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Abstract

Studies of perceptual learning consistently found that improvement is stimulus specific. These findings were interpreted as
indicating an early cortical learning site. In line with this interpretation, we consider two alternative hypotheses: the ‘earliest
modification’ and the ‘output-level modification’ assumptions, which respectively assume that learning occurs within the earliest
representation which is selective for the trained stimuli, or at cortical levels receiving its output. We studied performance in a
pop-out task using light bar distractor elements of one orientation, and a target element rotated by 30° (or 90°). We tested the
alternative hypotheses by examining pop-out learning through an initial training phase, a subsequent learning stage with swapped
target and distractor orientations, and a final re-test with the originally trained stimuli. We found learning does not transfer across
orientation swapping. However, following training with swapped orientations, a similar performance level is reached as with
original orientations. That is, learning neither facilitates nor interferes to a substantial degree with subsequent performance with
altered stimuli. Furthermore, this re-training does not hamper performance with the originally trained stimuli. If training changed
the earliest orientation selective representation (specializing it for performance of the particular performed task) it would
necessarily affect performance with swapped orientations, as well. The co-existence of similar asymptotes for apparently
conflicting stimulus sets refutes the ‘earliest modification’ hypothesis, supporting the alternative ‘output level modification’
hypothesis. We conclude that secondary cortical processing levels use outputs from the earliest orientation representation to
compute higher order structures, promoting and improving successful task performance. © 1998 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The dramatic effects of practice in improving the
performance of adult humans in even the most simple
perceptual tasks have been studied recently using sev-
eral paradigms [1–17]. The consistent finding was that
learning effects are substantially specific to the trained
parameters along such basic visual dimensions as orien-
tation, size (or spatial frequency) and retinal position
(although there is substantial inter-subject variability).
The studies concurred in concluding that learning

occurs at a level that maintains separate representations
along these dimensions. If one assumes that electro-
physiological data describing single unit receptive field
selectivities reflect stimulus representations at the vari-
ous cortical areas [18], these results imply that learning
occurs at an early cortical area, perhaps V1 or V2.

None of these studies, however, attempted to study
directly the mechanisms underlying the measured im-
provement. In the present study, we examine the feasi-
bility of the following simple hypothesis, which is
consistent with the findings of stimulus specificities:

Learning occurs within the first neuronal level whose
representation is discriminative with respect to the
required task.
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Earliest modification has been implicitly assumed in
models of perceptual learning for various simple visual
tasks [19,20,12]. We now show that the pattern of the
improved behavior could not be obtained without mod-
ifications in the output levels, disproving any ‘hard
version’ of the ‘earliest modification’ hypothesis. We
thus suggest an ‘output level modification’ hypothesis,
namely:

Learning occurs within neuronal levels that read the
output of the first neuronal level whose representa-
tion is discriminative with respect to the required
task.

A more specific account of which output levels are
modified under different training conditions is de-
scribed elsewhere [21]. Briefly, we suggest that learning
proceeds in the reverse direction of the visual process-
ing hierarchy. Rather than occurring at the earliest
discriminative level, learning occurs at the highest level
that retains discriminablity with respect to the required
visual dimension, at a default degree of analysis preci-
sion. Lower level representations will only be modified
(as part of the learning process) when higher levels are
not sufficiently discriminative, and if training is per-
formed so that the appropriate low-level population is
accessible.

For the purposes of these ‘earliest modification’ and
‘output level’ hypotheses, we infer cortical representa-
tion properties from published single neuron receptive
field characteristics. For example, consider a perceptual
task requiring discrimination between vertical and hori-
zontal light bars, where each type of bar is presented in
random position anywhere within the visual field. We
would conclude that this task is not accomplished
within a retinal representation, since retinal neurons are
not differentially activated by these two types of stimuli
(vertical and horizontal). Rather, the task must be
achieved at neural levels that explicitly code for orienta-
tion. Looking for a cortical site, however, one finds a
succession of cortical areas with representations which
differentiate stimulus orientations (at least all the areas
from primary area V1 to the infero-temporal area, IT).
The ‘earliest modification’ assumption asserts that
learning orientation-based discriminations occurs at the
first level that explicitly codes for orientation, namely
the primary visual cortical region V1 [22]. Similarly, the
‘output level modification’ hypothesis would predict
that learning orientation-based tasks occurs at one or
more of the levels receiving output from this early V1
level, including ‘higher’ V1 levels, V2, V3, V4 and MT.

We test the earliest modification assumption in the
context of early perceptual learning for the case of
detection of an oddly oriented target element in an
array of homogeneously oriented distractor light bars.
When the target greatly deviates in its orientation from

that of the distractors, it ‘pops-out’ so that its detection
is simple and pre-attentive [23,24]. Physiological data
indicate that the responses of a large proportion of the
neurons, at the level of area V1 and above, are tuned
around their preferred or ‘best’ orientation (V1: Hubel
and Wiesel, [22]; review for extra-striate areas: Desi-
mone and Ungerleider, [18]). Indeed there is anatomical
[25], physiological [26] and behavioral evidence (e.g.
locality: Nothdurft, [27]; Sagi and Julesz, [28]) suggest-
ing that pop-out detection may be accomplished within
area V1.

