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Notions about @-convexity are extended to abelian complete partially ordered 

group-valued mappings in an attempt to unify in a general theory notions of @- 

convex sets and @-convex mappings. We obtain some group specific results and 

particularly a characterization of support functions. 

The origin of this work is in convex analysis. Let E be a locally convex 
space, H an ordered topological vector space with closed positive cone, and 
A a subset of E. We know ([9, p. 751) that the upper-envelope of affme 
continuous maps from E to H majorized by the indicator function of A is 
exactly the indicator function of the closed convex hull of A. 

We analyse the fact that such an upper-envelope is also an indicator 
function and leads to the situation where the following properties hold: E, is 
a set, (H, +, <) an abelian complete ordered group, and E, a non-empty part 
of the group of all maps from E, to H with the property 

Vx,.x, E E, and Vn.nEN: nx,=x,+ “:t?+x,E& 

In this frame, the upper-envelope of maps X, H x*(x,) - z, with x2 E E, and 
z E H, majorized by the indicator function of a subset A c E, is also the 
indicator function of a subset AYtElEE2’ c E, (Theorem 11.2.1). This situation 
occurs frequently; for example, if E, is an ordered set, we can successively 
take for E, the increasing, decreasing, monotone functions from E, to H. In 
the last case we prove that AHE~.Ez) is the order convex hull of A 
(Corollary 11.3.2). In order to study this situation we extend some notions of 
@-convexity introduced by Fan ([5]), Dolecki and Kurcyusz ([2, 31) to 
abelian complete ordered group-valued functions. We give other results in a 
purely set duality frame. This is contained in Section I. 
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In Section II we unify notions of sets and function envelopes through the 
medium of indicator functions (Theorem 11.2.1). We also obtain a very 
simple characterization of support functions (Theorem II. 1.2). Two basic 
properties of vectorial support functions hold (Theorems II. 1.3 and 11.2.3). 
With another hypothesis we obtain purely algebraic results, some of which 
are inspired by analysis convex theorems (Theorems 11.4.1, 2.3. 5). 

DEFINITION AND NOTATIONS 

Let (H, +, <) be an abelian complete ordered group (that is, an abelian 
ordered group in which all non-empty and majorized subsets have a least 
upper bound). We adjoin to H a largest element +co and a smallest element 
-co and we set n = H U {-co, +co 1. Every subset of & has an intimum 
and a supremum (we set sup 0 = --co and inf 0 = +a, ). 

We extend the addition of H to n by setting 

vz. zEH: z + (+a) = foe, 

Vz, zEH: z t (--co)=--03, 

(-co) + (-co) = -03, -(+m) = -00, -(-co) = tco. 

If A is a subset of E, the indicator function of A is noted wA and defined 
by va : E + I?, va (x) = 0 if x E A, w,~(x) = t co if x hf A. If f is a constant 
map from E to H with value z we note f = I”‘. 

Let E, and E, be two sets, ( , ): E, x E, -+ H a map, and (s,, x~) E 
E, x E,. We shall note respectively (x, . ) and ( , x2) the maps defined by 

(x I9 i- ‘. E,+H. ( .x2): El-H, 

x’z b (x, 9 &), X; k-+ (x;,x2j. 

If fi g: E -+ I’? are maps, f < g will mean that t/x, x E E: f(x) < g(x). 
Moreover, if A c E we note supA f = SUP,,,~ f(x). 

Note. We shall frequently use the fact that every abelian complete 
ordered group (H, t, <) is completely integrally closed ([6, p. 901). This 
means that if we have z, t E H and nt <z for every n E k then t < 0. 

I. y(Ei, Ej)-R~~~~~RI~~TION 

In this section (H, t, ,<) will be an abelian complete ordered group with 
elements > 0. Let E, and E, be two non-empty sets and ( , ): E, X E, -+ H 
(“,,.Y*)- (XI, -x2) a map. For i, j E ( 1,2) and i # j we note [xi, xj] instead 
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of (x, , x2), So, [xi, ] will be the map (x,, ) or ( , x2) according as i = 1 or 
2. Idem for [ ‘xi]. 

