derivatives in Lq(Rn).
‖ · ‖q,α : the inhomogeneous Sobolev norm with α derivatives in Lq(Rn).
Hs(Rn) := Ws,2(Rn).
� := ∂2

x1
− ∂2

x2
± ∂2

x3
± · · · ± ∂2

xn
.

Bn := {x ∈ Rn: |x| � 1}.
An := {x ∈ Rn: 1/2 � |x| � 1}.
BR := {x ∈ Rn: |x| � R}.
AR := {x ∈ Rn: R/2 � |x| � R}.
χBR

: the indicator function of BR .
ϕR2(x) := R−2n(1 + |x|

R2 )−2n.
LR2f := ϕR2 ∗ ϕR2 ∗ ϕR2 ∗ |f |.
vj : a member of the lattice R−2Zn.
xk : a member of the lattice R2Zn.
Tjk := {(x, t) ∈ Rn × [0,R4]: |x − (xk + 4πtvj )| � R2}.
{Ql}l∈N: a partition of Rn into cubes of side R2, centred at xl ∈ R2Zn.
ψ̂ : a positive and smooth function, supported in B√

n.
η̂: a positive and smooth function, supported in Bn, and equal to 1 at the origin.

2. Necessary conditions for local smoothing

Let η̂ be a positive and smooth function supported in Bn, and denote by η̂R−1 the scaled
version η̂( ·

R
). Correspondingly, we let ηR−1 denote its inverse Fourier transform Rnη(R·). We

consider initial data fR defined by

f̂R(ξ) = e2π2i|ξ |2 η̂R−1(ξ)

(1 + |ξ |2)α/2
.

We note that

‖fR‖r,α = ∥∥e−i 1
2 �ηR−1

∥∥
Lr(Rn)

,

and by a change of variables,

e−i 1
2 �ηR−1(x) = Rn

∫
Rn

η̂(ξ)e2πi(Rx·ξ+R2π |ξ |2) dξ.

When |x| > 2πR, by repeated integration by parts, there exists constants CN such that

∣∣e−i 1
2 �ηR−1(x)

∣∣ � CN

( |x| )−N

(5)

2πR
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for all N ∈ N. When |x| � 2πR, by the dispersive estimate,

∣∣e−i 1
2 �ηR−1(x)

∣∣ � C‖ηR−1‖L1(Rn) � C. (6)

Combining these two bounds, we see that

‖fR‖r,α = ∥∥e−i 1
2 �ηR−1

∥∥
Lr(Rn)

� CR
n
r . (7)

On the other hand, by a change of variables,

∣∣eit�fR(x)
∣∣ =

∣∣∣∣
∫
Rn

η̂(
ξ
R

)

(1 + |ξ |2)α/2
e2πi(x·ξ−2π(t− 1

2 )|ξ |2) dξ

∣∣∣∣
=

∣∣∣∣Rn−α

∫
Rn

η̂(ξ)

( 1
R2 + |ξ |2)α/2

e2πi(Rx·ξ−2πR2(t− 1
2 )|ξ |2) dξ

∣∣∣∣,

so when |x| � 1
10R

and |t − 1
2 | � 1

20πR2 , we have |eit�fR(x)| � CRn−α . Thus,

∥∥eit�fR

∥∥
Lq(Rn×[0,1]) � CRn−αR

− n+2
q ,

and combining this with (7), we see that for

∥∥eit�f
∥∥

Lq(Rn×[0,1]) � Cα‖f ‖r,α (8)

to hold, it is necessary that α � n(1 − 1
q

− 1
r
) − 2

q
.

By considering fR defined by f̂R = η̂R−1 , we reverse the previous focusing example. Note that
the rapid decay (5) and upper bound (6) remain true for all t ∈ [1/2,1]. This forces |eit�fR| � c

on a set of measure cRn as otherwise the conservation of charge would be violated. We see that

∥∥eit�fR

∥∥
Lq(Rn×[0,1]) � CR

n
q ,

and as ‖fR‖r,α � CRαRn− n
r , for (8) to hold it is also necessary that α � n( 1

q
+ 1

r
− 1).

Finally, we consider initial data fR defined by f̂R(ξ) = η̂(Rλ(ξ − (R, . . . ,R))), where λ � 1,
so that

eit�fR(x) =
∫

η̂
(
Rλ

(
ξ − (R, . . . ,R)

))
e2πi(x·ξ−2πt |ξ |2) dξ.