In previous studies we found that pop-out detection
is learnable: its performance substantially improves
with practice [10,11,29–32]. The ‘earliest modification’
hypothesis asserts that learning derives from modifica-
tions of interactions between neurons at the earliest
stage which explicitly codes for orientation. Thus, ac-
cording to this concept, learning in this case is the
gradual modification of interactions among the orienta-
tion selective neurons that are tuned around the trained
(target and distractor) orientations. Our previous find-
ings, that the improvement is largely specific to the
orientations of the target and distractor elements, to the
location of the target, and to element size [31,11] are
compatible with improvement deriving from specific
modifications of lateral interactions between local, ori-
entation and size selective neurons.

A simple mechanism implementing modifications of
lateral interactions would be of increasing lateral inhibi-
tion between the distractor detectors. This would de-
crease the overall response of distractor detectors and
would consequently increase target salience. We found,
however, that learning is highly specific also to target
orientation [11] refuting this possibility. Thus, while the
simplicity of pop-out detection may result from a ‘win-
ner takes all’ mechanism [33] based on lateral inhibition
between neurons with similar orientation selectivity
[26,34,35], its improvement as a function of practice
does not stem from modifications within these connec-
tions. Given that modification of interactions between
distractor detectors alone was refuted, we examine, in
this study, an alternative option for implementing the
earliest modification hypothesis. We test for modifica-
tions of interactions between target and distractor de-
tectors, as subserving pop-out.

The procedure we use to test the earliest modification
hypothesis is to examine ‘second’ learning, i.e. learning
with modified stimulus parameters. The stimulus mod-
ification we use is swapped target and distractor orien-
tations, a consistently strong interfering modification.
We measure performance and learning with the
swapped orientations (following training with the origi-
nal orientations), as well as the effect of the second
learning on subsequent performance with the original
stimuli. The logic underlying this procedure is further
explained below (see Rationale). The major result is
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that, although subjects do not transfer learning across
orientation swapping, they are not confused by it.
Furthermore, subsequent training leads subjects to-
wards a similar asymptote, and yet does not disrupt
performance with the originally trained stimuli. That is,
learning with swapped orientations does not hamper
the original training achievements.

We argue that the lack of asymptotic interference
invalidates the ‘earliest modification’ assumption.
Changes in early V1 orientation tuning properties and/
or intra-area neuronal interactions, which favor and
improve detection for one set of parameters, would
necessarily have an interfering effect on performance of
a task using swapped orientations, unless compensated
by substantial modifications of the read-out of this
early representation. As no such interference was
found, learning must affect output connections of an
orientation selective representation. For example, learn-
ing may affect an explicit representation of orientation
difference between target and distractor orientations,
occurring at a higher cortical level [36]. Accordingly, we
propose the alternative ‘output-level modification’
hypothesis.

2. Methods

2.1. Stimuli and procedure

Stimuli were arrays of light bar elements (147 cd/m2)
on a dark background (0.2 cd/m2). The array consisted
of 7×7 elements (subtending 4.6×4.6°) centered
around fixation, as illustrated schematically in Fig. 1,
top. Each stimulus element subtended 22×1%. The dis-
tance between element centers was 42.6% (94% jitter,
randomly chosen with uniform probability). In half of
the stimulus presentations, all elements had the same
orientation. In the other half, one of the elements was
a target at a fixed orientation, deviating by 30 or 90°
from that of the distractor elements. The orientations
used were as follows: For 30° difference: distractors:
30° (or 60°) counter-clockwise from horizontal; target
60° (or 30°); For 90° difference: distractors: 30° (or
120°); target 120° (or 30°).

A mask followed each stimulus, as shown in Fig. 1,
top, right. The mask was composed of a 7×7 array of
asterisk-like elements, located at the grid points of the
7×7 stimulus lattice (94% jitter so that element posi-
tion exactly matched those of the stimulus). Each mask
element was a superposition of 4 lines: the trained
target and distractor orientations, and these orienta-
tions plus 90° (e.g. 30, 60, 120 and 150°).

The temporal sequence of each trial is shown in Fig.
1, bottom: Each trial started with a fixation cross
(a+sign with 22×1% lines of intensity 147 cd/m2).
When the observer pressed the ready key, following

120–165 ms, the stimulus appeared. After a variable
duration (the stimulus onset asynchrony, SOA), the
mask was displayed for 166 ms. Stimulus presentation
was on until mask presentation in the main subject
group (30° difference), and lasted 16 ms in the
paradigm of 90° difference (where a dark period sepa-
rated between stimulus offset and mask onset, as shown
in Fig. 1, bottom). Finally, following a 233 ms dark
period, the fixation point reappeared while the subject
pressed a response key. A computer tone confirmed
correct responses.