We extend to this situation notions of @-convexity, introduced in [2,3,5 1, 
that we shall need in Section II. 

I. 1. y(Ei, Ej)-Envelopes for Subsets of Ei 

We say that a subset B c Ei is a y(Ei, Ej)-set if there is a family 
(xk, .z,JkpK of Ej x H elements with B = nkeK {x E Ei I [x, xk] < zk}. 

Taking K = 0 we see that Ei is always a y(Ei, Ej)-set. Ei with the Moore 
y(Ei, Ej)-sets family ([ 1, p. 41) constitute a cyrtological-space ([ 21) a basis of 
which is given by the sets {x E Ei 1 [x, xj] < z}, where (xi, z) E Ej X H. 

By definition, the y(Ei, Ej)-envelope of A c Ei is the intersection of all 
y(Ei, E,)-sets which contain A and we note it AflElqE~‘. 

PROPOSITION 1.1.1. The empty set is always a y(Ei, Ej)-set. 

Proof. LetzEH,z>O,andxjEEj.FornERJweset 

A.={xEEiI[x,xj]<-nz}. 

We have fineN A, = 0. In fact, if not we would have x E Ei such that for all 
n E N: [x, xi] < -nz, that is, nz < --lx, xj] and at last z < 0. 

THEOREM I. 1.2. For every A c Ei we have 

AY(Ei*Ej) = {X E Ei ( Xj E Ej * [xv xj] < s;P [ 3 -xj] \. 

Proof. Let 

B={xEEiIXjEEj* [X~-?Cj]<s~P [ ,Xj]Ia 

If A = 0 we have sup, [ , xi] = -co and by this B = 0. In this case we 
conclude with Proposition I. 1.1. 

If A # 0 let J be the set of xi E Ej such that SUP,~ [ , xj] E H. It is easy to 
see that B = nX,EJ (x E Ei ] [x, xi] < supA [ , xj] 1. Therefore, B is a y(Ei 9 Ej)- 
set containing A. Inversely, if C = nkeK {X E Ei I [x, xk] < ZkJ is a y(Ei, Ej)- 
set containing A, we have to prove that B c C. Since A c C we have 
[x, xk] < zk for all (x, k) E A x K and therefore supA [ , xk] < zk. Now for all 
(x, k) E B x K: [x, xk] < supA [ , xk] < zk. This completes the proof. 

COROLLARY I. 1.3. If A c Ei, Ay(Ei3Ej’ is the largest part of Ei such that 

xjEEj~s:p[ ,Xj]= sup ] yxi]* 
Ay(Ei,Ej) 
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Proof. We first show that AyCEiqEj’ verifies this property. If x E AflEivEj’ 
and xj E Ej we have by Theorem 1.1.2, [x, xi] < sup,[ , xj]. Therefore 
supAy(Ei,Ej) [ , xi] < supA [ , xj]. In fact we obtain an equality because 
A c AY(Ei*Ej’. Now, let B c Ei such that 

x,EE,*s;p [ ,.rj]=s;p [ ,Xj]. 

For .Y E B and xi E Ej we have 

[X.Xj] < Stp [ ,Xj] = suP [ 1 vyjl ‘4 

then x E AY’EiqEj’ and therefore B c AY(Ei.Ej). 

1.2. y(Ei, Ej)-Regularization of Mappings from Ei to J? 

Let f: Ei -+ fi be a map. The y(Ei, Ej)-regularized (or y(Ei, Ej)-envelope) 
of f is defined by f y’E’ E” 1’1 =su~([,x~]-z~(X~,Z)EE~XH and 
[ , xj] -z <f }. We say that f is a y(Ei, Ej)-map if f= f Y(EiqE”. We note 
T(E!, Ej) is the set of maps from Ei to H which are upper-envelope of maps 
like ~,.uj]-zwith(xj,z)~Ej~H.IffisamapfromEito~thenfisa 
y(Ei, Ej)-map if and only if f E f(Ei, Ej); f fiEi*EJ) is also the largest map in 
T(Ei. Ej) majorized byf. We note that f y(Ei9Ej) = (-a~)~~ if and only if f does 
not majorize any map [ , xi] - z with (xj, z) E Ej X H. 