One can calculate that |2π∇ξ (x · ξ − 2πt |ξ |2)| � Rλ

10 in the region defined by

|x| � Rλ

, |t | � 1
, and

∣∣ξ − (R, . . . ,R)
∣∣ � 1

,

100 1000 Rλ
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so that the phase is almost constant for each pair (x, t) in the region. Thus,

∥∥eit�fR

∥∥
Lq(Rn×[0,1]) � CR−nλR

nλ
q ,

and combining this with

‖fR‖r,α � RαR−nλ+ nλ
r ,

we see that

α � λn

(
1

q
− 1

r

)
.

Setting λ = 1 and letting λ → ∞ yield the necessary conditions α � n( 1
q

− 1
r
) and q � r , re-

spectively.
In particular, ignoring endpoint issues, one may hope that∥∥eit�f

∥∥
Lq(Rn×[0,1]) � Cα‖f ‖q,α

for all α > max{2n( 1
q

− 1
2 ),0,2n( 1

2 − 1
q
) − 2

q
}.

3. Localising lemmas

As in the arguments of Fefferman [10], Bourgain [2], Wolff [38], Tao [32], and others, we
decompose the solution of the Schrödinger equation into wave packets at scale R2 � 1.

Fix a positive and smooth function ψ̂ , supported in B√
n, such that

∑
j

ψ̂
(
ξ − R2vj

) = 1,

where vj ∈ R−2Zn. We also fix a positive and smooth η̂, supported in Bn, that satisfies η̂(0) = 1,
so that, by the Poisson summation formula,

∑
k

η

(
x − xk

R2

)
= 1,

where xk ∈ R2Zn. Now for any Schwartz function f , we define fj and fjk implicitly in the
following decomposition:

f̂ (ξ) =
∑
j

f̂j (ξ) =
∑
j

ψ̂
(
R2(ξ − vj )

)
f̂ (ξ), (9)

f (x) =
∑
j,k

fjk(x) =
∑
j,k

η

(
x − xk

R2

)
fj (x). (10)

Note that f̂jk is supported in the ball of radius (
√

n + 1)R−2 with centre vj .
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We also partition Rn into cubes Ql of side R2, centred at xl ∈ R2Zn, and define the function
ϕR2 by

ϕR2(x) = R−2n

(
1 + |x|

R2

)−2n

,

and the operator LR2 by

LR2f = ϕR2 ∗ ϕR2 ∗ ϕR2 ∗ |f |.

We state a slightly refined version of a lemma which can be found in [32], or more explicitly
in [18], where we replace the Hardy–Littlewood maximal operator by a convolution operator. It
is clear from their proofs that this is permissible.

Lemma 6. Let t ∈ [0,R4]. Then for all N ∈ N there exists a constant CN such that

∣∣eit�fjk(x)
∣∣ � CNϕR2 ∗ ∣∣fj (xk)

∣∣(1 + |x − (xk + 4πtvj )|
R2

)−N

.

We note that when t ∈ [0,R4], the wave packets eit�fjk are essentially supported in the
tubes Tjk defined by

Tjk = {
(x, t) ∈ Rn × [

0,R4]: ∣∣x − (xk + 4πtvj )
∣∣ � R2}.

Lemma 7. For all f frequency supported in Bn and ε > 0, there exists functions fl , f̃l satisfying

(i) ‖fl‖Lp(Rn) � CR
2n( 1

p
− 1

q
)+ε‖f̃l‖Lq(Rn)

for all p � q ,

(ii)
∑

l ‖f̃l‖q

Lq(Rn)
� CRε‖f ‖q

Lq(Rn)
,

and for all l,N ∈ N and (x, t) ∈ Ql × [0,R2],

(iii) |eit�f (x)| � |eit�fl(x)| + CNR−NLR2f (x).

