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Abstract

In this paper, we study a boundary feedback system of a class of nonuniform undamped Timoshenko
beam with both ends free. We give some sufficient conditions and some necessary conditions for the system
to have exponential stability. Our method is based on the operator semigroup technique, the multiplier
technique, and the contradiction argument of the frequency domain method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, there has been much interest in the problems of stability for elastic beam.
The exponential stability of the boundary feedback system of a Timoshenko beam with one or
two ends fixed has been studied extensively during the past decade. But little attention has been
paid to the case of the beam with both ends free. In this paper, we shall consider the system of
nonhomogeneous undamped Timoshenko beam with both ends free. More precisely, we consider
the following initial and boundary value problem:
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(1.1)

here a nonuniform beam of length l moves in w–x plane, ρ(x) is the mass density, w(x, t),
the deflection of the beam from its equilibrium, ϕ(x, t), the total rotatory angle of the beam
at x, Iρ(x), the mass moment of inertia, EI(x) the rigidity coefficient of the cross section,
K(x) is the shear modulus of elasticity, and kj � 0 (j = 1,2,3,4) the feedback coefficients.
We refer to [3,4,10,11] for the precise description of the problem and for more technique de-
tails.

In this paper, we are interested in the following feedback stabilization problem: Under what
conditions on kj (j = 1,2,3,4) does the energy E(t) (see (2.2) for its definition) of the sys-
tem (1.1) exponentially decay?

Our main approach is based on the operator semigroup technique, the multiplier technique
with contradiction argument of a frequency domain method. Recall that multiplier techniques
were developed in the work of Lagnese [6], Liu and Liu [7,8] for various PDEs and control
problems. On the other hand, the frequency domain method is based on the boundedness on the
imaginary axis of resolvent of a C0-semigroup generator to establish the exponential stability of
the C0-semigroup on Hilbert space (see Huang [5]).

The plan of this paper is as follows. In Section 2, we will state our main results. In Section 3,
we show the well-posedness of the system and derive some spectral properties of the underlying
semigroup. The proof of the main results is given in Section 4.

2. Statement of the main results

Throughout this paper, we need the following natural hypothesis:{
ρ(·), Iρ(·) ∈ C0,1[0, l], K(·),EI(·) ∈ C1[0, l],
ρ(x), Iρ(x),K(x),EI(x) � C > 0, x ∈ [0, l], (2.1)

where C is a positive constant.
Denote the energy of system (1.1) by
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where k2|w(l, t)|2 + k4|ϕ(l, t)|2 represents the energy of the rigid motion of elastic system. Sim-
ple calculations yield that
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From (2.3) and (2.4), we obtain

dE

dt
(t) = −k1

∣∣∣∣∂w

∂t
(l, t)

∣∣∣∣
2

− k3

∣∣∣∣∂ϕ

∂t
(l, t)

∣∣∣∣
2

, (2.5)

which implies that k1 � 0 and k3 � 0 are necessary for the energy E(t) to be not increasing.
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For simplicity, we will denote ∂u
∂x

by u′. Let L2
ρ(0, l) and L2
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0 ρ|u|2 dx)
1
2 and ‖u‖L2

Iρ
(0,l) = (

∫ l

0 Iρ |u|2 dx)
1
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(k2, k4 > 0),

where Hk(0, l) is the Sobolev space of order k (see [1]).
Define H = V × H with the norm∥∥(w,ϕ, z,ψ)

∥∥
H = (∥∥(w,ϕ)

∥∥2
V

+ ∥∥(z,ψ)
∥∥2

H

) 1
2 .

To formulate (1.1) as an abstract Cauchy problem on H, we define a linear operator A as
follows:

D(A) = {
(w,ϕ, z,ψ) | (w,ϕ) ∈ H 2(0, l) × H 2(0, l), (z,ψ) ∈ V, K(ϕ − w′)|x=0 = 0,

−EIϕ′|x=0 = 0, K(ϕ − w′)|x=l = k1z(l) + k2w(l),

−EIϕ′|x=l = k3ψ(l) + k4ϕ(l)
}

(2.6)

and

A(w,ϕ, z,ψ) = (
z,ψ,−ρ−1(K(ϕ − w′)

)′
, I−1

ρ

[
(EIϕ′)′ − K(ϕ − w′)

])
,

(w,ϕ, z,ψ) ∈ D(A).

