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Notions about @-convexity are extended to abelian complete partially ordered
group-valued mappings in an attempt to unify in a general theory notions of ¢-
convex sets and @-convex mappings. We obtain some group specific results and
particularly a characterization of support functions.

INTRODUCTION

The origin of this work is in convex analysis. Let £ be a locally convex
space, H an ordered topological vector space with closed positive cone, and
A a subset of E. We know (|9, p. 75]) that the upper-envelope of affine
continuous maps from E to H majorized by the indicator function of 4 is
exactly the indicator function of the closed convex hull of A.

We analyse the fact that such an upper-envelope is also an indicator
function and leads to the situation where the following properties hold: E, is
a set, (H, +, ) an abelian complete ordered group, and E, a non-empty part
of the group of all maps from E, to H with the property

ntimes

Vx,.x,€EE, and YnneMN: nx,=x,+ -+ +x,EE,.

In this frame, the upper-envelope of maps x, — x,(x,) — z, with x, € E, and
z € H, majorized by the indicator function of a subset 4 — E, is also the
indicator function of a subset 47€1'£? < E| (Theorem IL.2.1). This situation
occurs frequently; for example, if E, is an ordered set, we can successively
take for E, the increasing, decreasing, monotone functions from E, to H. In
the last case we prove that A"EvE? js the order convex hull of A4
(Corollary I1.3.2). In order to study this situation we extend some notions of
&-convexity introduced by Fan (|5]), Dolecki and Kurcyusz (|2, 3]) to
abelian complete ordered group-valued functions. We give other results in a
purely set duality frame. This is contained in Section I
418
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In Section II we unify notions of sets and function envelopes through the
medium of indicator functions (Theorem IL.2.1). We also obtain a very
simple characterization of support functions (Theorem IL.1.2). Two basic
properties of vectorial support functions hold (Theorems II.1.3 and I1.2.3).
With another hypothesis we obtain purely algebraic results, some of which
are inspired by analysis convex theorems (Theorems I1.4.1, 2. 3, 5).

DEFINITION AND NOTATIONS

Let (H,+, <) be an abelian complete ordered group (that is, an abelian
ordered group in which all non-empty and majorized subsets have a least
upper bound). We adjoin to H a largest element +00 and a smallest element
—oo and we set H=H\U {—o0, +00}. Every subset of H has an infimum
and a supremum (we set sup @ = —oco and inf @ = +o0).

We extend the addition of H to H by setting

Vz,z € H: zZ + (+o0) =+,
Yz, zE€EH: z+ (—w)=—00,
(—©)+ (~w)=—0c0, —(+00)=—o0o0, —(—0) =+40w.

If A is a subset of E, the indicator function of 4 is noted v, and defined
by wi E—H, w,(x)=0if xEA, w,(x)=+0c0 if x&A. If fis a constant
map from E to H with value z we note f = zF.

Let E, and E, be two sets, ( , ): E, X E,—» H a map, and (x,,x,) €
E, X E,. We shall note respectively {(x,. ) and { ,x,) the maps defined by

(x\, )i Ey~H, (ox) Ey - H,
x5 = (X, X), X (X, X)),

If f,g:E—H are maps, f< g will mean that Vx, x € E: Sx) <€ glx).
Moreover, if 4 — E we note sup, f = sup,, f(x).

Note. We shall frequently use the fact that every abelian complete
ordered group (H, +, <) is completely integrally closed ([6, p.90]). This
means that if we have z,t € H and nr < z for every n € N then ¢t 0.

. y(E;, E;)-REGULARIZATION
In this section (H, +, ) will be an abelian complete ordered group with

elements > 0. Let E, and E, be two non-empty sets and ( , : E, X E,—» H
(¢, x;) = {x,, x,) a map. For i,j € {1, 2} and i # j we note [x;, x;| instead
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of {x,, x;). So, [x;, ] will be the map (x,, ) or { ,x,) according as i =1 or
2. Idem for [ , x;].