Proof. We decompose the solution into wave packets, eit�f = ∑
j,k eit�fjk , at scale R2. We

recall that

fjk(x) = η

(
x − xk

R2

)
fj (x),

and we define f̃jk by

f̃jk(x) = |η|1/2
(

x − xk

2

)
fj (x).
R
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As η decays rapidly and
∑

k η(x − xk

R2 ) = 1, it is easy to see that

∑
k

|η|1/2
(

x − xk

R2

)
� C,

so that

∑
k

∥∥∥∥∑
j

f̃jk

∥∥∥∥q

Lq(Rn)

� C

∥∥∥∥∑
j,k

f̃jk

∥∥∥∥q

Lq(Rn)

� C‖f ‖q

Lq(Rn)
. (11)

As supp f̂ ⊂ Bn, we have that the vj ’s are contained in a slight enlargement of Bn. Thus, the
tubes Tjk make angles with the spatial hyperplane which are uniformly bounded below. Letting
RεQl denote the cube of side R2+ε with centre xl , we write

fl =
∑

k:Qk∩RεQl �=∅

∑
j

fjk,

so that eit�fl consists of the wave packets that pass through or near to Ql × [0,R2]. Similarly,
we define f̃l by

f̃l =
∑

k:Qk∩RεQl �=∅

∑
j

f̃jk.

To prove property (i), we note that

∣∣fl(x)
∣∣ =

∣∣∣∣ ∑
k:Qk∩RεQl �=∅

η

(
x − xk

R2

)
f (x)

∣∣∣∣
� C

(
1 + |x − xl |

R2+2ε

)−M ∣∣∣∣ ∑
k:Qk∩RεQl �=∅

|η|1/2
(

x − xk

R2

)
f (x)

∣∣∣∣
= C

(
1 + |x − xl |

R2+2ε

)−M ∣∣f̃l(x)
∣∣

for some large M ∈ N, so that, by Hölder,

‖fl‖Lp(Rn) � CR
2(1+ε)n( 1

p
− 1

q
)‖f̃l‖Lq(Rn).

To prove property (ii), we note that a cube Qk can intersect RεQl for at most 2Rnε different
cubes Ql , so that

∑
l

‖f̃l‖q

Lq(Rn)
� C

∑
l

∑
k:Qk∩RεQl �=∅

∥∥∥∥∑
j

f̃jk

∥∥∥∥q

Lq(Rn)

� CRnε
∑∥∥∥∥∑

f̃jk

∥∥∥∥q

Lq(Rn)

.

k j
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Thus, by (11), we see that ∑
l

‖f̃l‖q

Lq(Rn)
� CRnε‖f ‖q

Lq(Rn)
.

To prove property (iii), we consider the pointwise bound

∣∣eit�f
∣∣ �

∣∣eit�fl

∣∣ +
∣∣∣∣ ∑
k:Qk∩RεQl=∅

∑
j

eit�fjk

∣∣∣∣. (12)

By construction and Lemma 6,

∣∣∣∣ ∑
k:Qk∩RεQl=∅

∑
j

eit�fjk(x)

∣∣∣∣ � CN ′R2N ′
cR2n∑
j=1

∑
k: |xk−xl |� 1

2 R2+ε

ϕR2 ∗ |fj |(xk)

|xk − xl |N ′

for all (x, t) ∈ Ql × [0,R2], and all N ′ ∈ N. Choosing an N ′ > (4n + N)/ε + 2n, we have

∣∣∣∣ ∑
k:Qk∩RεQl=∅

∑
j

eit�fjk(x)

∣∣∣∣ � CNR−N
cR2n∑
j=1

∑
k: |xk−xl |� 1

2 R2+ε

ϕR2 ∗ |fj |(xk)

|xk − xl |2n

for all N ∈ N. Now, by (9),

|fj | �
∣∣R−2nψ

(
R−2·)∣∣ ∗ |f | � CϕR2 ∗ |f |,

so that

∣∣∣∣ ∑
k:Qk∩RεQl=∅

∑
j

eit�fjk(x)

∣∣∣∣ � CNR−N

cR2n∑
j=1

∑
k: |xk−xl |� 1

2 R2+ε

ϕR2 ∗ ϕR2 ∗ |f |(xk)

|xk − xl |2n
.