Then the system (1.1) can be formulated as following Cauchy problem on H:

dY

dt
= AY, Y (0) = Y0,

where Y = (w,ϕ, z,ψ) and Y0 = (w0, ϕ0, z0,ψ0).
Next, it is easy to see that k2 �= 0 and k4 �= 0 are necessary for the energy E(t) to uniform

exponentially decay. In fact, if k2 = 0, then w(x) = 1, ϕ(x) = 0, z(x) = 0, ψ(x) = 0, x ∈ [0, l] is
an eigenvector belonging to eigenvalue λ = 0. Likewise, if k4 = 0, then w(x) = x − l, ϕ(x) = 1,
z(x) = 0, ψ(x) = 0, x ∈ [0, l] is an eigenvector belonging to eigenvalue λ = 0.

Now we can state our main results as follows.

Theorem 2.1. Let (2.1) hold and kj > 0, j = 1,2,3,4. Then the C0-semigroup etA is uniformly
exponentially stable; i.e., there exist positive constants M , ω such that

‖etA‖ � Me−ωt , t � 0.

Theorem 2.2. Assume that k2, k4 > 0 and the C0-semigroup etA decays uniformly exponentially.
Then k1 > 0 and k3 > 0.
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3. Preliminaries

In this section, we will prove that A generates a contraction C0-semigroup etA on H, which
shows the well-posedness of system (1.1), and give some spectral properties of the genera-
tor A.

Theorem 3.1. Let kj > 0 (j = 1,2,3,4). Then A is the infinitesimal generator of a contraction
C0-semigroup etA on H.

Proof. It is easy to see that A is density defined in H. Furthermore, for any (w,ϕ, z,ψ) ∈ D(A),
integrating by parts, we have

Re
〈
A(w,ϕ, z,ψ), (w,ϕ, z,ψ)

〉
H = −k1

∣∣z(l)∣∣2 − k3
∣∣ψ(l)

∣∣2
, (3.1)

which implies that A is dissipative in H.
Finally, we show that λ = 0 ∈ ρ(A) (the resolvent set of A). For any (f1, g1, f2, g2) ∈H, we

are going to solve the following equation:

A(w,ϕ, z,ψ) = (f1, g1, f2, g2), (w,ϕ, z,ψ) ∈ D(A). (3.2)

This implies⎧⎪⎪⎨
⎪⎪⎩

z = f1,

ψ = g1,

(K(ϕ − w′))′ = −ρf2,

(EIϕ′)′ − K(ϕ − w′) = Iρg2.

(3.3)

Integrating from 0 to x and using boundary conditions at x = 0, we have

K(ϕ − w′) = −
x∫

0

ρ(y)f2(y) dy. (3.4)

Substituting (3.4) into (3.3), we obtain

(EIϕ′)′ = −
x∫

0

ρ(y)f2(y) dy + Iρg2 (3.5)
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EIϕ′ = −
x∫

0

y∫
0

ρ(y1)f2(y1) dy1 dy +
x∫

0

Iρ(y)g2(y) dy, (3.6)

or equivalently,

ϕ′(x) = − 1

EI(x)

x∫
0

y∫
0

ρ(y1)f2(y1) dy1 dy + 1

EI(x)

x∫
0

Iρ(y)g2(y) dy, x ∈ [0, l]. (3.7)

Therefore, we have
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ϕ(x) = ϕ(l) +
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Let x = l in (3.6); we can obtain
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l∫

0
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0

ρ(y1)f2(y1) dy1 dy −
l∫

0

Iρ(y)g2(y) dy,
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ϕ(l) = − 1

k4

(
k3g1(l) +
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Iρ(y)g2(y) dy

)
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0
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−
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x

1

EI(τ )

τ∫
0

Iρ(y)g2(y) dy dτ, x ∈ [0, l]. (3.10)

From (3.4), we can obtain

Kw′ = Kϕ +
x∫

0

ρ(y)f2(y) dy, (3.11)

and consequently,

w(x) = w(l) −
l∫

x

ϕ(y) dy −
l∫

x

1

K(τ)

τ∫
0

ρ(y)f2(y) dy dτ, x ∈ [0, l]. (3.12)

Let x = l in (3.4); we can obtain

k1z(l) + k2w(l) = −
l∫

0

ρ(y)f2(y) dy, (3.13)

which, using (3.3), yields

w(l) = − 1

k2

(
k1f1(l) +

l∫
ρ(y)f2(y) dy

)
. (3.14)
0
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From (3.10), (3.12), and (3.14), we can assert that

w(x) = − 1

k2

(
k1f1(l) +

l∫
0

ρ(y)f2(y) dy

)
−

l∫
x

1

K(τ)

