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Function-valued Padé-type approximant via the formal orthogonal
polynomials and its applications in solving integral equationsI
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Abstract

A kind of function-valued Padé-type approximant via the formal orthogonal polynomials (FPTAVOP) is introduced on the
polynomial space and an algorithm is sketched by means of the formal orthogonal polynomials. This method can be applied
to approximate characteristic values and the corresponding characteristic function of Fredholm integral equation of the second
kind. Moreover, theoretical analyses show that FPTAVOP method is the most effective one for accelerating the convergence of a
sequence of functions. In addition, a typical numerical example is presented to illustrate when the estimates of characteristic value
and characteristic function by using this new method are more accurate than other methods.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a Fredholm integral equation of the second kind

f (x, λ) = g(x)+ λ

∫ b

a
K (x, y) f (y, λ)dy, (x, y) ⊂ [a, b] × [a, b],

where g(x) ∈ L2
[a, b] and K (x, y) is an L2 kernel which are defined in [a, b] and [a, b] × [a, b], respectively.

The technique utilized for solving the integral equation is based on successive substitution, which is an iterative
procedure, yielding a sequence of a approximations leading to an infinite power series solution. So we turn to consider
the generating function f (x, λ) of this kind of series of functions given by

f (x, λ) =

∞∑
i=0

ci (x)λ
i , (1)
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in which ci (x) ∈ L2[a, b] are given by the successive substitution and [a, b] is the domain of definition of ci (x) in
this natural sense. We suppose that f (x, λ) is holomorphic as a function of λ at the origin λ = 0. Then f (x, λ) in (1)
converges for values of |λ| which are sufficiently small.

Many methods estimating the characteristic values and characteristic function of (1) have been derived in the
previously published papers, such as the classic Padé approximant method (CPA) [7,8], the generalized inverse,
functional-valued Padé approximant method (GIPA) [7,8], the modified Padé approximant method (MPA) [10], the
squared Padé approximant method (SPA) [10], the integral Padé approximant method (IPA) [10], the function-valued
Padé-type approximant method (FPTA) [13], and the ε-algorithm of function-valued GIPA [11,12].

The major drawback of the method of CPA [7,8] is the use of the minimal sensitivity principle [1,2] and the
presence of superfluous zeros in the denominator. Thus we have to assign a particular value of x in the Neumann
series in order to obtain the estimate of the characteristic values. Graves-Morris introduced the method of function-
valued GIPA [7,8] by using the generalized inverse which had been defined in the case of vector-valued GIPA [9] and
a solution in which the numerator function and the denominator polynomial can be represented by determinants of the
same dimension. Thukral investigated on the basis of this similar principle and Padé-type approximants introduced
in [4,5], which means that the denominator polynomial of the rational approximant is arbitrarily prescribed (whereas,
in the classical Padé approach the denominator is left free in order to achieve the maximal order of interpolation), and
introduced three methods of Padé-type approximant, namely IPA [10], MPA [10] and SPA [10]. The construction of
the denominator of the MPA [10] method is simply obtained by integrating each of the cofactors in the determinant of
the denominator polynomial of the classical Padé approximant method. The denominator of the SPA [10] method was
constructed by squaring each of the cofactor in the determinant of the denominator polynomial of the classical Padé
approximant method and then integrating these new cofactors. The construction of the denominator of the IPA [10]
method is obtained by combining the coefficients of the generating function as cofactors in the determinant of the
denominator polynomial. The method of FPTA [13] was constructed by a an approach similar to that of the method
of IPA [10]. The construction of the ε-algorithm of function-valued GIPA [11,12] was the same as that of ε-algorithm
of scalar Padé approximants, just using the generalized inverse in order to keep the denominator polynomial of GIPA
[7,8] having the only one parameter of λ.

In this paper we represent a new method, namely function-valued Padé-type approximant via the formal orthogonal
polynomials (FPTAVOP), for summing the series of function (1). This method overcomes all essential difficulties
encountered in the previous studies and is simpler and more effective for obtaining the characteristic values and the
characteristic function than all those methods we have mentioned above.

The remainder of this paper is organized as follows. In Section 2, we mainly derive the method of FPTAVOP.
We extend scalar Padé-type approximant to function-valued Padé-type approximant in Section 2.1, introduce the
definition of FOPs with respect to f (x, λ) and their three-term recurrence relationship and sketch an algorithm to
compute the FOPs with respect to f (x, λ) in Section 2.2, combine function-valued Padé-type approximant and the
FOPs with respect to f (x, λ) together to construct FPTAVOP and sketch a main algorithm to compute FPTAVOP in
Section 2.3, and finally, in Section 2.4, we present a numerical example to show the effectiveness of FPTAVOP for
solving integral equation. In Section 3, we first give the constructions of the methods of GIPA, ε-algorithm of GIPA,
IPA, MPA, CPA, SPA and FPTA in the Sections 3.1 and 3.2, and then apply these methods to a typical numerical
example in Section 3.3, and finally, in Section 3.4, we make a comparison of the estimates of the characteristic values
of the integral equation derived using all these different methods. The concluding remarks are given in Section 4.