Stimuli were presented in blocks of 20 trials with the
same SOA. Each session comprised 70 blocks (1400
trials). Each session began with a set of 9 blocks
starting from the longest SOA (183 or 150 ms) and
gradually reaching the shortest SOA (16 ms) in an
interleaved manner (blocks with SOA of 183, 133, 100,
66, 33 ms, or blocks of 16 ms shorter times, followed by
blocks of 150, 116, 83, and 50 ms, or blocks of 16 ms

Fig. 1. Schematic diagram of pop-out testing paradigm. Top: A 7×7
array of light bars was presented briefly, either with (left), or without
(center), an odd element, i.e. a bar with a different orientation. A
mask comprising bars of various orientations (right) was presented
following each stimulus. Following training with the original set of
element orientations, subjects were tested and trained with stimuli in
which the target and distractor orientations were swapped (second
row). Pop-out target element could appear in any location in the
7×7 matrix except the central (fixation) position. Bottom: Trial
temporal sequence; note brief stimulus and variable Stimulus Onset
Asynchrony (SOA) between stimulus and mask. See text for details.
The stimulus areas demarcated by the dashed lines are reflected in the
cortical set of neighboring hypercolumns of the schematic diagrams
of Figs. 2 and 3.
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shorter times). Based on performance in these initial
blocks, the range of SOAs to be presented next was
chosen so that the shortest SOA would be the longest in
which the subject still performed near chance level (55%
correct) and the longest SOA would be the shortest
where the subject already showed near perfect perfor-
mance (95% correct). Within that chosen range (con-
strained to include at least three different SOAs), blocks
were presented in pseudo-random sequence. Following
blocks of presentations with these SOAs, the next range
of SOAs was chosen based on performance in these
blocks and following the above criteria. As a result of
this procedure, performance was kept around 75% cor-
rect, within and throughout sessions.

Stimuli were presented on an HG Trinitron Multi-
scan monitor (Sony) or a 5A Micro-scan monitor
(A.D.I.) running at 60 Hz frame-rate and 1024×1024
pixel resolution, driven by a c9-GX graphics card
(c9 Computer) in a 486 PC computer. Response keys
were ‘1’ (for present) and ‘0’ (for absent) on the nu-
meric keypad of the computer keyboard, followed by
the ready key, ‘enter’, to initiate the next trial.

2.2. Subjects

Thirty two subjects participated in the experiments.
Subjects were 20–27 years old, with normal or cor-
rected to normal eye-sight. All were naive to the pur-
poses of the experiment and were paid for
participation.

2.3. Analysis

The average session threshold was evaluated by com-
puting the best fit psychometric function of the form:
f=1−0.5 exp (− t/t)ts where f is the fraction of
correct responses; t, the trial SOA; and t and s are free
parameters: t the threshold SOA at 81.6% correct, and
s, the slope at threshold multiplied by 2e [37]. Determi-
nation of the threshold is described elsewhere [10,11].

The average performance at each SOA as a function
of trial number was computed by summing across
subjects the fraction of correct trials within the total
number of trials, lumping together the data for all
subjects. We also looked at the results averaging the
fractions correct for each subject, and found no sub-
stantial differences for the two methods of averaging.

The average two-dimensional spatial distribution of
fraction of correct detection was computed by summing
(across subjects), separately for each position, the num-
ber of target-present answers among target-present tri-
als. This summation was performed separately for each
SOA. The average was then obtained by simple averag-
ing across a group of SOAs (33, 50 and 66 ms). Thus,
performance at each SOA was given the same weight,
although the number of presentations was typically not

equal (see Stimuli and Procedure, above and in Ahissar
and Hochstein, [11]).

3. Rationale

As outlined in the Section 1, the basic prediction of
the ‘earliest modification’ hypothesis, (and any learning
mechanism of gradual modification of interactions
among orientation selective neurons tuned around the
target and distractor orientations), is that increasing the
strength of one type of lateral interaction will reduce
the effectiveness of the equivalent lateral interaction in
the reverse direction. The reduction could occur in one
of two ways: either increasing the strength of one set of
connections directly decreases the strength of ‘compet-
ing’ connections (replacement), or increasing the
strength of one set of connections leaves the other
intact, but the two sets have ‘competing’ effects (super-
position). This interference is schematically illustrated
in Fig. 2 for excitatory interactions. Each circle denotes
a neuron, or column of neurons, with receptive field(s)
tuned around a preferred orientation. The ‘best’ orien-
tation is indicated by the orientation of the line drawn
inside the circle. Arrows indicate unidirectional excita-
tory connections. During initial learning, the excitatory
connections from distractor detectors to target detec-
tors are strengthened, increasing the facilitatory effect
of distractor detectors on target detectors, increasing
target salience and improving performance (top row;
the increase in magnitude of the response is indicated
by the increased line width). If, subsequently, perfor-
mance is tested with a stimulus with swapped target
and distractor orientations, there should be no gain
from the prior practice; on the contrary, the lateral
connections strengthened by previous training would
increase the salience of the now distractor detectors,
and thus, some initial confusion would be expected
(middle row, left)1.