τ∫
0

ρ(y)f2(y) dy dτ

+ 1

k4
(l − x)

(
k3g1(l) +

l∫
0

Iρ(y)g2(y) dy

)
− 1

k4
(l − x)

l∫
0

y∫
0

ρ(y1)f2(y1) dy1 dy

−
l∫

x

l∫
τ

1

EI(τ )

y1∫
0

y2∫
0

ρ(y)f2(y) dy dy2 dy1 dτ

+
l∫

x

l∫
τ

1

EI(τ )

y1∫
0

y2∫
0

Iρ(y)g2(y) dy dy2 dy1 dτ, x ∈ [0, l]. (3.15)

Since hypothesis (2.1) is satisfied, we can easily deduce that (w,ϕ) ∈ V and that (w,ϕ, z,ψ) ∈
D(A) is the unique solution of (3.2) z = f1, ψ = g1. Hence, λ = 0 ∈ ρ(A). Finally, from the
above discussion and the Lumer–Phillips theorem [9, Theorem 1.4.3], it follows that A generates
a contraction C0-semigroup. The proof has been completed. �
Proposition 3.2. Assume that kj > 0, j = 1,2,3,4. Then iR ⊂ ρ(A).

Proof. From the proof of Theorem 3.1 we have λ = 0 ∈ ρ(A) and we can prove{
λ ∈ σ(A) | Imλ �= 0

} ⊂ σP (A)

in a similar way as in [2, Lemma 4.1]. Therefore it suffices to show iω∈σP (A). Indeed, if it is
not true, then there exists ω ∈ R, ω �= 0 such that iω ∈ σP (A). Hence, there exists (w,ϕ, z,ψ) ∈
D(A), (w,ϕ, z,ψ) �= 0, such that

(iω −A)(w,ϕ, z,ψ) = 0, (3.16)

which implies

Re
〈
(iω −A)(w,ϕ, z,ψ), (w,ϕ, z,ψ)

〉
H = k1

∣∣z(l)∣∣2 + k3
∣∣ψ(l)

∣∣2 = 0.

Using k1, k3 > 0, we conclude that

z(l) = ψ(l) = 0. (3.17)

From (3.16), we can obtain⎧⎪⎨
⎪⎩

z = iωw,

ψ = iωϕ,

(K(ϕ − w′))′ = −iωρz,

(EIϕ′)′ − K(ϕ − w′) = iωIρψ.

(3.18)

From (3.17) and (3.18), using ω �= 0, we can obtain

w(l) = ϕ(l) = 0. (3.19)
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From (2.6), (3.17), and (3.19), we can easily obtain{
K(ϕ − w′)|x=0 = K(ϕ − w′)|x=l = 0,

−EIϕ′|x=0 = −EIϕ′|x=l = 0.
(3.20)

From (3.18) and (3.20), we can conclude that⎧⎪⎪⎨
⎪⎪⎩

(K(ϕ − w′))′ + ω2ρw = 0,

(EIϕ′)′ − K(ϕ − w′) − ω2Iρϕ = 0,

K(ϕ − w′)|x=0 = K(ϕ − w′)|x=l = 0,

−EIϕ′|x=0 = −EIϕ′|x=l = 0.

(3.21)

The uniqueness theorem of ODEs shows that (w,ϕ, z,ψ) ≡ 0. This is in contradiction with
(w,ϕ, z,ψ) �= 0, and the proof is completed. �
4. Proof of the main results

Proof of Theorem 2.1. Clearly, if w = w(x, t), ϕ = ϕ(x, t) is the solution of the system (1.1),
then

(w,ϕ, z,ψ) = etA(w0, ϕ0, z0,ψ0) and
∥∥(w,ϕ, z,ψ)

∥∥2
H = 2E(t), t > 0.

Hence, the uniformly exponential decay of the energy E(t) is equivalent to the uniform expo-
nential stability of C0-semigroup etA. It follows from Proposition 3.2 and the frequency domain
results (see [5]) that we need only to prove

sup
λ∈iR

∥∥(λ −A)−1
∥∥ < +∞. (4.1)

If (4.1) is false, from the resonance theorem, there are two sequences {λn} ⊂ R, and
{(wn,ϕn, zn,ψn)} ⊂ D(A) such that∥∥(wn,ϕn, zn,ψn)

∥∥
H = 1, |λn| → ∞ (4.2)

and

(iλn −A)(wn,ϕn, zn,ψn) = (f1n, g1n, f2n, g2n) → 0 in H. (4.3)