2. Function-valued Padé-type approximant via the formal orthogonal polynomials

In this section, we derive a new approach via the formal orthogonal polynomials, i.e., FPTAVOP to approximate
the function-valued power series f (x, λ) in (1).

2.1. Function-valued Padé-type approximant (FPTA)

Let c : P → C be a linear functional on the polynomial space P, and define it by

c(t i ) = ci (x), i = 0, 1, . . . (2)
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with the convention that ci (x) = 0 for i < 0. From the linear functional in (2) we can obtain that

c((1 − tλ)−1) = c(1 + tλ+ (tλ)2 + · · ·)

= c0(x)+ c1(x)λ+ · · · + cn(x)λ
n

+ · · · = f (x, λ).

Let vn ∈ Pn which is a scalar polynomial of degree n,

vn(λ) = b0 + b1λ+ · · · + bnλ
n

and assume bn 6= 0. Define the polynomial wn(x, λ), having function-valued coefficients, by

wn(x, λ) = c

(
vn(t)− vn(λ)

t − λ

)
.

Note that c acts on P and wn(x, λ) is a function-valued polynomial in λ of degree n − 1. Set

ṽn(λ) = λnvn(λ
−1), w̃n(x, λ) = λn−1wn(x, λ

−1).

Thus, Rn−1,n(x, λ) = w̃n(x, λ)/ṽn(λ) is defined as a function-valued Padé-type approximant (FPTA) of type (n−1, n)
and holds

ṽn(λ) f (x, λ)− w̃n(x, λ) = O(λn). (3)

The polynomial vn , called the generating polynomial of the Padé-type approximation (n − 1/n), can be arbitrarily
chosen and so we have n degrees of freedom.

In order to construct rational approximants to f (x, λ)with various degrees in the numerator and in the denominator,
we have the following relation, which can be deduced from [4]:

(m/n) f (x, λ) = c0(x)+ c1(x)λ+ · · · + cm−n(x)λ
m−n

+ λm−n+1(n − 1/n) fm−n (x, λ)

with

fm−n(x, λ) = cm−n+1(x)+ cm−n+2(x)λ+ · · · .

So an FPTA of type (m, n) such as p̃mn(x, λ)/ṽmn(λ) can be defined by

ṽmn(λ) f (x, λ)− p̃mn(x, λ) = O(λm+1),

where

p̃mn(x, λ) = ṽmn(λ)

m−n∑
i=0

ci (x)λ
i
+ λm−n+1w̃mn(x, λ), m ≥ n,

and ṽmn(λ), w̃mn(x, λ) satisfy

(n − 1/n) fm−n (x, λ) = w̃mn(x, λ)/ṽmn(λ)

and

wmn(x, λ) = c(m−n+1)
(
vmn(t)− vmn(λ)

t − λ

)
.

Because the first coefficient of fm−n(x, λ) is cm−n+1, so it is natural to define a new functional c(m−n+1) by

c(m−n+1)(t i ) = c(tm−n+1+i ) = cm−n+1+i (x), i = 0, 1, . . . . (4)

The methods we have discussed in the introduction, such as GIPA [7,8], ε-algorithm of function-valued GIPA
[11,12], CPA [7,8], MPA [10], SPA [10] and IPA [10] all belong to the family of Padé-type approximants. The
denominator polynomials of these rational approximants are arbitrarily prescribed, and the corresponding orders of
the approximation are the order of the numerator polynomial of the rational approximant plus one. So the precision of
approximation of the characteristic function of those approaches is limited.
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2.2. Formal orthogonal polynomials with respect to f (x, λ) and their three-term recurrence relationship

In this subsection, we give many notions of formal orthogonal polynomials associated with f (x, λ). Brezinski [4,5]
defined the scalar formal orthogonal polynomials (FOPs) associated with c which was defined as a linear functional on
the space of complex polynomials by c(t i ) = ci for i > 0 with c0, c1, . . . is prescribed nonzero complex numbers. We
will analogously give the definition of generalized orthogonal polynomials (GOPs) and formal orthogonal polynomials
(FOPs) associated with f (x, λ) respectively.

Definition 1. For the linear functional c(m−n+1)(t i ) = cm−n+1+i (x), i = 0, 1, . . . , {q(m−n+1)
k } is said to be a family

of generalized orthogonal polynomials associated with c(m−n+1) if, ∀k ≥ 0, q(m−n+1)
k has degree k at most if we

could arrange that

c(m−n+1)(t i q(m−n+1)
k (t)) = 0 for i = 0, 1, . . . , k − 1. (5)

Now let

q(m−n+1)
k (t) = a0 + a1t + · · · + ak tk .

Then in terms of k equalities in (5) and the functional definition in (4), there exists a system of k equations in k + 1
unknowns

a0cm−n+i+1(x)+ a1cm−n+i+2(x)+ · · · + akcm−n+i+k+1(x) = 0 for i = 0, . . . , k − 1. (6)

We can simply denote (6) by

k∑
j=0

a j cm−n+i+ j+1(x) = 0 for i = 0, . . . , k − 1. (7)

We notice that the solution of (7) for a j normally depends on x . So the system of equations represented by (7) normally

has no solution for the a j for j = 0, 1, . . . , k. Thus the system (5) also has no solution for q(m−n+1)
k (t). For this reason

we call them generalized orthogonal polynomials.