We extend to this situation notions of @-convexity, introduced in [2, 3, 5],
that we shall need in Section IL

L.1. y(E;, E;)-Envelopes for Subsets of E;

We say that a subset B<E, is a y(E;, E;)-set if there is a family
(X4> Zi ke Of E; X H elements with B = (), .4 {x € E; | [x, x;] < 24}

Taking K =@ we see that E, is always a y(E,, E;)-set. E; with the Moore
Y(E;, E;)sets family ([1, p. 4]) constitute a cyrtological-space ([2]) a basis of
which is given by the sets {x € E;| [x, x;] <z}, where (x;,z) € E; X H.

By definition, the y(E;, E;)-envelope of A E; is the intersection of all
¥(E;, E;)-sets which contain 4 and we note it A™*+5),

PrOPOSITION L.1.1. The empty set is always a y(E,, E;)-set.
Proof. Letz€H,z>0, and x;€EE;. For n€ N we set
A, ={x€E;||x,x]<

We have (), 4, =@. In fact, if not we would have x € E; such that for all
n€ N: [x, x;] < —nz, that is, nz < —[x, x;] and at last z <O0.

THEOREM 1.1.2. For every A C E; we have

A'EE) = (x EE | x; € E; > [x, x;] gsgp [, x]h

Proof. Let

B={x€E;|x;€EE;= [x,x;]<sup [ ,x]}
A

If A=@ we have sup,[,x;] =—oco and by this B=@. In this case we
conclude with Proposition I.1.1.

If A+ let J be the set of x; € E; such that sup, [,x;] € H. It is easy to
see that B=), ., {xE E;| [x,x ] <supA[ x| Therefore, Bisay(E;, E;)-
set containing A Inversely, if C= Nk (X € E;| [x, x| <z} is a WE;, E;)
set containing 4, we have to prove that B C. Since 4 = C we have
[x, x,] < z, for all (x, k) €A X K and therefore sup,|[ , x,] < z,. Now for all
(x, k) €E B X K: [x, x,] <sup,|,x,] < z,. This completes the proof.

COROLLARY 1.1.3. IfA c E;, A"*"E is the largest part of E; such that

xI.EEj:SI:p[, ,-]= sup [ , j]'

AMELE)
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Proof. We first show that A4"5+£? verifies this property. If x & 4"E0E)
and x;€E; we have by Theorem 1.2, [x,x;]<sup,[,x;]. Therefore
sup eip|, x;] <sup,[,x]. In fact we obtain an equality because
A < A™ErED Now, let B < E; such that

ijEj:>s1.:p[ ,lezsgp Poxgl

For x € B and x; € E; we have

[x, x;] <sup | X[ =sup [ ,x]
B A
then x € A™5r£) and therefore B < AMF#ED,

L.2. y(E;, E;)-Regularization of Mappings from E; to H

ot 7 s deimed by st )tV CE KA and
v Aj ik J

[.x;]—z< S} We say that fis a y(E;, E;}ymap if f=f"*%). We note
I'(E;, E;) is the set of maps from E; to H which are upper-envel_ope of maps
like |,x;] —z with (x;,z) €E; X H. If fis a map from E, to H then fis a
Y(E;. E;}map if and only if f € I'(E;, E}); f"**% is also the largest map in
I'(E;, E,;) majorized by f. We note that f**¢£? = (—c0)*! if and only if f does
not majorize any map |, x;| —z with (x;,2z) € E; X H.

PROPOSITION L.2.1. The constant map (+oo )+ is always in I'(E,. E).

Proof. Let x;€E; and zEH, z>0. For n€ N we set f, = [,x;] + nz.
We show that for x € E; we have sup, ¢, f,(x) = +o0. Otherwise we would
have z' € H with [x, x;| + nz <z’ for every n € N, then nz < z' — |x, x;| and
finally z < 0: that is impossible.

ProrosiTiON 1.2.2. Let fbe a y(E;, E;)-map and z € H. The set {(x EE,|
S(x)<z} is a y(E;, E))-set.

Proaf. By hypothesis, f = supgcx[ s Xx] — 24 Then

(XEE | f)<zi= () {(xEE|[xx]—2z<z}
kek

=) XEE||xx]<z+ 2}

keK

CoroLLARY 1.2.3. Let A c E; and suppose that the indicator function of
A is a y(E;, E;}-map. Then A is a y(E;, E))-set.