From (4.3), it follows that

(iλnwn − zn, iλnϕn − ψn) = (f1n, g1n) → 0 in V, (4.4)(
iλnzn + ρ−1(K(ϕn − w′

n)
)′
, iλnψn − I−1

ρ

[
(EIϕ′

n)
′ − K(ϕn − w′

n)
])

= (f2n, g2n) → 0 in H. (4.5)

Since

Re
〈(
(iλn −A)(wn,ϕn, zn,ψn), (wn,ϕn, zn,ψn)

)〉
H → 0,

by (3.1), we can obtain

k1
∣∣zn(l)

∣∣2 + k3
∣∣ψn(l)

∣∣2 → 0,

which implies

zn(l) → 0, ψn(l) → 0. (4.6)
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By using a simple interpolation inequality, (4.4), (4.6) and |λn| → ∞, we can deduce that{
λnwn(l) → 0, λnϕn(l) → 0,

w′
n(l) → 0, ϕ′

n(l) → 0.
(4.7)

From (4.4), we have

∥∥(f1n, g1n)
∥∥2

V
= k2

∣∣f1n(l)
∣∣2 + k4

∣∣g1n(l)
∣∣2 +

l∫
0

(
K|g1n − f ′

1n|2 + EI|g′
1n|2

)
dx → 0,

which yields that

f1n(l) → 0, g1n(l) → 0 and g1n − f ′
1n → 0, g′

1n → 0 in L2(0, l). (4.8)

From (4.5), we have

∥∥(f2n, g2n)
∥∥2

H
=

l∫
0

ρ|f2n|2 dx +
l∫

0

Iρ |g2n|2 dx → 0,

which yields that

f2n → 0, g2n → 0 in L2(0, l). (4.9)

Again by (4.4), we have that 〈(f1n, g1n), (zn,ψn)〉H → 0, and consequently,

iλn

l∫
0

ρwnzn dx + iλn

l∫
0

Iρϕnψn dx −
l∫

0

(
ρ|zn|2 + Iρ |ψn|2

)
dx → 0. (4.10)

By (4.5) and (4.7), we have that 〈(f2n, g2n), (wn,ϕn)〉H → 0, and consequently,

iλn

l∫
0

ρwnzn dx + iλn

l∫
0

Iρϕnψn dx +
l∫

0

(
K|ϕn − w′

n|2 + EI|ϕ′
n|2

)
dx → 0. (4.11)

Taking the real parts of the sum of (4.10) and (4.11), we obtain

l∫
0

(
K|ϕn − w′

n|2 + EI|ϕ′
n|2

)
dx −

l∫
0

(
ρ|zn|2 + Iρ |ψn|2

)
dx → 0. (4.12)

By (4.2) and (4.12), we conclude that{∫ l

0 (K|ϕn − w′
n|2 + EI|ϕ′

n|2) dx → 1
2 ,∫ l

0 (ρ|zn|2 + Iρ |ψn|2) dx → 1
2 .

(4.13)

By (4.4) and (4.13), we can obtain

wn → 0, ϕn → 0 in L2(0, l). (4.14)

From (4.4) and (4.5), we can obtain

λ2
nρwn − (

K(ϕn − w′
n)

)′ = −(iλnf1n + f2n)ρ, (4.15)

λ2
nIρϕn + (EIϕ′

n)
′ − K(ϕn − w′

n) = −(iλng1n + g2n)Iρ. (4.16)
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Now let q(x) = eηx − 1, where η is a positive constant to be determined after soon. Multiply-
ing (4.15) by qw′

n, respectively, integrating from 0 to l, we obtain

l∫
0

[
λ2

nρwn − (
K(ϕn − w′

n)
)′]

qw′
n dx = −

l∫
0

(iλnf1n + f2n)ρqw′
n dx, (4.17)

combining this with (4.4), (4.7), and (4.8), we can obtain

l∫
0

[
λ2

nρwn − (
K(ϕn − w′

n)
)′]

qw′
n dx → 0. (4.18)

From (4.17) and (4.18), integrating by parts and taking the real parts, we have

Re

{ l∫
0

[
λ2

nρwn − (
K(ϕn − w′

n)
)′]

qw′
n dx

}

= −1

2

l∫
0

(ρq)′|λnwn|2 dx − 1

2

l∫
0

(Kq ′ − K ′q)|w′
n|2 dx

− Re

( l∫
0

Kqϕ′
nw

′
n dx

)
→ 0. (4.19)