Obviously, q(m−n+1)
k (t) has exact degree k if and only if ak is different from zero. In this case, we say that the

functional c(m−n+1) is definite. In the sequel, we will assume that the GOPs of q(m−n+1)
k (t) has been normalized to be

monic, that is, ak = 1 for all k.
Now let us construct a function-valued Hankel-like matrix, whose elements consist of the function-valued

coefficients of the power series f (x, λ), i.e., {ci (x)}
m−n+2k
i=m−n+1,

H (m−n+1)
k,k+1 =


cm−n+1(x) cm−n+2(x) · · · cm−n+k(x) cm−n+k+1(x)
cm−n+2(x) cm−n+3(x) · · · cm−n+k+1(x) cm−n+k+2(x)

· · · · · · · · · · · · · · ·

cm−n+k(x) cm−n+k+1(x) · · · cm−n+2kn−1(x) cm−n+2k(x)

 .
Assuming that ψ(t) ∈ Pk−1, q(m−n+1)

k (t) ∈ Pk , by means of the matrix H (m−n+1)
k,k+1 , we define a unsymmetrical

bilinear form by

〈ψ(t), q(m−n+1)
k (t)〉 := vT H (m−n+1)

k,k+1 u,

for any two polynomials

q(m−n+1)
k (t) ≡ [1, t, . . . , tk

]u, ψ(t) ≡ [1, t, . . . , tk−1
]v, u ∈ Ck+1, v ∈ Ck,

of degree at most k and k − 1, k = 0, 1, . . . . Note that

〈t i , 1〉 = eT
i+1 H (m−n+1)

k,k+1 e1 = cm−n+i+1(x) for i = 0, 1, . . . , k − 1,

where ei is the i th column of identity matrix of dimension k and e1 is the first column of identity matrix of dimension
k + 1, hence it is clear that the preceding functional c(m−n+1) is equivalent to this unsymmetrical bilinear form when
k = 0, 1, . . . . We define formal orthogonal polynomials as follows.
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Definition 2. A polynomial qk(t) ∈ Pk , qk(t) 6= 0, which satisfies

〈ψ(t), q(m−n+1)
k (t)〉 = 0 (8)

for all ψ(t) ∈ Pk−1 is called a formal orthogonal polynomial (associated with f (x, λ)) of degree k.

Actually, the equality (8) can also be rewritten as

〈t i , q(m−n+1)
k (t)〉 = eT

i+1 H (m−n+1)
k,k+1 u = 0 for i = 0, 1, . . . , k − 1. (9)

Therefore, when we say a scalar polynomial q(m−n+1)
k belonging to a family of formal orthogonal polynomials

associated with f (x, λ), we mean that, for ∀k ≥ 0, q(m−n+1)
k has degree k at most and it satisfies the relationship

represented in (9).
One of the most important properties of a family of FOPs (at least for our purpose in this paper) is their three-term

recurrence relationship.

Theorem 3. Let us assume that, for all k, q(m−n+1)
k (t) which is a monic FOP having degree k exactly. Then

q(m−n+1)
k+1 (t) = (t + B(m−n+1)

k+1 )q(m−n+1)
k (t)− C (m−n+1)

k+1 q(m−n+1)
k−1 (t) (10)

with q(m−n+1)
−1 (t) = 0 and q(m−n+1)

0 (t) = 1. The coefficients can be computed by the following relations:

c(m−n+1)(tkq(m−n+1)
k (t)) = C (m−n+1)

k+1 C (m−n+1)
k · · · C (m−n+1)

2 c(m−n+1)(q(m−n+1)
0 (t)), (11)

c(m−n+1)(tk+1q(m−n+1)
k (t)) = −C (m−n+1)

k+1 C (m−n+1)
k · · · C (m−n+1)

2 (B(m−n+1)
k+1 + · · · + B(m−n+1)

2 )

× c(m−n+1)(q(m−n+1)
0 (t)), (12)

where

ĉ(m−n+1)
j (t i ) =

∫ b

a
c j (x)cm−n+i+1(x)dx for i = 0, 1, . . . (13)

and j = m − n + 1, . . . ,m − n + 2k.

The relations (12) and (13) are deduced from [4, pp. 43–49]. It is clear that we have 2k choices for the functional
of (13). In fact, different choices lead to different precisions. The functional

ĉ(m−n+1)
m−n+2k (t

i ) =

∫ b

a
cm−n+2k(x)cm−n+i+1(x)dx for i = 0, 1, . . . (14)

may be the best choice if there is no breakdown in the process of the following Algorithm 4, although it demands
higher order coefficients. We will empirically illustrate this point in Remark 9 in Section 3.4.

This theorem can be derived from [4,5], where FOP is related with functional c(n)(t i ) = cn+i for i = 0, 1, . . . .
What should be noted is that the functional in (13) is different from c(m−n+1). And we will illuminate why we can
make the change with the functional in (13) and what advantages we will get by this way.