409-84/2 9
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Proof. We note that A={x€E,|y,(x)<0} and we apply
Proposition 1.2.2,

Important Remark. The converse is false. Let (, ): H X H— H with
(1, %)=x,+x, and A={xEH|x<0}. Then A is a y(H, H)-set.
However,

oxp—z€y ) (x+x,—20if x<0)
>z—x,20
Now, for x € H,

(W) (x)= sup x+x,—z=x+ sup x,—z=ux
z=x320 I-Xx20

Therefore, (v,)"*'® =id,, and by this y, is not a y(H, H)-map. The aim of
Section II is to define a frame where this phenomen does not occur.

THEOREM 1.2.4. Let f be a y(E;, E;)-map and A E;. Then sup, f=
SUp EEp [

Proof. Let f=sup,cxl,xe] — 24-
sup f=sup sup [ ,x,| —z,=supsup [ ,x,]—z,
A A  kek kekK A4
=sup (sup [ . x;]) —z,.
kek 4
By Corollary 1.1.3 we have also

sup f=sup ( sup [,x]}—z,=sup sup [,x]-z
A kek Ay(E,',Ej) keK Ay(E,',Ej)

= sup sup | ,x,]—z= sup f
Ay(Ei.Ej) kek Ay(Ei.Ej)

1.3. Conjugates of Maps from E; to H
Let f: E,— H be a map. The conjugate mapping of f is defined by

SUESE xS ) =sw (x5 - 1)

We may also note f* =sup, ., [x;, | —f(x;). Let dom f be the domain of f
that is dom f={x€E€E,|f(x)<+oo}. Then we obviously have f*=
SUP, cqomys [Xi» | —f(x;). For (x;,z) EE; X H we also have f*(x;)<z<«
[x]—z2< [

PrRoPOSITION L3.1. For every map f: E,— H, f* belongs to I'(E;, E)).
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Proof. 1If f does not take the value —oo, we conclude with the relation
S* =5up,cqoms 1% | — f(x). If f takes this value, then /* = (+00)*/ and, by
Proposition L1.2.1, we know that (+00)® belongs to I'(E;,E;). The next
theorem is of Fenchel-Moreau type ([2-4, 10-13]).

THEOREM 1.3.2. For every map f: E;— H, the y(E,, E )-regularized map
JEED of fis exactly the biconjugate f** of f.

Progf. For all x € E; we have
S*Hx) = sup [x,x;] = f*(x)).
x;EE;

Let us majorize f*(x;) by —[x,x;]+f(x); then f**(x)< f(x). By
Proposition L.3.1, f** is an element of I'(E;, E;) majorized by f. Therefore
[** L fEE) On the other hand,

SYEE) =sup{[ ,x;] —z|(x;,z) EE; X H and | ,x;] —z< [}
=sup{[ ,x;] —z|(x;,z) EE; X H and f*(x;) < z}
<sup{[ x| = f*(x;) | x; € dom f*} = f**
CoroLLARY 1.3.3. The following maps are one to one, onto and mutually
reciprocal:
I'(E\,E))>I(E,,E,), I'(E,,E\)»I(E,,E)),
VA S-S

Proof. 1t is sufficient to remark that
FENELE) e f=[18 o f=f*

COROLLARY 1.3.4. For every map f from E; to H, f"5+E) s the smallest
map from E; to H such that

Sr= (e

Proof. We have f** = fHEE) = fOELED™  On the other hand, f* and
(f"ErEP)* belong to I'(E;, E;). From Corollary 1.3.3 we deduce that f* =
(fE+EPY*, Conversely, let g: E;— H be a map such that f* = g*. Then, let
(x;,z) € E; X H such that [, x;] —z < f We have

g x) =, *x) <z

Therefore [, x;] — z < g and finally f™#057  g.
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II. A UNIFICATORY FRAME

In this section E, is a non-empty set and E, a non-empty subset of the
group of maps from E, to H with the property

ntimes

x, €EE, and neE MN=>nx,=x,+ +x,€E,.

We note that the constant map 0% always belongs to E,. The map (, ):
E, X E,—» H will be here defined by {x,, x,)=x,(x,) for every (x,,x,) €
E, X E,. Then, for every n €N and (x,,x,) € E, X E, we have

<x1a nx3> = n(x, . x2>.