Second training with swapped orientations, could
result either in superimposing reciprocal connections in
the reverse direction (left option, Fig. 2, middle row,
middle column), or, alternatively, obliterate previously
formed connections, replacing them with connections in
the reverse direction (right option, Fig. 2, middle row,
right column). According to the first scenario, second
learning should not approach the same asymptote as
the original learning, since its effectiveness is reduced
by previously strengthened connections in the reverse
direction (strengthening current distractor salience;
compare middle row middle column, with top row,
right). Furthermore, second learning should disturb
asymptotic performance with the original orientations,

1 We assume that the strategy has not be modified. That is,
detection is still by local gradient.
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Fig. 2. Schematic illustration of expected effect of lateral interaction
model of early perceptual learning according to the ‘earliest modifica-
tion’ hypothesis. Each hexagon schematically represents a hypercolumn.
The orientation preference of each cortical column (circles) is repre-
sented by the orientation of the bar drawn within it; the thickness of the
bar and circle represents the degree of activation of the neurons in the
column. Training enhances specific facilitatory interactions improving
performance on this stimulation set. This is demonstrated in the figure
by facilitation of target salience by excitatory connections from
surrounding distractor detectors (arrows). Training is expected to
interfere with subsequent performance of alternative stimulation
configurations, especially when the orientations of the target and the
distractor elements are swapped. This is seen in the second row (left)
where the previously strengthened excitatory connections now enhance
the distractor detectors. Second training—with the swapped orienta-
tions—would introduce excitatory connections in the reverse direction,
either superimposed on (middle column) or replacing (right column) the
originally formed connections. In the former case, there would be
reduced performance even at asymptote. In this case, the same hampered
asymptotic performance will be found for re-testing subjects with the
original orientations (compare bottom row, left with top right and
middle, middle). In the case of replacement learning, asymptotic
performance is always the same, but performance on the re-test is as poor
as with swapped orientations before second learning (compare bottom
row, right with top right and middle left). See text for further details.

predicts that second learning should approach a similar
asymptote as the original one, but, would greatly ham-
per performance with original stimuli, so that perfor-
mance level on a re-test (Fig. 2, bottom, right) should
be worse than naive performance (top, left). In any
event, we expect interference between learning swapped
and original orientations. Indeed interference occurs in
a neural network model implementing pop-out learning
by modifications in lateral interactions [20].

Although in Fig. 2 we referred specifically to excita-
tory connections from distractor to target detectors, an
alternative model of increasing inhibition from target to
(neighboring, or spatially overlapping) distractor detec-
tors, will have the same effect3. In fact, a similar
prediction would be the outcome of any type of asym-
metrical interactions between target and distractor de-

Fig. 3. Schematic illustration of expected effect of learning for
output-level modification hypothesis model. Output connection refine-
ments which occur when learning original and swapped orientations
develop in different, parallel, locations within the output level and thus
do not necessarily interfere with each other, nor affect the earliest
orientation representation. See text for details.

so that a re-test should show a similar performance
level as with swapped orientations (Fig. 2, bottom,
left)2. The other alternative, of replacing connections,

2 Here too, the discussion is qualitative. The magnitude of the
interference effect is hard to predict. We assume that if there is a large
original learning (resulting from strengthening excitatory distractor to
target interactions), its interference with asymptotic performance
after swapping will not be undetectable. That is, we assume there are
no large non-linearities in the additive effects of distractor to target
interactions.

3 In fact, in this case, swapping will have a larger effect, since
originally one target inhibited several neighboring distractors. With
swapping there are many distractors (previous targets) which will
inhibit the present target.
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tectors: second learning with swapped orientations will
always interfere with (be affected by, and/or affect)
initial learning.

The alternative ‘output level modification’ hypothesis
is described schematically in Fig. 3. Here, training
changes connections between lower and higher levels
(e.g. connections from V1 to V2 or between levels
within one of these areas). The new connections that
are appropriate for the original task need not interfere
with performance of the task with swapped orienta-
tions, since the latter may depend on a parallel mecha-
nism. Similarly, changes in this parallel mechanism will
not affect asymptotic performance with the original
orientations, on a re-test. To illustrate this hypothesis,
we use the same conventions as in Fig. 2. The arrow
denotes (refinement and) activation of an output level
mechanism. Improved performance following training
(top, right) derives from refined selection of appropriate
output connections to (or within) a higher level. Stimuli
with swapped target and distractor orientations will not
activate this mechanism (middle row, left) and second
learning will refine a parallel output mechanism (middle
row, right). This mechanism need not be hampered by
the previously trained mechanism, so that asymptotic
performance with the swapped orientations will be sim-
ilar to that with the original stimuli. Similarly, re-test
with the original orientations (bottom) is unaffected by
the intervening second learning. The essential character-
istic is that changes occur in separate parallel mecha-
nisms, that do not necessarily affect each other, or the
earliest orientation representation.

Thus, there are different qualitative predictions from
the two alternative hypotheses: interference or indepen-
dence when training first with one set of orientations
and then with swapped orientations and re-testing with
the original set. These are examined in the following
experiments.

4. Results

4.1. Asymptotic le6els with swapped and original
orientations

Ten subjects were trained until reaching asymptotic
performance levels. Subsequently they were tested and
re-trained with swapped orientations. Following several
training sessions with the swapped orientations (seven
or more), they were given a re-test session with the
originally trained orientations. Fig. 4 plots data for
three individual subjects and the average for all ten
subjects. There was a major performance improvement
during the first session with the original orientations,
and subsequent practice yielded further improvement
[11]. The test with swapped orientations found
thresholds nearly at pre-training levels. That is, almost