The reason we make the change in (13) is based on two points: first, the difficulty we are facing makes us do it this
way. The FOPs q(m−n+1)

k (t) are scalar polynomials, but there are no function-valued items in the relations of (11) and
(12). Thus we multiply both sides of the equations in (6) with c j (x) for j = m − n + 1, . . . ,m − n + 2k, respectively,
and then take the integral to both sides of them with regard to x from a to b, and so we have k orthogonal relations
associated with functional ĉ(m−n+1)

j as follows

ĉ(m−n+1)
j (t i q(m−n+1)

k (t)) = 0 for i = 0, 1, . . . , k − 1. (15)

That is, the functionals presented in (14) is right in principle, and the q(m−n+1)
k (t) which satisfies the relations in (15)

belongs to FOPs. For the convenience, we will replace c(m−n+1)
j by c(m−n+1) in the following text.
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Secondly, we know from [8] that when k = n, the elements in the determinant of the denominator polynomial of
the function-valued Padé approximation have many different forms, such as the following five forms

cm−n+i+1(x),
∫ b

a
cm−n+i+1(x)dx,

∫ b

a
c2

m−n+i+1(x)dx,∫ b

a
cm+n−1(x)cm−n+i+1(x)dx,

∫ b

a
cm−n+1(x)cm−n+i+1(x)dx .

These different forms of elements correspond to different kinds of function-valued Padé-type approximant, namely
CPA [10], MPA [10], SPA [10], IPA [10] and FPTA [13]. Referred from [10], the IPA whose determinant’s elements
are

∫ a
b cm+n−1(x)cm−n+i+1(x)dx for i = 0, 1, . . . , 2n−2, may be the best choice in all these kinds of function-valued

Padé-type approximations, because this choice is more effective in accelerating the convergence of the sequence of
the function f (x, λ), and estimates of characteristic value and characteristic function derived using this functional are
also found to be more accurate than the others.

For convenience, we will use li to substitute ĉ(m−n+1)(t i ) hereafter.
Now we sketch the process for gaining a monic FOP for the function-valued series f (x, λ) in (1) as follows.

Algorithm 4. (For gaining a monic FOP of degree n associated with the f (x, λ))

(0) Set q(m−n+1)
−1 (t) = 0, q(m−n+1)

0 (t) = 1, and q(m−n+1)
1 (t) = t −

l1
l0
.

For k = 1, 2, . . . , n, do
(1) Use (12) to compute C (m−n+1)

k+1 .

(2) Substitute C (m−n+1)
k+1 into (13) to compute B(m−n+1)

k+1 .

(3) Use three-term relationship (10) to compute q(m−n+1)
k+1 (t).

Remark 5. If k = 0 in (11), we have

q(m−n+1)
1 (t) = t + B(m−n+1)

1 .

By the definition of FOP, q(m−n+1)
1 (t) satisfies that

ĉ(m−n+1)(q(m−n+1)
1 (t)) = 0,

that is,

l1 + l0 B(m−n+1)
1 = 0.

So we have B(m−n+1)
1 = −l1/ l0.

Thus, we obtain the formal orthogonal polynomial with the first degree in step (0) as follows

q(m−n+1)
1 (t) = t −

l1
l0
.

Another fact to be noticed is that the algorithm does not break down unless

ĉ(m−n+1)(q(m−n+1)
0 (t)) = l0 = 0.

In other words, whether the algorithm is having a breakdown or not is easy to judge.

2.3. Function-valued Padé-type approximation via the FOPs

In terms of the error formula of Padé-type approximation [5], it holds that

f (x, λ)−
p̃mn(x, λ)

ṽmn(λ)
=

λm+1

ṽmn(λ)
c(m−n+1)

(
vmn(t)

1 − tλ

)
=

λm+1

ṽmn(λ)
c(m−n+1)

(
vmn(t)

(
1 + tλ+ · · · + tn−1λn−1

+
tnλn

1 − tλ

))
. (16)
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It is easy to see from (16) that if we want to improve the order of approximation, we can let c(m−n+1)(vmn(t))
= 0, then we will have (m/n) f (x, λ) − f (x, λ) = O(λm+2). If vmn(t) satisfies c(m−n+1)(vmn(t)) = 0 and
c(m−n+1)(tvmn(t)) = 0, then we will obtain an error in O(λm+3), and so on. Such approximation, with an improved
order of approximation, are called high-order Padé approximants.

Since we have n degrees of freedom, let us take vmn such that

c(m−n+1)(t ivmn(t)) = 0, i = 0, . . . , n − 1. (17)

In that case we have

ṽmn(λ) f (x, λ)− p̃mn(x, λ) = O(λm+n+1). (18)

Thus p̃mn(x, λ)/ṽmn(λ) is called Padé approximant for f (x, λ) and is denoted by [m/n] f (x, λ).
In the case of the Padé approximant, vmn is not arbitrarily chosen any more, but is determined by (17). The relations

c(m−n+1)(t ivmn(t)) = 0 for i = 0, . . . , n − 1 show that vmn is the polynomial of degree n belonging to the family
of generalized orthogonal polynomials associated with the functional c(m−n+1). In the sequel, p̃mn(x, λ) and ṽmn(λ)

will be denoted by p̃(m−n+1)
m (x, λ) and q̃(m−n+1)

n (λ) respectively.
For convenience, we give a new definition about quasi-orthogonal polynomial associated with f (x, λ).