Multiplying (4.16) by qϕ′
n, respectively, integrating from 0 to l, we obtain

l∫
0

[
λ2

nIρϕn + (EIϕ′
n)

′ − K(ϕn − w′
n)

]
qϕ′

n dx = −
l∫

0

(iλng1n + g2n)Iρqϕ′
n dx, (4.20)

combining this with (4.4), (4.7), and (4.9), we can obtain

l∫
0

[
λ2

nIρϕn + (EIϕ′
n)

′ − K(ϕn − w′
n)

]
qϕ′

n dx → 0. (4.21)

From (4.20) and (4.21), integrating by parts and taking the real parts, we conclude that

Re

{ l∫
0

[
λ2

nIρϕn + (EIϕ′
n)

′ − K(ϕn − w′
n)

]
qϕ′

n dx

}

= −1

2

l∫
0

(Iρq)′|λnϕn|2 dx − 1

2

l∫
0

(EIq ′ − EIK ′q)|ϕ′
n|2 dx

+ Re

( l∫
0

Kqϕ′
nw

′
n dx

)
→ 0. (4.22)

Taking the sum of (4.19) and (4.22), we can obtain
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l∫
0

(ρq)′|λnwn|2 dx +
l∫

0

(Kq ′ − K ′q)|w′
n|2 dx +

l∫
0

(Iρq)′|λnϕn|2 dx

+
l∫

0

(EIq ′ − EI′q)|ϕ′
n|2 dx → 0. (4.23)

It is easy to see that hypothesis (2.1) guarantees the existence of η as above. We choose η large
enough and positive constant C1, such that{

ηeηxρ + ρ′(eηx − 1) > C1 > 0, ηeηxIρ + I ′
ρ(eηx − 1) > C1 > 0,

ηeηxK − K ′(eηx − 1) > C1 > 0, ηeηxEI − EI′(eηx − 1) > C1 > 0,
(4.24)

combining this with (4.23), we can obtain{
λnwn → 0, w′

n → 0 in L2(0, l),

λnϕn → 0, ϕ′
n → 0 in L2(0, l).

(4.25)

From (4.14) and (4.25), we conclude that

l∫
0

(
K|ϕn − w′

n|2 + EI|ϕ′
n|2

)
dx → 0, (4.26)

which is in contradiction with (4.13), and the proof is completed. �
Proof of the Theorem 2.2. First it is impossible that k1 = k3 = 0. Indeed, it follows from k1 =
k3 = 0 and (2.5) that

E(t) = 1

2

∥∥etA(w0, ϕ0, z0,ψ0)
∥∥2
H

≡ E(0)

= 1

2

[ l∫
0

(
K|ϕ0 − w′

0|2 + EI|ϕ′
0|2 + ρ|z0|2 + Iρ |ψ0|2

)
dx

+ k2
∣∣w0(l)

∣∣2 + k4
∣∣ϕ0(l)

∣∣2

]
, t � 0, (4.27)

for any (w0, ϕ0, z0,ψ0) ∈ D(A). Thus the energy E(t) of the system (1.1) does not uniformly
exponentially decay.

Next, let k1 = 0 and k3 > 0, we can define

V0 = {
(w,ϕ) ∈ V | ϕ(l) = 0

}
, H0 = V0 × H, A0 = A|H0 .

That is

D(A0) = {
(w,ϕ, , z,ψ) ∈ D(A) ∩H0 |A(w,ϕ, z,ψ) ∈ H0}

and

A0(w,ϕ, z,ψ) = A(w,ϕ, z,ψ), (w,ϕ, , z,ψ) ∈ D(A0).



C.-G. Zhang / J. Math. Anal. Appl. 326 (2007) 488–499 499
By the same argument as in the proof of Theorem 3.1, we can conclude that A0 is dissipative and
0 ∈ ρ(A0). Hence, A0 is m-dissipative and generates a contraction C0-semigroup etA0

. Since
etA0

(w0, ϕ0, z0,ψ0) ∈ D(A0), the same proof of (2.5) yields

d

dt

(
1

2

∥∥etA0
(w0, ϕ0, z0,ψ0)

∥∥2
H0

)
= d

dt
E(t) = 0,

which implies that C0-semigroup etA0
is an isometric semigroup. Therefore the energy of the

system (1.1) does not exponentially decay. Finally, let k1 > 0 and k3 = 0, we only need to define
V0 = {(w,ϕ) ∈ V | w(l) = 0}, and the similar proof follows. This completes the proof of the
theorem. �
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