Now, it is easy to see that

ϕR2 ∗ ϕR2 ∗ |f |(x) ≈ ϕR2 ∗ ϕR2 ∗ |f |(x′)

when |x − x′| � √
nR2, so that

∑
k: |xk−xl |� 1

2 R2+ε

ϕR2 ∗ ϕR2 ∗ |f |(xk)

|xk − xl |2n
� CϕR2 ∗ ϕR2 ∗ ϕR2 ∗ |f |(xl)

� CϕR2 ∗ ϕR2 ∗ ϕR2 ∗ |f |(x)

for all x ∈ Ql . Substituting into (12), we have∣∣eit�f (x)
∣∣ �

∣∣eit�fl(x)
∣∣ + CNR−NϕR2 ∗ ϕR2 ∗ ϕR2 ∗ |f |(x)

for all (x, t) ∈ Ql × [0,R2], and we are done. �
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Lemma 8. Let q � p1 � p0 and I ⊂ [0,R2]. Suppose that∥∥eit�f
∥∥

L
q
x(B

R2 ,Lr
t (I ))

� CRs‖f ‖Lp0 (Rn)

whenever R � 1, and f is frequency supported in Bn. Then for all ε > 0,

∥∥eit�f
∥∥

L
q
x(Rn,Lr

t (I ))
� CεR

s+2n( 1
p0

− 1
p1

)+ε‖f ‖Lp1 (Rn).

Proof. By Lemma 7, for all ε > 0, there exists functions fl and f̃l such that

‖fl‖Lp0 (Rn) � CR
2n( 1

p0
− 1

p1
)+ε‖f̃l‖Lp1 (Rn), (13)∑

l

‖f̃l‖p1
Lp1 (Rn)

� CRε‖f ‖p1
Lp1 (Rn)

, (14)

and for all N, l ∈ N and (x, t) ∈ Ql × [0,R2],∣∣eit�f (x)
∣∣ �

∣∣eit�fl(x)
∣∣ + CNR−NLR2f (x).

We use these pointwise bounds on cubes, to obtain an Lq(Rn,Lr
t (I )) bound. We have

∥∥eit�f
∥∥q

Lq(Rn,Lr
t (I ))

=
∑

l

∥∥eit�f
∥∥q

Lq(Ql,L
r
t (I ))

�
∑

l

∥∥∣∣eit�fl

∣∣ + CNR−NLR2f
∥∥q

Lq(Ql,L
r
t (I ))

,

and using the fact that ‖g + h‖q � 2q(‖g‖q + ‖h‖q), we see that

∥∥eit�f
∥∥q

Lq(Rn,Lr
t (I ))

� C
∑

l

∥∥eit�fl

∥∥q

Lq(Ql,L
r
t (I ))

+ CNR−N
∑

l

‖LR2f ‖q

Lq(Ql,L
r
t (I ))

.

Now, by Young’s inequality,

∑
l

‖LR2f ‖q

Lq(Ql,L
r
t (I ))

� R2q
∥∥ϕR2 ∗ ϕR2 ∗ ϕR2 ∗ |f |∥∥q

Lq(Rn)

� CR2q‖f ‖q

Lq(Rn)
,

so that ∥∥eit�f
∥∥q

Lq(Rn,Lr
t (I ))

� C
∑

l

∥∥eit�fl

∥∥q

Lq(Ql,L
r
t (I ))

+ CNR−N‖f ‖q

Lq(Rn)
. (15)

By translation invariance and the hypothesis,∥∥eit�fl

∥∥
q r � CRs‖fl‖Lp0 (Rn)
L (Ql,Lt (I ))
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for all l ∈ N, and combining this with (13),

∥∥eit�fl

∥∥
Lq(Ql,L

r
t (I ))

� CR
s+2n( 1

p0
− 1

p1
)+ε‖f̃l‖Lp1 (Rn). (16)

On the other hand, as supp f̂ ⊂ Bn and p1 � q , by Bernstein’s inequality,

‖f ‖Lq(Rn) � C‖f ‖Lp1 (Rn). (17)

Substituting (16) and (17) into (15), we see that

∥∥eit�f
∥∥q

Lq(Rn,Lr
t (I ))

� CR
q(s+2n( 1

p0
− 1

p1
)+ε)

∑
l

‖f̃l‖q

Lp1 (Rn)
+ CNR−N‖f ‖q

Lp1 (Rn)
.

Finally, as q � p1, by convexity,

∑
l

‖f̃l‖q

Lp1 (Rn)
�

(∑
l

‖f̃l‖p1
Lp1 (Rn)

)q/p1

,

so that, by (14), we can sum to obtain the required bound. �
4. Restriction implies local smoothing

We denote by LS(q → q) the estimate∥∥eit�f
∥∥

Lq(Rn×[0,1]) � Cα‖f ‖q,α

for all α > 2n( 1
2 − 1

q
) − 2

q
.