Definition 6. Assume a scalar polynomial

vn(t) = b0 + b1t + · · · + bn tn
=

n∑
i=0

bi t
i

belonging to a family of formal orthogonal polynomials associated with f (x, λ), then another scalar polynomial

ṽn(t) = tnvn(t
−1) = bn + bn−1t + · · · + b0tn

=

n∑
i=0

bi t
n−i

is called a quasi-orthogonal polynomial associated with f (x, λ) for vn(t).

With all these preliminaries, we present the main theorem as follows for computing function-valued Padé-type
approximation via the formal orthogonal polynomials.

Theorem 7. Let q(m−n+1)
n (t) be a scalar polynomial which belongs to a family of formal orthogonal polynomials

associated with f (x, λ), that is,

q(m−n+1)
n (t) = a0 + a1t + · · · + an tn

=

n∑
i=0

ai t
i

satisfies

ĉ(m−n+1)(t i q(m−n+1)
n (t)) = 0 for i = 0, 1, . . . , n − 1,

and its quasi-orthogonal polynomial is

q̃(m−n+1)
n (t) = tnq(m−n+1)

n (t−1) =

n∑
i=0

ai t
n−i .

Define the polynomial p̃(m−n+1)
m (x, λ) with the function-valued coefficient by

p̃(m−n+1)
m (x, λ) =

n∑
i=0

aiλ
n−i fm−n+i (x, λ),

where

fk(x, λ) =

k∑
j=0

c j (x)λ
j for k ≥ 0,

= 0 for k < 0.
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Then, it holds

(m/n) f (x, λ) =
p̃(m−n+1)

m (x, λ)

q̃(m−n+1)
n (λ)

=

n∑
i=0

aiλ
n−i fm−n+i (x, λ)

n∑
i=0

aiλn−i
,

that is,

q̃(m−n+1)
n (λ) f (x, λ)− p̃(m−n+1)

m (λ) = O(λm+1).

Proof. We deduce that

q̃(m−n+1)
n (λ) f (x, λ)− p̃(m−n+1)

m (x, λ)

=

n∑
i=0

aiλ
n−i

∞∑
j=0

c j (x)λ
j
−

n∑
i=0

aiλ
n−i

m−n+i∑
j=0

c j (x)λ
j

=

n∑
i=0

aiλ
n−i

∞∑
j=m−n+i+1

c j (x)λ
j

(to be expanded in terms of i from 0 to n)

= a0λ
n

∞∑
j=m−n+1

c j (x)λ
j
+ a1λ

n−1
∞∑

j=m−n+2

c j (x)λ
j
+ · · · + an

∞∑
j=m+1

c j (x)λ
j

(to be considered as a polynomial of λ and the terms with the same order will be lumped together)

=

n∑
i=0

ai cm−n+i+1(x)λ
m+1

+

n∑
i=0

ai cm−n+i+2(x)λ
m+2

+ · · · +

n∑
i=0

ai cm+i (x)λ
m+n

+

n∑
i=0

ai cm+i+1(x)λ
m+n+1

+ · · ·

= O(λm+1). �

From the proof we can see that if we could let the system of

n∑
i=0

ai cm−n+i+ j+1(x) = 0 for j = 0, 1, . . . , n − 1

has solution for a j , the coefficients of λm+1, λm+2, . . . , λm+n+1 in the second line from bottom of our proof will be
equal to zero. Then the approximation order will be improved to O(λm+n+1), which is higher than the order we have
obtained. Meanwhile, according to the equality (18), the approximants we obtained will belong to function-valued
Padé approximants. But unfortunately, we have not been able to guarantee that the solution of the system comes into
existence, so far. We hope we could solve this problem by some certain ways in the future.

We now give the complete algorithm to compute function-valued Padé-type approximants via the formal orthogonal
polynomials.

Algorithm 8. Do step (0)–(3) in Algorithm 4 to get q(m−n+1)
n (t).

(4) Rewrite q(m−n+1)
n (t) in the form of

∑n
i=0 ai t i and compute the denominator of FPTAVOP by

q̃(m−n+1)
n (λ) = λnq(m−n+1)

n (λ−1) =

n∑
i=0

aiλ
n−i .

(5) Compute the numerator of the FPTAVOP by

p̃(m−n+1)
m (x, λ) =

n∑
i=0

aiλ
n−i fm−n+i (x, λ).
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(6) Obtain FPTAVOP for f (x, λ)

(m/n) f (x, λ) =

n∑
i=0

aiλ
n−i fm−n+i (x, λ)

n∑
i=0

aiλn−i
.

2.4. A numerical example

Let us consider Fredholm integral equation of the second kind [6,13]

ϕ(x) = f (x, λ) = 1 + λ

∫ π

0
sin(x + y)ϕ(y)dy.

The first few terms of the power series for f (x, λ) are given by

f (x, λ) = 1 + 2 cos xλ+ π sin xλ2
+
π2

2
cos xλ3

+
π3

4
cos xλ4

+ · · · .