II.1. Characterization of Support Functions

Let A c E|; the conjugate of the A-indicator function will be noted a,.
Then, for all x, € E, we have

a,(x,) = (W,)* (x;) = Sup (ax)—y,= sgp< ) X0
. .

a, is called the support function of A. Let us note that a, verifies the
property (7). (#):a,(0°)=0and VR EN, Vx, € E,: a,(nx,) < na,(x,). In
fact, it is obvious that a ,(0%') = sup,{, 0f') = 0. On the other hand,

aA(nxz)zsgp( ,nxz'):sgp n( ,x2><n5t:p( SX )

LEmma IL1.1. Let ¢: E,— H be a map having property (%). Then the
conjugate ¢* of ¢ is exactly the indicator function of the set {x € E,|

CIRPEN )

Proof. Let x,€E, such that {(x,, )<¢. We have ¢*(x,)=
sup, (x, )—¢; therefore ¢*(x,)< 0 and finally ¢*(x,)=0 because the
supremum is reached with 01, Inversely let x, € E, such that {x,, ><{ ¢. We
have to prove that ¢(x,)= +oco. By hypothesis there is x, € E, such that
(xy, X,) € ¢(x;). Therefore we cannot have ¢(x,) = +oc0. On the other hand,
o*(x,) > (x,, x,) — é(x,). If ¢(x,) = —oco we have obviously ¢*(x,) = +c0; if
not, ¢(x,) belongs to H and, for every nE€N, we have ¢*(x,)>
(X1, nx;) — @(nx,) whence ¢*(x,) > n(x,, x,) — ng(x,), that is, ¢*(x,)>
n({x,, x,» — ¢(x,)). Then, necessarily, ¢(x,)= +oo for otherwise we would
have {x,, x,) — ¢(x,) < 0 which is absurd.

THEOREM IL.1.2. Let ¢ be a map from E, to H. The following assertions
are equivalent

(i) ¢ is a y(E,, E,)-map having property (%),
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(ii) @ is a support-function of a subset of E,

(iii) ¢ is a support-function of a y(E, E,)-set.
Proof. (i)= (ii). By Lemma ILL1L, 6* =y, cr (r,ycq+ On the other
hand, ¢ EI'(E,,E,) and by Corollary 1.3.3 we have ¢ = ¢**. Therefore

0= Cixer,itxy<0)"
(ii) = (iii). Let ¢ =a,. For every x, € E, we have by Corollary 1.1.3

ay(x;)=sup ( ,x;)= sup (,x;).
A ANELED)

Then ¢ = a yEr.£2).

(iii)= (i). For all AcE, we know by Propositionl.3.1 that
a, = (w,)* belongs to I'(E,, E,). On the other hand, we have already noted
that every support function verifies property (%).

THEOREM I1.1.3. Let (A,),cx be a family of subsets of E, and A =
Uvrex Ax» then

Q WEy.E3) = SUp aAk.
kek

Proof. a,= (W, a)* = (infycx w)*. Now, if (fi)iex is a family of
maps from E, to H, it is easy to see that

(Inf fi)* = sup fi
keK kek

and here a, = sup,cx W}, = Sup,ex @4,- We conclude with the already known
equality a, = a e .ED.
I1.2. Unification of y(E,, E,)-Envelopes of Sets and Maps Notions

THEOREM 11.2.1.  For every part A of E,, the y(E,, E,)-envelope of the
indicator function of A is exactly the indicator function of the y(E,,E,)-
envelope of A, that is, (y,)*1'5? = y e 16D .

Proof. By Theorem L3.2, (y )frf?=y**=q*. Now. from
Lemma IL.1.1

af =Virer,i(xr<an"
But (x€E,|[(x, )<a,} = {x€EE,|x,EE, = (x,X,) < sup,(,x;} By
Theorem I.1.2  these two sets coincide with A"5+£?2.  Finally
(0, VEVED =y .

CoroLLARY 1L.2.2. For every subset A of E, the following properties are
equivalent
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(i) AisayE,,E,)set,
(i) w4 isa y(E,, E,) map.

Proof. From Corollary 1.2.3 we already know that (ii) = (i). Conversely
let A be a y(E |, E,)-set. Then we have (y, )52 = y wer e =y .