PROPOSITION 1.2.1. The constant map (+a~ )“I is alwaJ?s in T(Ei, Ej). 

Proof Let xj E Ej and z E H, z > 0. For n E N we set f, = [ , xi] + nz. 
We show that for x E Ei we have su~,,~f,(x) = +co. Otherwise we would 
have z’ E H with [x, xj] + nz < z’ for every n E bJ, then nz < z’ - [s, xj] and 
finally z < 0; that is impossible. 

PROPOSITION 1.2.2. Let f be a y(Ei, Ej)-map and z E H. The set (x E Ei I 
f(x) < z 1 is a y(Ei, Ej)-set. 

ProoJ By hypothesis, f = sup,,,[ , xk] - zk. Then 

(xEE,/f(x)<zt= n (XEEiI [x9xk]-zk<zt 
kPK 

= ,?, (XEEi I [XyxkI GZ+ ‘kt* 

COROLLARY 1.2.3. Let A c Ei and suppose that the indicatorfunction of 
A is a y(E,, Ej)-map. Then A is a y(E,, Ej)-set. 

409,W;Z 9 
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Proof. We note that A= {xEE,Iw~(x)<O} and we apply 
Proposition 1.2.2. 

Important Remark. The converse is false. Let ( , ): H x H + H with 
(x,,x*)=?c, +x, and A = {x E H ] x < 0). Then A is a y(H, H)-set. 
However. 

(( ,x,)--r~~,~)~(x+x,-z~Oifx~0) 

0 z - x2 > 0. 

Now, for x E H, 

(v/.4) Yw,H’ (x) = i “,“p,, x + x2-z=x+ sup x*-z=x. 
1 r-r*>0 

Therefore, ( w,~) y(HVH) = id,, and by this wA is not a y(H, H)-map. The aim of 
Section II is to define a frame where this phenomen does not occur. 

THEOREM 1.2.4. Let f be a y(Ei, Ej)-map and A c Ei. Then supa f = 
SUPAY(EiaEj) J 

Proof. Let f = supkEK[ ,xk] - zk. 

By Corollary 1.1.3 we have also 

s;pf= wf: ( sup [ 9x,]>-z,= sup sup ] ,-Ql-zk 

&Ei.EjJ kEK ay(EivEj) 

= sup sup [ ,xk]-zk= sup J 

AY(Ei,Ej) kEK AY(Ei.Ej) 

1.3. Conjugates of Maps from E, to fl 

Let f: Ei + i7 be a map. The conjugate mapping off is defined by 

f*: Ej+If; x,j++f*(xj~=s~~(I ,xjl-f). 

, 

We may also note f * = supXiEEi [xi, ] - f(xi). Let dom f be the domain off 
that is dom f = (x E E, ] f(x) < +a~}. Then we obviously have f * = 

or ( x,,z) E E, x H we also have f*(xj)<zo 

PROPOSITION 1.3.1. For every map f: Ei + H, f * belongs to f(E,, Ei). 
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Proof: If f does not take the value --co, we conclude with the relation 
f”= SUPx,domf [x, ] -f(x). Iff takes this value, thenf* = (+co>“j and, by 
Proposition 1.2.1, we know that (+oo)~~ belongs to T(Ei,Ei). The next 
theorem is of Fenchel-Moreau type ([2-4, 10-131). 

THEOREM 1.3.2. For every map f: Ei + & the y(Ei, Ej)-regularized map 
yCEiqEj’ off is exactly the biconjugate f ** off: 

ProoJ For all x E Ei WB have 

f**(x) = sup [x, Xj] -f *(xj). 
XjEEj 

Let us majorize f *(xj) by -[x, xj] + f(x); then f**(x) <f(x). By 
Proposition 1.3.1, f ** is an element of T(Ei, Ej) majorized by J Therefore 
f ** <<f/(Ei*El). On the other hand, 

fflE@j'=s~p([ ,.ui]-~l(xj,z)EEjXHand [ ,Xj]-Z<f} 

=SUP([ ,~j]-~l(xj,z)EEjXHandf*(xj>~z} 

<SUP([ ,xj]-f*(xj)IxjEdomf*}=f**. 