Suppose that we want to find a function-valued Padé approximation (2/2) f (x, λ) for the given integral equation,

here, m = n = 2 and m − n + 1 = 1. First we compute the denominator, q̃(m−n+1)
n (λ), namely q̃(1)2 (λ). So we shall

compute the FOP of q(1)2 (t) for f (x, λ). Here we let j in (14) be equal to m − n + 1 = 1, and so

ĉ(m−n+1)
j (t i ) = ĉ(1)1 (t i ) =

∫ b

a
c1(x)ci+1(x)dx, i = 0, 1, . . . .

Now we apply Algorithm 8 to compute FPTAVOP of type (2/2) for this integral equation.

(0) q(1)0 (t) = 1, and

q(1)1 (t) = ta −
l1
l0

= t −

∫ π
0 2 cos(x) · π sin(x)dx∫ π

0 4 cos2(x)dx
= t −

0
−2π

= t;

(1) Use (12) to compute C (1)
2 :

ĉ(1)1 (tq(1)1 (t)) = C (1)
2 ĉ(1)1 (q(1)0 (t)) = C (1)

2 ĉ(1)1 (1) = C (1)
2 l0.

From this equality and q(1)1 which has been obtained in step (0), we can easily obtain that

C (1)
2 =

ĉ(1)1 (t2)

l0
=

l2
l0

=

∫ π
0 2 cos(x) ·

π2

2 cos(x)dx∫ π
1 4 cos2(x)dx

=
−π3/2
−2π

=
π2

4
.

(2) Substitute C (1)
2 into (13) to compute B(1)2 :

ĉ(1)1 (t2q(1)1 (t)) = −C (1)
2 B(1)2 l1,

B(1)2 =
ĉ(1)1 (t3)

−C (1)
2 l0

=
l3

−(π2/4) · (−2π)
=

0

π3/2
= 0.

(3) Use three-term relationship (11) and coefficients above to obtain q(1)2 :

q(1)2 (t) = (t + B(1)2 )q(1)1 (t)− C (1)
2 q(1)0 (t)

= t2
−
π2

4
.

(4) Rewrite q(1)2 (t) in the form of
∑2

i=0 ai t i . Obviously, a0 = −π2/4, a1 = 0, a2 = 1, and

q̃(1)2 (λ) = λ2q(1)2 (λ−1) = −
π2

4
t2

+ 1.
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(5) Compute the numerator of FPTAVOP and get

p̃(1)2 (λ) =

2∑
i=0

aiλ
2−i fi (x, λ) = −

π2

4
λ2

· 1 + (1 + 2 cos xλ+ π sin xλ2).

(6) Finally, we obtain

(2/2) f (x, λ) =
1 −

π2

4 λ
2
· 1 + 2 cos xλ+ π sin xλ2

1 −
π2

4 λ
2

= 1 +
4(2 cos xλ+ π sin xλ2)

4 − π2λ2 .

In fact, the solution obtained from FPTAVOP is the exact solution of the original equation.
If we choose j in (14) as m − n + 1 + 1, which is equal to 2 here, then we have

ĉ(m−n+1)
j (t i ) = ĉ(1)2 (t i ) =

∫ b

a
c2(x)ci+1(x)dx, i = 0, 1, . . . .

Unfortunately, it follows that

l0 = ĉ(1)2 (t0) =

∫ b

a
c2(x)c1(x)dx =

∫ π

0
2 cos(x) · sin(x)πdx = 0.

So we could not use it in the denominator, and then q(1)1 (t) which is equal to t − l1/ l0 could not be computed. The
process is stopped.

3. Comparisons by a typical numerical example with the previous methods

To determine the consistency of the new method, we actually tested it on the previous investigations [1,2,7,
8,10–13]. These findings are generalized by illustrating the effectiveness of the new method for determining the
characteristic values and the characteristic function of a familiar linear integral equation.

We first introduce the construction of GIPA [7,8] and ε-algorithm of function-valued GIPA [12,13] in Section 3.1,
the construction of IPA [10], CPA [7,8], MPA [10], SPA [10] and FPTA [13] in Section 3.2, and then apply them
including FPTAVOP on a typical example in Sections 3.3 and 3.4.

3.1. The methods of function-valued GIPA [7,8] and ε-algorithm of function-valued GIPA [12,13]

We define a rational function r(x, λ) to be a function-valued GIPA of type (m, 2n) [7,8] for f (x, λ) if

r(x, λ) = p(x, λ)/q(λ),

where p(x, λ), q(λ) are polynomials in x , p(x, λ) ∈ L2[a, b] as a function of λ and

∂{p(x, λ)} ≤ n − α, ∂{q(λ)} ≤ 2n − 2α, for α ≥ 0, (19a)

q(λ)

∣∣∣∣∫ b

a
|p(x, λ)|2dx , (19b)

q(λ) = q∗(λ) (19c)

q(0) 6= 0, (19d)

p(x, λ)− q(λ) f (x, λ) = O(λm+1). (19e)

The asterisk in (19c) denotes the functional complex conjugate.
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If p(x, λ), q(λ), satisfy (19a)–(19e), then r(x, λ) is unique. The explicit formula for the denominator polynomial
is given by

q(λ) =

∣∣∣∣∣∣∣∣∣∣∣

0 M01 · · · M0,2n−1 M0,2n
−M01 0 · · · M1,2n−1 M1,2n
...

... · · ·
...