Fig. 4. Learning and interference with swapped orientations. Exam-
ples of three subjects and the average for ten subjects (bottom, right)
who trained with original orientations (triangles), and were subse-
quently tested and retrained with swapped target and distractor
orientations (circles). Following several training sessions, they were
re-tested with the originally trained orientations, to examine whether
there was interference (final triangle). Note there is nearly no transfer
to the swapped orientations condition (first circle), i.e. learning had to
begin again. Furthermore, there is some slowing down of the learning
for the swapped condition compared with the original learning. On
the other hand, following training with the swapped orientations,
there was no interference when re-testing with the original orientation
condition—final triangle has just as low a threshold as asymptote
before swapped orientation training. This is contrary to the expecta-
tions of the earliest modification (lateral interactions) model illus-
trated in Fig. 2, supporting the alternative output level modification
hypothesis of Fig. 3.

no transfer was found to the swapped orientation con-
dition. In fact, for every one of the ten subjects the
swapped threshold was substantially above that of the
second session with the original orientation, although
for most (7/10) it was somewhat below that of the first
session (Fig. 7). This specificity is predicted by both
hypotheses. However, as pointed out above, any asym-
metric interaction would induce also some confusion in
the first few trials, following swapping.

We therefore focused further on the first 40 trials
with original and swapped orientations. During the first
40 trials, two blocks of long SOAs (\100 ms) were
presented. Fig. 5 illustrates the average percent correct
with original (triangles) and with swapped (circles) ori-
entations. While initially, following the first few trials,
performance was close to chance level, it started al-
ready near optimal for swapped orientations. Not only
was there no confusion due to swapping orientations,
but performance at long SOAs was immediately and
almost fully transferred.
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The initial transfer at long SOAs could derive from
initial learning of non-orientation specific aspects which
are shared by both original and swapped stimuli, e.g.
spatial distribution of the target [38]. We therefore
measured performance, looking for interference, at
asymptotic (short SOA) levels, with original and with
swapped stimuli.

Fig. 4 demonstrates that following training with the
original stimuli and then with the swapped stimuli,
re-test with the original stimuli shows that performance
threshold is (almost fully) retained and not hampered
(threshold for re-test is 4092.4 ms, compared to origi-
nal asymptote at 3692.3 ms; difference is not signifi-
cant). We conclude that though the training effect is
specific to the original orientations, as predicted by the
earliest modification hypothesis, there is no interference
between training with the original orientations to sub-
ject performance with swapped orientations-on the con-
trary, there is even some initial transfer for long SOAs.
Furthermore, second training with the swapped orien-
tations has no detrimental effect on re-test with the
original orientations. We must therefore reject the earli-
est modification hypothesis, and accept the alternative
output level modification hypothesis.

4.2. Floor effect

Could the lack of asymptotic interference between
learning swapped and original orientations result from
floor effects? That is, might there be differences be-
tween the system’s performance under the swapped and
original stimuli conditions, but these are masked by

Fig. 6. Performance for easy task—90° difference between orienta-
tions of target and distractors. Performance is shown as percent
correct for trials with different SOAs. There is nearly perfect perfor-
mance for 33 ms SOA for all subjects so the threshold must be
substantially below that. Thus, the similarity of thresholds for origi-
nal and swapped orientations in Fig. 4 can not derive from a floor
effect.

other limitations which keep the asymptotic threshold
SOA as high as �30 ms. Perhaps, had there not been
additional limitations, we might have seen a lower
threshold for one set of stimuli compared with the
other set.

If such floor effects existed, it would mean that
subjects could not reach an SOA lower than 30 ms with
this behavioral paradigm. To ensure that this is not the
case, we trained a group of four additional subjects
with the same paradigm, only now target deviated by
90° from distractor elements. We figured that subjects
should reach better asymptotic performance under
these conditions if there is no floor effect. Indeed we
found that, for all four subjects, threshold SOAs fol-
lowing learning (1–3 sessions were sufficient) were
B20 ms. As shown in Fig. 6, all performed nearly
perfectly with 33 ms SOA, and two performed signifi-
cantly above chance with 16 ms SOA. We conclude that
the lack of interference at asymptote does not stem
from a floor effect. It reflects a genuine co-existence of
training-induced performance improvement for appar-
ently conflicting sets of stimuli.

Perhaps the lack of interference derives from target
detection being facilitated by enhanced responses of
neighboring distractor detectors? If orientation salience
is summed over a somewhat extended local area, the
increased salience of neighboring elements could also
explain the moderately improved performance follow-

Fig. 5. Rate of success during the first 40 trials with original (trian-
gles) and swapped (circles) target and distractor orientations. SOA
for first 20 trials was 166 ms; for next 20 trials 116 ms. Error bars
indicate inter-subject standard error. Note that with the original
orientations performance is near chance, and there is even some early
deterioration in performance, while for the swapped orientations,
performance begins at a much improved level. Thus, there appears to
be no initial confusion (for long SOA trials) in contrast to the
prediction of the earliest modification hypothesis.
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ing swap compared to that of naive subjects. This
explanation has two predictions, both of which we
tested and refuted.

First, if salience were summed, then increasing the
orientation gradient of the surrounding area would
facilitate target detection. Thus, detection of a target
surrounded by a ring of distractors with an intermedi-
ate orientation would be easier than detecting a target
embedded in a homogeneous field of distractors. To
test this, a group of 18 trained subjects was tested with
successive sessions or interleaved blocks of these two
conditions (target and distractor orientations: 30 and
60° versus target and distractors 30 and 60° with a ring
of distractors surrounding the target with orientation of
45°). Consistently, performance was somewhat better
under the single local gradient condition, compared
with the surrounding ring condition (single target detec-
tion minus target-with-ring detection difference was
+794% for successive sessions (n=6) and +591%
for interleaved blocks (n=12); the difference was posi-
tive for all but one subject, for whom it was negligible).
These results are consistent with previous findings indi-
cating that salience is determined by very local orienta-
tion gradients [27].