THEOREM [1.2.3. Let A and B be two y(E,, E,)-sets, then
AcBea,<a.

Progf. It is obvious that 4 — B = a, € a,. Conversely, we easily see that
a,<ay=af <ak

Therefore wi* Cwk* or (w8 L (v, )"65? and, by Theorem IL2.1,
WenELED < W nE1.E2 . We conclude with the fact that 4 and B are y(E |, E,)-
sets.

I1.3. Monotone H-Valued Maps

Let E, be a non-empty partially ordered set. We set respectively
EY,, EY, E, for increasing, decreasing, monotone maps from E, to H.

PROPOSITION IL3.1. For every subset A of E,, AEvED ANEvED | gHELED
coincide respectively with d(A)={x€E |Iy€A|x<y} id)={x € E,|
Ayed|y<x}, [A]=i(AyNd(A).

Proof. d(A) is contained in A™£F2 for if x € d(4) and if (,x,) is an
increasing map from E, to H, then 3y €4 |x <y and {x,x,) <{y, x,) <
sup,(, x,). Inversely let x, € d(4). We take z € H, z > 0 and define the map
(,x; 0t E, > H

xX—z if x,<x

-0 if not.

We see easily that {, x,) is an increasing map which is 0 on 4 and z at x,.
Therfore we do not have (x,,X,)<sup,({,x,) and by this x, & 4"EvED,
Hence d(4)=A"E"*? and taking the opposite order on E, we also have
i(A)=A"ErFD_ At last, if /2 E, - H is a map, it is easy to see that f7&1-52 —
sup{ffEVED, MELED ) In particular with f =y, we obtain

AVELED = gYELED M gREVED = dA) N i(4) = [A].

CoroLLARY 11.3.2. For every part A of E,, the upper envelope of
monotone maps from E, to H majorized by the indicator function of A
coincide with the indicator function of the order convex hull of A.
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11.4. Complements

ProrosiTiON 11.4.1. Let E, be a non-empty part of the group of maps
Jrom E, to H with the property k€ 7 and x, € E, = kx, € E,. Then, the
Sfollowing assertions are equivalent

(i) points of E, are y(E,, E,)-sets,
(ii) E, separate points of E,.

Proof. (i)= (ii). Let x# X' be in E,. By hypothesis, x & {x' |*ErE?,
Then, we have x, € E, suh that {x,x,)<{ (x’,x,) and therefore (x,x,)#
(x' Xp).

(ii)= (i). Letx€E, and x' € {x}"51ED, For every x, € E,, (x'. x,) <
{x,x,) and (x', —x,) < {x, —x,), that is, —(x', x,) < —{x, x,). Therefore, for
every x, € E, we have (X', x,) = (x, x,) and from the fact that E, separate
points of E, we conclude that x = x' and that {x} is a y(E,, E,)-set.

The next theorem is motivated by Proposition 3.3 of [8].

THEOREM 11.4.2. Let E, be a non-empty part of the group of maps from
E, to H such that 0*' € E, and x,,x, € E,>x, +x,€E,. Let {1 E,» H
be a map such that f>{(,x,)—z with (x,,z)EE,XH. Then:
dom fV(El.Ez) c (domf)V(ElvEZ)'

Proof. If f = (+00)*" we have by Propositions L1.1 and L2.1, (+00)*' =
SHECED and  (dom f)MF1ED = grE1ED — ¢ Therefore in this case,
dom f*E1ED = (dom f)MFED =g Let us suppose f# (+00)", that is,
dom f#¢. Now, let x¢& (domf)*+E2  We have to show that
x, & dom fM¥1£Y By hypothesis there is x), € E, such that

(Xo. X3) £ sup (,x}). (1
dom f
Let us set a,=supy,,({,x, +nx3)—f) (nE€N). It is easy to see that
=2, x;+nxy)y—a,. If a, < +o0 we then have

S S g — g @
If a, = +00, (2) obviously holds. Now
a,= sup (,x;)+n{,xy)—f.
domf
Therefore

a,<nsup { ,x,)—f+ sup n{ ,x3) and a,<z+n sup (,xH).
dom f dom s dom f
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Then, we deduce from (2) that

STECED (x) — (xg, X3) + 2 2 n({x,s X3)— dsc?n?f (s xy)). (3)

By (1) and by the fact that dom f # ¢ we have supy,,,(,x}) € H. Let us
suppose that f7ErED(x)) < 4o0. As frECED(x ) > (x,,x)—z we have
SEED(x )€ H. Then (3), which is verified for all n € N, shows that
X9+ X3) — SUPgom, (» X3) 0. By (1) this last inequality is absurd. So we
have f7E1ED(x ) = + 0.