−M0,2n−1 −M1,2n−1 · · · 0 M2n−1,2n

λ2n λ2n−1
· · · λ 1

∣∣∣∣∣∣∣∣∣∣∣
. (20)

The elements of (20) are defined by

Mi j :=

j−i−1∑
l=0

∫ b

a
cl+i+m−2n+1(x)[c j−i+m−2n(x)]

∗dx,

for i = 0, 1, . . . , 2n and j = i + 1, i + 2, . . . , 2n, and taking c j := 0 if j < 0.
It is well-known that the polynomials produced by (20) are strictly positive for λ ∈ R and their zeros occur in

complex conjugate pairs close to the real axis [7]. Ideally, we take the real parts of the zeros of q(λ) as the estimates
of the characteristic values λc.

The numerator polynomial P(x, λ) follows from (19e) as

p(x, λ) = [q(λ) f (x, λ)]n
0 . (21)

If in the determinant (20), q(0) 6= 0, then r(x, λ) defined by (18), (20) and (21) is the GIPA of type (m, 2n) for
f (x, λ). The case of hybrid method of GIPA requires much more numerical computation than GIPA and so the reader
is referred to [7,8].

We define the generalized inverse of the arbitrary g(x, λ) ∈ L2(a, b) as follows

g(x, λ)(−1)
=

1
g(x, λ)

=
g(x, λ)∫ b

a | g(x, λ) |2 dx
. (22)

Then ε-algorithm of function-valued GIPA [12] can be defined by the generalized inverse defined by (22):

ε
( j)
−1 = 0, j = 0, 1, 2, . . . ,

ε
( j)
0 =

j∑
i=0

ci (x)λ
i ,

ε
( j)
k+1 = ε

( j+1)
k−1 + (ε

( j+1)
k − ε

( j)
k )−1, j, k ≥ 0.

(23)

If in the process of constructing ε( j)
2k there is no breakdown, that is, the denominator in the third equality in (23) is

not equal to zero, we can obtain a rational approximant R(x, λ) = Pj+2k(x, λ)/Q2k(λ), which was proved to be just
a GIPA of type ( j + 2k, 2k) in [12], i.e.,

ε
( j)
2k =

Pj+2k(x, λ)

Q2k(λ)
as j, k ≥ 0

is a GIPA of type ( j + 2k, 2k) for f (x, λ). In this case, we take the real parts of the zeros of Q2k(λ) as the estimates
of the characteristic values λc.

3.2. The methods of IPA [10], CPA [7,8], MPA [10], SPA [10] and FPTA [13]

We define a rational function r(x, λ) to be an IPA [10] of type (m, n) for f (x, λ) if

r(x, λ) = N (x, λ)/D(λ), (24)

where N (x, λ), D(λ) are polynomials in λ, N (x, λ) ∈ L2[a, b] as a function of x and they satisfy

N (x, λ)− D(λ) f (x, λ) = O(λm+1). (25)
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The denominator polynomial of the integral Padé approximant was defined by

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ b

a
cm+n−1(x)cm−n(x)dx

∫ b

a
cm+n−1(x)cm−n+1(x)dx · · ·

∫ b

a
cm+n−1(x)cm(x)dx∫ b

a
cm+n−1(x)cm−n+1(x)dx

∫ b

a
cm+n−1(x)cm−n+2(x)dx · · ·

∫ b

a
cm+n−1(x)cm+1(x)dx

...
... · · ·

...∫ b

a
cm+n−1(x)cm−1(x)dx

∫ b

a
cm+n−1(x)cm(x)dx · · ·

∫ b

a
cm+n−1(x)cm+n−1(x)dx

λn λn−1
· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(26)

provided D(0) 6= 0 and ci (x) are the coefficients of (1), and naturally the numerator polynomial N (x, λ) follows from
(25) as

N (x, λ) = [D(λ) f (x, λ)]m
0 ,

where this notation indicates that truncation at degree m in λ has been effected.

The purpose of integrating the elements in (26) is to make the estimates of the characteristic values independent of
the variable x . This is similar to the approach for the method of GIPA [7,8] in which we overcome the series problem,
using [1,2], with CPA [7,8]. We take the appropriate roots of denominator polynomial, given by (26), as the estimates
of the characteristic value for the IPA method.

We can analogously define the methods of CPA [7,8], MPA [10] and SPA [10]. First we give the general determinant
of the denominator of the approximants as follows

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣

µm−n+1 µm−n+2 · · · µm+1
µm−n+2 µm−n+3 · · · µm+2

...
... · · ·

...

µm µm+1 · · · µm+n

λn λn−1
· · · 1

∣∣∣∣∣∣∣∣∣∣∣
, (27)

where D(0) 6= 0 and by the means of [10] we know that if

µi = ci (x) for i = m − n + 1, . . . ,m + n, (28)

the D(λ) is the determinant of the denominator polynomial of the method of CPA [7,8], if

µi =

∫ b

a
ci (x)dx for i = m − n + 1, . . . ,m + n, (29)

the D(λ) is the determinant of the denominator polynomial of the method of MPA [10], and if

µi =

∫ b

a
c2

i (x)dx for i = m − n + 1, . . . ,m + n, (30)

the D(λ) is the determinant of the denominator polynomial of the method of SPA [10]. Their definitions are given by
(24), (25) and (27) combined with (28)–(30) respectively.