We denote by R∗(p → q) the (adjoint) restriction estimate∥∥eit�f
∥∥

Lq(Rn+1)
� C‖f̂ ‖Lp(Rn),

where p′ = nq
n+2 . It is conjectured that R∗(p → q) holds for all q > 2+ 2

n
, and it has been proven

in the affirmative by Tao [32] in the range q > 2 + 4
n+1 .

Theorem 9. R∗(p → q) ⇒ LS(q → q).

Proof. Suppose first that supp f̂ ⊂ Bn. Considering (2), we see that eit�f can be viewed as the
convolution of f with the Fourier transform of e−4π2i|ξ |2t , so that we can also write

eit�f (x) = 1

(4πit)n/2

∫
Rn

f (y)e
i|x−y|2

4t dy. (18)

As in [5], we ‘complete the square’ in (2), and compare the representations, so that

∣∣eit�f (x)
∣∣ =

∣∣∣∣cn/2

n/2
e−ic2 1

t
�f̂

(
cx

)∣∣∣∣. (19)

t t
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Making a ‘pseudo-conformal’ change of variables, we have

∥∥eit�f
∥∥

Lq(B
R2 ×[R2/2,R2]) � CR−n

∥∥∥∥ei 1
t
�f̂

( ·
t

)∥∥∥∥
Lq(B

R2×[R2/2,R2])

� CR
−n+ 2(n+2)

q
∥∥eit�f̂

∥∥
Lq(Bn+1)

.

Now, by hypothesis, ∥∥eit�f̂
∥∥

Lq(Bn+1)
� C‖f ‖Lp(Rn),

where p′ = nq
n+2 , so that

∥∥eit�f
∥∥

Lq(B
R2 ×[R2/2,R2]) � CR

−n+ 2(n+2)
q ‖f ‖Lp(Rn).

Thus, by Lemma 8,

∥∥eit�f
∥∥

Lq(Rn×[R2/2,R2]) � CR
−n+ 2(n+2)

q
+2n( 1

p
− 1

q
)+ε‖f ‖Lq(Rn)

= CR
n(1− 2

q
)+ε‖f ‖Lq(Rn).

Finally we scale, so that

∥∥eit�f
∥∥

Lq(Rn×[2−k,2−k+1]) � C2− 2k
q R

n(1− 2
q
)− 2

q
+ε‖f ‖Lq(Rn)

whenever supp f̂ ⊂ B2kR with k � 0. Summing, we see that

∥∥eit�f
∥∥

Lq(Rn×[0,1]) � CR
n(1− 2

q
)− 2

q
+ε‖f ‖Lq(Rn)

whenever supp f̂ ⊂ BR , and the proof is completed with the standard Littlewood–Paley argu-
ments. �
5. Equivalence of the conjectures for the maximal operator

We consider the local bound,∥∥eit�f
∥∥

L
q
x(Bn,Lr

t [0,1]) � Cs‖f ‖Hs(Rn), (20)

and the global bound, ∥∥eit�f
∥∥

L
q
x(Rn,Lr

t [0,1]) � Cs‖f ‖Hs(Rn). (21)

Theorem 10. Let q, r � 2. Then (20) holds for all s > s0 if and only if (21) holds for all s >

2s0 − n( 1 − 1 ) + 2 .
2 q r
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Letting q = 2 and r = ∞, we obtain Theorem 3. Letting q = r = 2, we see the equivalence
up to endpoints of the conservation of charge and the local smoothing theorem of Sjölin, Vega,
and Constantin and Saut, mentioned in Section 1.

We will need the following lemma due to Lee.

Lemma 11. (See [19].) Let q, r � 2. Suppose that∥∥eit�f
∥∥

L
q
x(BR,Lr

t [0,R]) � CRs‖f ‖L2(Rn),

whenever R � 1, and f is frequency supported in An. Then for all ε > 0,∥∥eit�f
∥∥

L
q
x(BR,Lr

t [0,R2]) � CεR
s+ε‖f ‖L2(Rn).

By the standard Littlewood–Paley arguments and scaling, to prove Theorem 10, it will suffice
to prove the following theorem, where (ii) and (iii) correspond to (20) and (21), respectively.