COROLLARY 1.3.3. The following maps are one to one, onto and mutually 
reciprocal: 

ProoJ It is sufficient to remark that 

fET(Ei,Ej)of =fHEiqEj’=f =f**. 

COROLLARY 1.3.4. For every map ffrom Ei to n, f HEi*Ei’ is the smallest 
map from Ei to H such that 

f * = (f fiEivEj))*. 

Proof. We have f ** = f HEi,Ej) = f MElS/W’. On the other hand, f * and 
(y(Ei*E~))* belong to T(Ej, Ei). From Corollary 1.3.3 we deduce that f * = 
(Jy(E’.E~))*. Conversely, let g: Ei -+ H be a map such that f * = g*. Then. let 
(xj,z)EEjxHsuchthat [‘xi]-z<f: Wehave 

g*(xj) = f *(xj) < z* 

Therefore [ , xi] - z < g and finally f y(EiqEj) < g. 
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II. A UNIFICATORY FRAME 

In this section E, is a non-empty set and E, a non-empty subset of the 
group of maps from E, to H with the property 

x2 E E2 and n E BJ =s nx, =x2 + nt~~es+xlEEz. 

We note that the constant map @I always belongs to E,. The map (, ): 
E, x E, -+ H will be here defined by (x,, xz) = x2(x1) for every (x, , xz) E 
E, x E,. Then, for every n E N and (x,, x2) E E, X El we have 

(x,, nx2) = n(x,, x2). 

II. 1. Characterization of Support Functions 

Let A c E, ; the conjugate of the A-indicator function will be noted cq4. 
Then, for all x1 E E, we have 

UA(X2) = (WA)* (x2) = dy, ( 5 x2> - v/.4 = s;P ( 3 xz>. 

uA is called the support function of A. Let us note that a, verifies the 
property (F). (g): a,(O”l) = 0 and V n E N, Vx2 E E, : a,d(nx,) < na,(x,). In 
fact, it is obvious that aA(OEl) = SUP,~( ,@I) = 0. On the other hand, 

aA(nx2)=sup( ,nx,)=supn( ,x,),<nsup( .xJ 
.4 .4 .4 

LEMMA 11.1.1. Let @: Ez + fl be a map having property (‘6). Then the 
conjugate 4 * of @ is exactly the indicator function of the set (x, E E, 1 
(XI. ><@I. 

ProoJ: Let x, E E, such that (x,, ) <@ We have 4*(x,) = 
supE,(x, ) - 4; therefore 4*(x,) < 0 and finally #*(xl) =0 because the 
supremum is reached with @I. Inversely let x, E E, such that (x1. > 4 $. We 
have to prove that #(xi) = +co. By hypothesis there is x2 E E, such that 
(x,, x2) 4 $(x2), Therefore we cannot have 4(x2) = +co. On the other hand, 
9*(x,) 2 (x, 7 x*> - @(x2)* If 4(x2) = - co we have obviously 4*(x,) = +co; if 
not, #(x2) belongs to H and, for every n E 61, we have 4*(x,) > 
(-q, nx2> - #(nw2) whence #*(x,) > n(x,, x2> - @(x2), that is, 4*(x,) > 
n((x,, x2) - #(x2)). Then, necessarily, 4(x,) = +co for otherwise we would 
have (x,, x2) - #(x2) ,< 0 which is absurd. 

THEOREM II. 1.2. Let Q be a map from E, to t!i. The following assertions 
are equivalent 

(i) I$ is a y(E,, El)-map having property (q), 
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(ii) o is a support-function of a subset of E,, 

(iii) $ is a support-function of a y(E,, E&set. 