The second prediction is that asymptotic perfor-
mance with swapped orientations (and following re-
swap) would be better than asymptotic performance on
original orientations (before training with swapped ori-
entations; compare Fig. 2 bottom, and middle, with
top). However, our results show that in fact asymptotic
performance following swapping is, if anything, some-
what worse than original asymptotic performance.
Taken together, these two lines of results refute the
alternative explanation.

In summary, it is not possible that performance
improvement is largely due to asymmetric interactions
between detectors for the target and the distractor
orientations. Other mechanisms must be involved (at
least under one stimulus condition) and these are suffi-
cient to achieve nearly the same asymptotic level for
both conditions. The earliest modification hypothesis
must be rejected.

4.3. Spatial distribution of detection

An alternative interpretation to the lack of interfer-
ence in asymptotic threshold, is that the threshold is an
average across time (SOAs) and/or space (target at
various array positions). While the average threshold
has not been affected, its temporal and spatial compo-
nents could have been. We thus asked, what is the
pattern of spatial distribution for detection during ini-
tial, and asymptotic stages with original and with
swapped orientations? If learning stems from the same
lateral interaction mechanisms during first and second
learning, asymptotic distribution of detection should

differ for original and swapped orientations. That is,
where improvement was achieved for one set of orienta-
tions it should hamper performance with the other set,
and in visual field locations where little improvement
occurred, second learning should be expedited.

To test this prediction, we plot the initial and final
spatial distributions with each of the two orientation
sets. The initial and final 2-dimensional distributions
with original orientations are plotted in Fig. 7 top (left
and right, respectively). The initial distribution shows a
large anisotropy: decay in detection is much steeper

Fig. 7. Two dimensional distributions of detection with original (top
and bottom) and swapped (middle) orientations. Left and right plots
are averages for ten subjects for the first and last sessions, respec-
tively. Note the expansion of the central bright (good performance)
region with training, first for the original orientations, and then with
the swapped orientations. Though there is some effect on the initial
distribution with the swapped orientations due to the original training
(in the area of central vision-middle left), the overall performance is
similar to that of the naive subjects (top left). The final asymptotic
distributions for the original and swapped orientations (top and
middle right) are very similar, as are the distributions for original
orientations before and after second learning with swapped orienta-
tions (top and bottom right). See text.
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vertically compared with horizontally [39]. Learning
raised detection for all positions (brightening of entire
graph), with some expansion of the central region,
mainly along the vertical meridian so that asymptotic
performance is less anisotropic.

Fig. 7 middle row plots the 2-dimensional spatial
distribution tested with swapped orientations. The mid-
dle left distribution is for performance on the first
session with the swapped orientations following exten-
sive training with the original stimuli, and the middle
right distribution is for asymptotic performance follow-
ing second learning with the swapped orientations. The
performance distribution immediately following swap
has a central cone that is less anisotropic—it is ex-
panded vertically and is squeezed along the horizontal
axis and is somewhat rotated towards the top-right to
bottom-left diagonal. On the other hand, the decay
towards the edges is steeper than the original one, as
expressed by the darker ‘frame’ in the first session with
swapped orientations. Following second training, the
spatial distribution of detection with swapped orienta-
tions has a similar shape to that of asymptotic detection
with original orientations. Thus, in this swapped-orien-
tations case, improvement from first to last session was
mainly at the stimulus’ outskirts.

Finally, Fig. 7, bottom, shows the detection distribu-
tion for the original orientations on a retest following
the second swapped-orientations learning. Note that
this distribution appears very similar to that of asymp-
totic performance before second learning (Fig. 7 top
right). That is, second learning with swapped orienta-
tions did not interfere with the original learning effects.
Furthermore, these distributions with the original ori-
entations are similar to that for the swapped orienta-
tions, demonstrating the co-existence of improved
mechanisms for seemingly conflicting stimulus
situations.

In summary, the spatial distribution of the first test
with swapped orientations is different than the naive
distribution—there is some positive transfer of training
effect to the swapped condition, rather than interfer-
ence. An interesting spatial aspect is the spatial distri-
bution of the transfer characteristics: improvement near
fixation was transferred more than improvement at
distal positions. This may result from easier learning
near fixation being less specific than difficult learning at
the periphery4 [21,38]. Yet, the total spatial improve-
ment with respect to original first session is very similar
for original and swapped orientations (i.e. comparing
Fig. 7 top-left with top and middle right), as well as for
original orientations before and after second learning
(i.e. comparing Fig. 7 top-left with top and bottom
right). Both these findings are in contrast to the predic-

Fig. 8. Inter-subject differences. Two modes of second learning were
seen: top four graphs are three examples and average for eight
subjects (top right) whose second learning, with swapped orienta-
tions, started with small transfer and proceeded with impeded learn-
ing rate, as shown by the superimposed data points and curves. Some
small difference in final asymptote is also apparent, but continued
training might have led to identical performances. Bottom two graphs
are learning curves of the two subjects whose first and second
learning curves were very similar, both in terms of initial point and
learning rate. Final data points shown with original orientations were
measured following training with swapped orientations. The curves
were computed by best fit to the exponential dependence:
threshold=a+b * exp (−c * session c ), where a (asymptotic
threshold), b (difference between initial and final thresholds), and c
(learning rate constant) are free parameters.

tions of the assumption of earliest modification site.
Once again, the data lead us to the conclusion that the
earliest modification hypothesis must be rejected in
favor of the output level modification hypothesis.