Theorem 12. Let q, r � 2, and consider functions f which are frequency supported in An. Then
the following bounds are equivalent:

(i) ‖eit�f ‖L
q
x(BR,Lr

t [0,R]) � CRs‖f ‖L2(Rn) for all R � 1 and s > s0,

(ii) ‖eit�f ‖L
q
x(BR,Lr

t [0,R2]) � CRs‖f ‖L2(Rn) for all R � 1 and s > s0,

(iii) ‖eit�f ‖L
q
x(Rn,Lr

t [0,R2]) � CR2s‖f ‖L2(Rn) for all R � 1 and s > s0.

Proof. By changing variables R → R1/2 in (iii), we see that (ii) and (iii) trivially imply (i).
Thus, it will suffice to show that (i) implies (ii) and (iii). Now, (i) implies (ii) is precisely the
content of Lemma 11. Similarly, by changing variables and letting p0 = p1 = 2 and I = [0,R2]
in Lemma 8, we see that (i) implies (iii). �

By the local result of Lee [19], mentioned in Section 1, and Theorem 10 with q and r taken
to be 2 and ∞, respectively, we obtain the following corollary.

Corollary 4. For all s > 3/4, there exists a constant Cs such that∥∥∥ sup
0<t<1

∣∣eit�f
∣∣∥∥∥

L2(R2)
� Cs‖f ‖Hs(R2).

We note that as (21) cannot hold for any value of s when q < 2 (see for example [25]), there
can be no such equivalence when q < 2. Letting r = ∞, we also see that the necessary conditions
for (21) to hold given in [25], are equivalent to the necessary conditions for (20) to hold given
in [29].

6. The nonelliptic Schrödinger equation

The generalised Schrödinger equation, i∂tu + φ(D)u = 0, where φ̂(D)u = φ(ξ)û(ξ) and
φ(ξ) is real, has solution eitφ(D)f which can be formally written as

eitφ(D)f (x) =
∫

f̂ (ξ)e2πix·ξ+itφ(ξ) dξ.



K.M. Rogers / Advances in Mathematics 219 (2008) 2105–2122 2119
In the local case, Kenig, Ponce and Vega [15] showed that if there are at most N ∈ N solutions
to

φ(ξ1, . . . , ξk, x, ξk+1, . . . , ξn−1) = r (22)

for all ξ ∈ Rn−1, r ∈ R, k = 0, . . . , n − 1, and

|φ(ξ)|
|∇φ(ξ)| � C

(
1 + |ξ |2)s0,

then for s > s0, ∥∥∥ sup
0<t<1

∣∣eitφ(D)f
∣∣∥∥∥

L2(Bn)
� CN,s‖f ‖Hs(Rn). (23)

In the global case, Cowling [8] showed that if |φ(ξ)| � C(1 + |ξ |2)s0 , then for s > s0,∥∥∥ sup
0<t<1

∣∣eitφ(D)f
∣∣∥∥∥

L2(Rn)
� Cs‖f ‖Hs(Rn). (24)

In particular, both these results hold for smooth φ that are homogeneous of degree m � 1. The
injectivity condition (22) is fulfilled and

|φ(ξ)|
|∇φ(ξ)| � C

(
1 + |ξ |2)1/2

,

so that (23) holds for all s > 1/2. On the other hand |φ(ξ)| � C(1 + |ξ |2)m/2, so that (24) holds
for all s > m/2.

For such φ, these results are again equivalent. Indeed, for any φ satisfying |Dαφ(ξ)| �
C0|ξ |m−|α|, where |α| � 2, and |∇φ(ξ)| � C−1

0 |ξ |m−1, there is an equivalence.
We consider the local bound,

∥∥eitφ(D)f
∥∥

L
q
x(Bn,Lr

t [0,1]) � Cs‖f ‖Hs(Rn), (25)

and the global bound,

∥∥eitφ(D)f
∥∥

L
q
x(Rn,Lr

t [0,1]) � Cs‖f ‖Hs(Rn). (26)

By scaling, it will suffice to consider eitφR(D)f defined by

eitφR(D)f =
∫

f̂ (ξ)e2πix·ξ+tR−mφ(Rξ) dξ,

where φR = R−mφ(R·), f̂ is supported in An and t ∈ [0,Rm]. It is easy to see that |DαφR(ξ)| �
C0|ξ |m−|α| and |∇φR(ξ)| � C−1

0 |ξ |m−1 for all R, so that |∇φR(vj )| ≈ |vj |m−1.
Now, Lemma 6 generalises to φ such that |Dαφ(ξ)| � C0|ξ |m−|α| for |α| � 2 (see [18]). The

2vj is replaced by ∇φ(vj ), and the constants depend only on C0.
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To prove versions of Lemmas 7 and 8 with eitφR(D)f in place of eit�f , only the numerology
changes. The important point is that the tubes make angles with the spatial plane which are
uniformly bounded away from zero, which we have insured by requiring that |∇φR(ξ)| � C0 for
all ξ ∈ An.