Proof: (i) S- (ii). By Lemma 11.1.1, b* = v/,~~~,,(~,)~~, . On the other 
hand, 4 E F(E,, E,) and by Corollary 1.3.3 we have #= @**. Therefore 

4 = alxEE,l(x. )<rnl’ 
(ii) * (iii). Let f$ = aA. For every x2 E E, we have by Corollary 1.1.3 

a.a(xJ=sup( ,x1)= sup ( 1%i* 
A .4Y(EI*E2) 

Then 4 = CL~~(E~.EZ). 

(iii) + (i). For all A c Ei we know by Proposition 1.3.1 that 
aA = (w.,,)* belongs to T(E,, E,). On the other hand, we have already noted 
that every support function verifies property (q). 

THEOREM 11.1.3. Let (A,),,, be a family of subsets of E, and A = 
Uketi A,, then 

CI,4flEI.E2) = sup aA,. 
krzK 

Pro@ a, = (vukEKAk)* = (infkpK vaJ*. Now, if (fk)kpK is a family of 
maps from E, to H, it is easy to see that 

( Inf fk)* = sup fk* 
kEK kEK 

and here aA = supkEK I&, = supkeK aA,. We conclude with the already known 
equality aq = aAflEI ,EZ). 

11.2. Unification of y(E, , E,)-Envelopes of Sets and Maps Notions 

THEOREM 11.2.1. For every part A of E, , the y(E,, E,)-envelope of the 
indicator function of A is exactly the indicator function of the y(E,, E,)- 
envelope of A, that is, (IJI~)~~I’~~’ = I~.,,~~EI,Ez). 

Proof. By Theorem 1.3.2, (w,) HEI.EZ) - - wf * = a,* . Now. from 
Lemma II. 1.1 

*- a/f - WlJEE,I(X,)<a~l’ 

But (x E E, 1 (x, ) < a,4} = {x E E, 1 x2 E E, * (x, x2) Q sup,( ,x2)}. By 
Theorem I. 1.2 these two sets coincide with AWI.EZ) . Finally 
tw )y(h.Ed 4 = Vv,M1.E2). 

COROLLARY 11.2.2. For every subset A of E, the following properties are 
equivalent 
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(i) A is a y(E,, E,)-set, 

(ii) v.4 is a y(E,, E,)-map. 

Proof. From Corollary 1.2.3 we already know that (ii) S- (i). Conversely 
let A be a y(E,, E,)-set. Then we have (v/~)~~I,~*’ = v/,~~~E~,E~) = w,~. 

THEOREM 11.2.3. Let A and B be two y(E,, Ez)-sets, then 

AcBoa,<a,. 

ProoJ It is obvious that A c B * a, < aB. Conversely, we easily see that 

aA < ag 3 aB* < a,:. 

Therefore I(/:* < w,f* or ~~~~~~~~~~~ < (~,~)~~l*~z’ and, by Theorem 11.2.1, 
v/~~(E~,E~) < I~/,~~(E~.E~). We conclude with the fact that A and B are y(E,, E,)- 
sets. 

11.3. Monotone H-Valued Maps 

Let E, be a non-empty partially ordered set. We set respectively 
E; , E’,‘, E, for increasing, decreasing, monotone maps from E, to H. 

PROPOSITION 11.3.1. For every subset A of E,, ANEtqEi’, AtiEl,“i’, AfiElqE!’ 
coincide respectively with d(A) = (x E E, 1 3 y E A 1 x < y}. i(A) = {x E E, ) 
3yEAIy<x), [A]=i(A)nd(A). 

Proof. d(A) is contained in A MEDLEY’ for if x E d(A) and if ( ,x2) is an 
increasing map from E, to H, then 3 y E A 1 x < y and (x, x2) < (y, x1) < 
sup,( , x2). Inversely let x0 6E d(A). We take z E H, z > 0 and define the map 
(,x2>: E,+H 

X’Z if x0 < x 

+O if not. 