4.4. Rates of learning and indi6idual differences

Is the process of learning with swapped orientations
independent of previous training or is it facilitated or
impeded by prior experience? A crude comparison be-
tween the rates of the initial learning and learning with4 Note that the stimulus elements were not scaled with eccentricity.
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swapped orientations also may be seen in Fig. 4. Inter-
estingly, although the threshold of the first session with
modified stimuli was lower than the initial threshold
with the original stimuli, the threshold for the second
session with swapped orientations was higher than the
threshold for the second session with the original orien-
tations. This already indicates that despite there being
some transfer in performance, there may be a concomi-
tant reduced rate of subsequent learning.

Although the across-subject average shows moderate
transfer together with impeded subsequent learning
rate, this pattern was not found for all subjects. These
individual differences are demonstrated in Fig. 8. Eight
of the ten subjects showed a slower learning curve with
swapped orientations. Fig. 8 top shows three examples
of this pattern of slowed learning, as well as the average
for these eight subjects. First and second learning are
superimposed to allow direct comparison. In addition
to impeded learning rate, these subjects (except one—
EI in Fig. 4) also showed a small degree of transfer.
Thus, for most subjects, though there was no interfer-
ence for asymptotic performance, there was some slow-
ing of the learning itself: though different mechanisms
must underlie performance with different orientation
sets, there may be some interaction between them dur-
ing the initial second learning stages.

For two subjects (out of ten), however, second learn-
ing, following orientation swapping, seemed like a ‘re-
play’ of first learning. That is, performance was not
transferred and learning rate was not hampered. First
and second learning curves of these two subjects are
plotted in Fig. 8, bottom. We do not have a sufficiently
large sample of subjects to determine if these are dis-
tinct groups, or simply ends of a continuum of learning
patterns. Similarly, we found this slowing of second
learning disappears for all subjects under other condi-
tions [21].

In summary, the pattern of transfer and interference
we reported here shows that swapping orientations does
not cause the expected initial confusion. There is orien-
tation specificity, and even some transfer for easy cases.
We found co-existing, similar, non-interfering, asymp-
totic performance abilities for original and swapped
orientations. These characteristics are general across the
tested paradigms and training procedures. We conclude
that the ‘earliest modification’ hypothesis must be re-
jected in favor of the alternative ‘output level modifica-
tion’ hypothesis.

5. Discussion

5.1. Learning mechanisms

The basic finding of this study is that there was no
interference between asymptotic performance with orig-

inal and with swapped target and distractor orienta-
tions (as demonstrated in Figs. 4, 7 and 8). In fact,
there is a small, but definite degree of positive transfer
to first (easy) trials with swapped orientations. This
finding strongly rejects the whole family of models
based on the assumption of changes within lateral
interactions between detectors for target and distractor
orientations, as predicted by the hypothesis of earliest
modification site (with the assumptions specified in
Footnote 2). The only way the cortex can maintain
contradictory relationship performance asymptotes is to
base the training improvement on computations per-
formed with the early site’s output. Thus, we conclude
that any ‘strong version’ of the earliest modification
hypothesis (asserting that most of the behavioral im-
provement stems from modifications at an early site
and the same strategies are applied for first and second
learning) must be rejected. Rather, we propose that the
training produces improved computations in subse-
quent, higher cortical levels, where further computa-
tions are performed using the earlier site’s output. Here,
complementary, and even contradictory computations
may co-exist, without interfering with each other, as
would be the result of modifying lower site reciprocal
lateral interactions. Thus, while separate representa-
tions for the target-present versus target-absent cate-
gories are probably formed already at the V1 level (see
Section 1), learning induced modifications mostly occur
at V1 output levels. The latter conclusion stems from a
detailed study of stimulus specificities when learning
pop-out detection [10]. While specificities are compat-
ible with an early site, the transfer found for target shift
across mid-line (\1°) can probably not stem from V1
receptive field sizes. The actual area at which modifica-
tions occur may largely depend on training conditions
[21].

We have seen indications here of another robust
effect that is not easily reconciled with the earliest
modification hypothesis, an effect that we demonstrated
in detail in a separate paper [21]. Improvement trans-
fers across orientation manipulations for easy trials
(when the target appears near fixation, when SOA is
long, and/or when target-distractor orientation differ-
ence is large) but not for difficult trials. The earliest
modification assumption does not predict a dependence
of the relative transfer on the degree of trial difficulty.
On the contrary, modification of the earliest orientation
detectors should affect detection under all conditions,
easy or hard, since all should depend on these same
detectors. On the other hand, a higher level of parallel
computation could accommodate such dependence.

Additional support for the output level hypothesis5 is
the task dependence of perceptual learning found for
this task [29] and for other tasks [9,40].