We now give two examples showing that Theorem I1.4.2 cannot be
improved. We take £, = H and for E, the set of increasing maps from H to
H. Let f: H—» H defined by f(x) = —o0 if x < 0 and f(x) = + o0 if not. From
Proposition IL.3.1, (dom f)"*+£? = {x& H|x < 0}. On the other hand,
STEVED — (—o0)¥ and domf"E1£Y = H. So, we do not have dom f7¢1E2) <
(domf)V‘E“Ef'.

Now we take £, = H =F and for E, the set of continuous functions from
F to . We see easily that y(E,.E,)sets coincide here with the closed
subsets of ™. For every n€MN, n> 1, let us set f,(x)=n if x< 1/n and
Sox)=1/x if x> 1/n. Since f, is continuous, f=sup,,, f, is a (£, E,)-
function and we have f(x)=+o0 if x<0 and f(x)= 1/x if x > 0. Then,
dom f"EvE? =dom f = |0, +oo| and (dom f)"¥EY = [0, +00[. So, we do
not have (dom f)"¥#? < dom frEvE2,

THEOREM I1.4.3. Let E, be a subgroup of the group of maps from E| to
H. For every map f from E, to H and for every x, € E, we have

(f = CompPEres = fREED — (),

Proof. Let us suppose that (,x%) —z < f—{ ,x,)then (. x, +x}) —z<
STEVEDthat is, (,xh)—z L fPEE? —( x,). Taking the supremum we
obtain (f — (, x,)*ErED L fMELED (). Conversely, let us suppose that
(,x))—z<gfo Then (,xt—x,)—z<&f—={(,x,>) and by this
(oxh—x,) — 2K (f — (, x ) EvED, Therefore (Lxhy—z<(f—

Lx OPEED L ¢ xS and taking the supremum we obtain

2 2

STECEDL(f - (., x2>)y(El'EZ) + (X

Finally, /7662 — (,x,) < (f = () Ere2,

LemMma 11.4.4. Let G be a group and ¢ an homomorphism from G to H.
If there is z € H such that ¥ x € G: ¢(x) < z then ¢ = 0F,

Proof. For every (n,x) €N X G we have ng(x) = g(nx) < z. Therefore,
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for all x € G, ¢(x) < 0 and obviously ¢(—x) < 0. Now, ¢(—x) = —g(x); hence
—¢(x) €0, that is, ¢(x) > 0 and finally ¢(x)=0.

THEOREM I1.4.5. Let E, be a group, E, a subgroup of the group of
homomorphisms from E, to H, f and g two y(E,, E,)-maps which do not take
the value —oo. Let us suppose that there is (x,.z)€ E, X H such that
[+ g<{,x,)—z. Then we have f=(,x})— 2z and g={(,xy)—2z" with
(x5.z")and (x¥,z"YE E, X H.

Proof. Since fis a p(E,, E,)-map which does not take the value —oo,
there is (y,,t)E E, X H such that f > (, »,)—¢ Then, for all (v;.#)€
E.xH with g=>{,py5>—1t we have {(,y,)—t+{,yy—-t'<f+g<
{,x,)—z: hence (,y,+y,—x,)<—z+1t+¢. From Lemmall4.4 we
deduce that {, y, + v, — x,) =01, that is, {, ;)= (.x, — ¥,). Then

g=sup({ .x; =y = {{ . x;— ) —1'<g)
= x =y +sup(—' [ x, =y — 1< g)

==yt sup == (= ) — g — )

g Xy -yt

Moreover, g does not take the value —co; g does not take the value +oo
because f + g < (,x,)—z. We have then g*(x, — »,) € H. Interchanging
the parts played by f and g we obtain 3, € £, such that f={,x, — y3) —
S*(x,— 1) and this completes the proof.
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