We see easily that ( , x,) is an increasing map which is 0 on A and z at x0. 
Therfore we do not have (x,, x2) < sup,( ,x2) and by this x, & Ay’E’,E2’. 
Hence d(A) = AYCElvE;) and taking the opposite order on E, we also have 
i(A) = Ay(E1,E;‘). At last, iff: E i + t? is a map, it is .easy to see thatfy’E’YEz) = 
sup{f’E’.E;‘,fl(E,.E;’ }. In particular with f = vA we obtain 

AY~EIvEI) = AY(EI*E;) n AflEl+&;‘) = d(A) n i(A) = [A 1. 

COROLLARY 11.3.2. For every part A of E,, the upper envelope of 
monotone maps from E, to H majorized by the indicator function of A 
coincide with the indicator function of the order convex hull of A. 
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11.4. Complements 

PROPOSITION 11.4.1. Let E, be a non-empty part of the group of maps 
from E, to H with the property k E Z and x2 E Ez =S kx, E E,. Then. the 
following assertions are equivalent 

(i) points of E, are y(E,, EJ-sets, 

(ii) E, separate points of E,. 

Proof. (i) + (ii). Let x # x’ be in E,. By hypothesis, x & (x’ ]H(E1*E1’. 
Then, we have x2 E E, suh that (x,x2) & (x’, x2) and therefore ix, x2) # 
(x’, x*). 

(ii) * (i). Let x E E, and x’ E (x) y(E1BE2’. For every x2 E E,, (x’. x2) Q 
(x, x,) and (x’, -x2) < (x, -x1), h t t a is, -(x’, x2) < -(x, x2). Therefore, for 
every x1 E E, we have (x’, x1) = (x, x2) and from the fact that E? separate 
points of E, we conclude that x = x’ and that (x) is a y(E,, E,)-set.. 

The next theorem is motivated by Proposition 3.3 of (81. 

THEOREM 11.4.2. Let E, be a non-empty part of the group of maps from 
E, to H such that OE’EEz and x,,x’,EE,+x,+x;EE,. Letf: E,-+H 
be a map such that f 2 ( ,x,) - z with (x,, z) E E, x H. Then: 
dam f “(E’.e>’ c (dam f )Y&&‘. 

Proof: Iff = (+K’)~’ we have by Propositions II.1 and 1.2.1, (+ao)E’ = 
f 

Y(E,.E?) and (dom f) Y(E’*E2’ = #y(E1qEz’ = 0. Therefore in this case, 
domf’E’VE*’ = (dom f )y(E1,Ez’ = 9. Let us suppose f # (+co)E1, that is, 
dom f # 4. Now, let x @ (dom f)y(E’*E2’. We have to show that 
x0 65 dom fy’E’SEz’. B y h ypothesis there is xi E E, such that 

(1) 

Let us set a, = supdOm/ (( ,x2 + nx;) -f) (n E R\l). It is easy to see that 
f>(,xz+nx;)-a,. If a,, < + co we then have 

f y(EI~Ez’ > ( , x2 + nx;) - a,. (2) 

If a, = fco, (2) obviously holds. Now 

a,= ,“o”,s( yx2)+n( ,4)-J: 

Therefore 

a,,<n sup ( ,x2)-f + sup n( ,xl,) and a,<z+n sup ( Ixl,). 
domf domf domf 
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Then, we deduce from (2) that 

By (1) and by the fact that domf # 4 we have supdo,,,/ ( , xi) E H. Let us 
suppose that fy’E’,E?‘(xO) < fco. As fHE~*E2’(xO) > (x0, x> - z. we have 
P (E~~E~)(~O) E H. Then (3), which is verified for all n E R‘J. shows that 

( xi) - supdomf( , xi) < 0. By (1) this last inequality is absurd. So we 
h-;&f”“‘,““(x,) = +a. 

We now give two examples showing that Theorem 11.4.2 cannot be 
improved. We take E, = H and for E2 the set of increasing maps from H to 
H. Let f: H + i? defined by f(x) = --03 if x < 0 and f(x) = + co if not. From 
Proposition 11.3.1, (dom f)Y(El*E2) = (xE Hlx< 01. On the other hand, 

f Y(EI*E2’ = (-a)” and domfy’El*E2’ = H. So, we do not have domfY’E1*Ez) c 
(dam f)Y(El.Ed. 