5 We thank an anonymous reviewer for this comment.
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We conclude that learning results mainly from im-
proved selection of task related inputs to secondary
cortical levels. We have called this the ‘output level
modification’ hypothesis, which accordingly we adopt.

5.2. Relation to pre6ious beha6ioral findings

Schneider and Shiffrin [41] and Shiffrin and
Schneider [42], studied the performance of subjects
trained on visual search for a target embedded in
distractors, comparing performance with fixed or re-
versing target/distractor conditions. They trained sub-
jects either with a consistent target (e.g. digits)
embedded in a field of distractors (e.g. letters), or with
variable (within session) mapping conditions, so that
the target of one trial could be the distractor of an-
other, and vice versa. They found that under consistent
stimulus-response mapping, performance is automa-
tized (becomes independent of number of distractors),
while in the variable case, there is less improvement and
no automatization. Indeed, they did not find substantial
stimulus specificity for the variable case [43]. Shiffrin
and Schneider [42], also tried consistent condition train-
ing followed by training with swapped conditions. They
found that performance immediately following the
switch was worse than naive performance. The findings
of our study show that subjects can be trained for
optimal performance with swapped stimuli without neg-
ative transfer. The reason sequential training is efficient
in our case may be that pop-out is initially automatic,
and its automaticity does not depend on training. In
addition, it appears that subjects consistently search not
for a single target element (with a particular orienta-
tion), but rather for a more complex structure (e.g.
target surrounded by distractors, see Fig. 3). With
regard to this complex target structure, the mechanisms
used for the two sets of stimuli (original and swapped)
may not be inconsistent, but orthogonal.

5.3. Comparison with pre6ious concepts

In this study we have shown that learning does not
mainly result from modification of any type of target-
distractor lateral interactions. In a more general con-
text, we infer that learning occurs mainly at an output
selection level, rather than by setting up new early-level
perceptual modules with additional examples [8,19].
However, the alternative extreme, that the system ac-
tively seeks basic organizational principles, as suggested
by E. Gibson’s theory of perceptual learning, [44], is
also not supported by the data. According to her
theory, pop-out improvement would result from learn-
ing which characteristics are most reliable for detecting
large orientation differences within the array of stimu-
lus elements. This learning should transfer to other
orientations, positions, etc. If conditions do not allow

for complete transfer, the degree of transfer should at
least increase with practice. Thus, the prediction of such
a hypothesis is that learning should be less specific as it
proceeds towards attaining its internal goal. We found
no evidence supporting this concept. If anything, it
seems that learning becomes more specific as a function
of practice (Ahissar and Hochstein [11], and the present
paper; Karni and Sagi [45], and for a review Ahissar
and Hochstein [32].

A less demanding hypothesis is that learning is gener-
alized beyond the actual trained examples, but not
beyond sub-categories. In the pop-out case, a category
could be a specific target-distractor relationship. For
example, learning to detect a single element which has
an orientation which is ‘more vertical’ than that of its
neighbors. This would explain the large deficit follow-
ing orientation swapping (above, Section 4, Fig. 4) or
rotation by 90°, on the one hand, and transfer across
mirror image reversal, on the other [11]. However, we
previously found that rotation by only 30° (15–45° to
45–75°, or vice versa [11]) greatly degraded perfor-
mance. Thus, this model, too, is not consistent with
characteristics of learning pop-out detection.

A selection model that learns specific examples was
suggested by Seung and Sompolinsky [46]. In their
model, improvement in orientation discrimination orig-
inated from an improved exploitation of information
within orientation selective units by increasing the
weight assigned to the most informative units. Opti-
mization was sought only at the highest, task-specific
stage. Weiss et al. [47] also devised a model where
improvement (in a vernier hyperacuity task) stems from
modifications in output connections6. Treisman and her
colleagues reached a similar conclusion [40,48]. They
found that training to detect a complex target yields
improved performance, but does not produce a new
complex feature. That is, performance of other tasks
using the same target stimulus is not improved. These
concepts are in agreement with our findings.

5.4. Relation to physiological findings

Physiological results stress the expansion of cortical
representation of the specific range of parameters that
were consistently enhanced by the experimental
paradigm. However, the direct relevance of these mod-
ifications to perceptual learning has not been shown
[49]. Moreover, these modifications will not yield im-
provement unless the readout mechanism will be appro-
priately updated. On the other hand, improvement may
be achieved by optimizing the readout mechanism with
no change of basic feature representations. The physio-

6 However, in this model they used an Exposure-Dependent-Learn-
ing rule that is incompatible with the previous behavioral findings of
Ahissar and Hochstein [10].
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logical correlate of modifications within a readout
mechanism is not known and thus hard to test. Ahissar
and Ahissar [49], suggest that it may be found within
response properties of the same neurons, at longer time
intervals with respect to stimulus onset. However, no
comparison between modifications within transient ini-
tial response properties and subsequent (sustained) re-
sponses was systematically applied. It thus seems that
current physiological findings cannot eliminate either
possibility. Naturally, not all improvement should
derive from a similar type of mechanism. However this
question was not resolved for any learning paradigm.

We conclude that the ‘earliest modification’ option
could not account for behavioral improvement resulting
from training pop-out detection. Rather, improvement
stems mainly from modifications at subsequent levels
receiving the output of the initial cue-discriminative
representation.
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