Lemma 11 can be similarly generalised. The important point there is that the tubes make
angles with the t-axis which are uniformly bounded away from zero, which we have insured by
requiring that |∇φR(ξ)| � 1

2C−1
0 for all ξ ∈ An.

Thus, considering f frequency supported in An, and q, r � 2, the following bounds are equiv-
alent:

(i) ‖eitφR(D)f ‖L
q
x(BR,Lr

t [0,R]) � CRs‖f ‖L2(Rn) for all R � 1 and s > s0,

(ii) ‖eitφR(D)f ‖L
q
x(BR,Lr

t [0,Rm]) � CRs‖f ‖L2(Rn) for all R � 1 and s > s0,

(iii) ‖eitφR(D)f ‖L
q
x(Rn,Lr

t [0,Rm]) � CRms‖f ‖L2(Rn) for all R � 1 and s > s0.

By scaling and the usual arguments of Littlewood and Paley, this yields the following theorem.

Theorem 13. Let q, r � 2. Suppose that |Dαφ(ξ)| � C0|ξ |m−|α| and |∇φ(ξ)| � C−1
0 |ξ |m−1 for

all ξ ∈ Rn \ {0}, where |α| � 2 and m > 1. Then (25) holds for all s > s0 if and only if (26) holds
for all s > ms0 − (m − 1)(n( 1

2 − 1
q
) − m

r
).

A corollary of this and the generalised result of Lee [19], is that Corollary 4 also holds for the
generalised Schrödinger equation; where |Dαφ(ξ)| � C|ξ |2−|α| and |∇φ(ξ)| � C−1|ξ |, and the
Hessian of φ has two nonzero eigenvalues of the same sign.

For completeness, we note that when m � 1, we no longer need Lemma 11, so that we have
the following theorem.

Theorem 14. Let q � 2 and suppose that |Dαφ(ξ)| � C0|ξ |m−|α| for all ξ ∈ Rn \ {0}, where
|α| � 2 and m � 1. Then (25) holds for all s > s0 if and only if (26) holds for all s > s0.

In particular, we consider φ(ξ) = (2π |ξ |)m so that φ(D) = (−�)m/2 with m ∈ (0,1). The
conditions of Theorem 14 are fulfilled, and we see that global bounds are equivalent to local
bounds.

Finally, we consider the nonelliptic Schrödinger equation; where φ is defined by φ(ξ) =
−4π2(ξ2

1 − ξ2
2 ± ξ2

3 ± · · · ± ξ2
n ), and

φ(D) = � = ∂2
x1

− ∂2
x2

± ∂2
x3

± · · · ± ∂2
xn

.

Note that the conditions of Theorem 13 are fulfilled with m = 2. Vargas, Vega and the author [26]
showed that, in this case, the bound of Kenig, Ponce and Vega is almost sharp, in the sense that∥∥∥ sup

0<t<1

∣∣eit�f
∣∣∥∥∥

L2(Bn)
� Cs‖f ‖Hs(Rn)

does not hold when s < 1/2.
Therefore, by Theorem 13, we see that the bound of Cowling is similarly sharp, and we state

this as a corollary.
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Corollary 5. For all s > 1, there exists a constant Cs such that∥∥∥ sup
0<t<1

∣∣eit�f
∣∣∥∥∥

L2(Rn)
� Cs‖f ‖Hs(Rn),

and this is not true when s < 1.

Theorem 9 also generalises to the nonelliptic case, so the well-known Stein–Tomas–Strichartz
estimate yields an almost sharp local smoothing estimate in the range q � 2+4/n. In two spatial
dimensions, by a restriction theorem independently due to Vargas [34] and Lee [18], we have the
result in the range q � 10/3.
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