Now we take E, = H = IF: and for E2 the set of continuous functions from 
IR to iE. We see easily that y(E,. Ez)-sets coincide here with the closed 
subsets of R. For every n E b,J, n > 1, let us set f,(x) = n if x < l/n and 
f,(x) = l/x if x > l/n. S ince f,, is continuous, f = supn>, f, is a y(E,, E,)- 
function and we have f(x) = +a, if x < 0 and f(x) = l/x if x > 0. Then, 
dam fY’El.Ez) = d om f = IO, +a~ [ and (dom f)NEIVEz’ = (0, +a~ 1. So, we do 
not have (dom f )g’E13’2) c dom f y(E1*E2’. 

THEOREM 11.4.3. Let E, be a subgroup of the group of maps from E, to 
H. For every map f from E, to H and for evey x, E E2 we have 

(f _ ( , X2))Y(E~.E2) = f *EI*Ez) - ( , x2 j. 

ProoJ Let us suppose that ( , xi) - z ,< f - ( , xz) then ( .x2 + xi) - z ,< 
f (E~.Ez’, that is, ( , xi) - z < f Y(EI.E?’ - ( , x7). Taking the supremum we 
obtain df - ( , x~))Y(EI~Ez) <f y(EI,E?) - ( ,x2). Conversely, let us suppose that 
(,x5)-z<J Then (,x;-xz)-z&f -(,x2> and by this 
( ) x; - x,) - z < (f - ( , X*))Y(EI’E2). Therefore (,xi>-Z<(f - 
( , x~))~(~I*~~) + ( , x2) and taking the supremum we obtain 

fY(E1.E:) < (f _ ( ) X*))flEI~EIJ + ( ) x& 

Finally, fy(El*Ez) - ( , x2) < (f - ( , x~)))‘~I~~~‘. 

LEMMA 11.4.4. Let G be a group and @ an homomorphism from G to H. 
If there is z E H such that V x E G: 4(x) < z then 4 = OG. 

Proof: For every (n, x) E 6J x G we have r@(x) = #(n-u) < z. Therefore, 
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for all x E G, $(x) < 0 and obviously 4(-x) ,< 0. Now, 4(-x) = --e(x); hence 
-4(x) < 0, that is, 4(x) > 0 and finally 4(x) = 0. 

THEOREM 11.4.5. Let E, be a group, E, a subgroup of the group of 
homomorphisms from E, to H, f and g two y(E, , E,)-maps which do not take 
the calue -a~. Let us suppose that there is (x2, z) E E2 x H such that 
f + g < ( , x2) - z. Then we hare f = ( , xi) - z’ and g = ( , XT) - z” with 
(.K;.z’) and (x:,z")EE~x H. 

ProoJ Since f is a y(E,, El)-map which does not take the value -03, 
there is (y2,t)EEzxH such that f>(,y,)-t. Then, for all (.vi,t’)E 
E, x H with g > ( ,~i) - t’ we have ( , y2j - t + ( , ~~5) - t’ < ,f + g < 
( , x1> - z: hence ( , ?(I + ~1; -x2) < -z + t + t’. From Lemma 11.4.4 we 
deduce that ( , y2 + J$ - x1) = OEl. that is, ( , ~7;) = ( , x2 - yz). Then 

g = sup(( , x1 - .V2> - I’ / ( ,x> - 4’?) - t’ < g) 

= ( , x2 - y2) + sup(-t’ 1 ( 1 x2 - Y2) - t’ ,< g) 

= ( , SK? - y2;, + sup -t’ = ( , x2 - yz) - g*(xz - J’J. 
5’(.Y>-?‘>)<t’ 

Moreover, g does not take the value --co; g does not take the value +a) 
because f + g < ( ,x2) - z. We have then g*(xz - y2) E H. Interchanging 
the parts played by f and g we obtain & E E, such that f = ( ,x2 - ~5) - 
f *(x2 - ~3;) and this completes the proof. 
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