If we evaluate µi with∫ b

a
cm−n+1(x)ci (x)dx for i = m − n + 1, . . . ,m + n, (31)

and D(0) 6= 0, then r(x, λ) defined by (24), (25), (27) and (31) is an FPTA [13] of type (m, n) for f (x, λ).
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3.3. Application to an integral equation

We investigate the convergence of sequences of these eight methods presented for the Neumann series solution of
the linear integral equation

f (x, λ) = 1 + λ

∫ 1

0
(1 + |x − y|) f (y, λ)dy. (32)

This integral equation is a Fredholm of the second kind with a nondegenerate kernel and has been previously
considered in [7,10].

The characteristic functions of this equation can be found by converting it to a second-order ordinary differential
equation [3]. The explicit solution of (32) is

f (x, λ) =
2 cosh ν(x − 1/2)

2 cosh ν/2 − 3ν sinh ν/2
, (33)

where ν =
√

2λ. The denominator of (33) is analytic as a function of λ and has just one simple zero at

νc = 1.22290658 . . . ,

corresponding to a single characteristic value

λc = 0.7477502556 . . . .

It is familiar that the Neumann series of (32) converges for |λ| < λc. The first few terms of this series are

f (x, λ) =

∞∑
i=0

ci (x)λ
i
= 1 +

[
5
4

+

(
x −

1
2

)2
]
λ+

[
161
96

+
5
4

(
x −

1
2

)2

+
1
6

(
x −

1
2

)4
]
λ2

+ · · · (34)

as may be found by iteration of (32).
Before we apply these eight methods on the integral equation (32), we simply enumerate each process for

computing the methods of GIPA [7,8], ε-algorithm of GIPA [12], IPA [10], MPA [10], SPA [10], CPA [7,8], FPTA [13]
and FPTAVOP respectively.

(1) GIPA [7,8]
We begin with expanding the denominator polynomial of the GIPA of type (m, 2),

q(λ) =

∣∣∣∣∣∣∣∣∣∣
0

∫ 1

0
c2

m−1(x)dx 2
∫ 1

0
cm−1(x)cm(x)dx

−

∫ 1

0
c2

m−1(x)dx 0
∫ 1

0
c2

m(x)dx

λ2 λ 1

∣∣∣∣∣∣∣∣∣∣
,

which gives

q(λ) =

∫ 1

0
c2

m−1(x)dx

[∫ 1

0
c2

m−1(x)dx + λ2
∫ 1

0
c2

m(x)dx

]
− 2λ

∫ 1

0
c2

m−1(x)dx

[∫ 1

0
cm−1(x)cm(x)dx

]
. (35)

Solving (35) by a standard quadratic formula and simplifying gives rise to

λ =

∫ 1
0 cm(x)cm−1(x)dx ±

√
[{
∫ 1

0 cm(x)cm−1(x)dx}2] −
∫ 1

0 c2
m(x)dx

∫ 1
0 c2

m−1(x)dx∫ 1
0 c2

m(x)dx
.

We know from previous studies [7,8] that the above formula produces a pair of complex conjugates which are close
to the real axis, that is[∫ 1

0
cm(x)cm−1(x)dx

]2

<

∫ 1

0
C2

m(x)dx
∫ 1

0
C2

m−1(x)dx .
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Therefore, the estimate of the characteristic value of the method of GIPA of type (m, 2) is given by

λ =

∫ 1

0
cm(x)cm−1(x)dx

/∫ 1

0
c2

m(x)dx .

(2) ε-algorithm of GIPA [12]
From the iterative formulas in (23) and the generalized inverse, we have

ε
(0)
0 = c0(x),

ε
(1)
0 = c0(x)+ c1(x)λ,

ε
(2)
0 = c0(x)+ c1(x)λ+ c2(x)λ

2,

ε
(0)
1 =

1
c1(x)λ

=
c1(x)

λ
∫ 1

0 (c1(x))2dx
,

ε
(1)
1 =

1

c2(x)λ2 =
c2(x)

λ2
∫ 1

0 (c2(x))2dx
,

ε
(0)
2 = c0(x)+ c1(x)λ+ 1

/(
c2(x)

λ2
∫ 1

0 (c2(x))2dx
−

c1(x)

λ
∫ 1

0 (c1(x))2dx

)
= P2(x, λ)/Q2(λ) = R(x, λ),

...

After iteratively computing out the ε( j)
2n we obtain the approximant of type of ( j + 2n, 2n) for f (x, λ), and we take

the real parts of the zeros of the denominator of the estimate of the characteristic value of the ε-algorithm of GIPA.

(3) IPA [10]
The denominator polynomial of the method of IPA of type (m, 1) is given by

D(λ) =

∣∣∣∣∣∣
∫ 1

0
cm(x)cm−1(x)dx

∫ 1

0
c2

m(x)dx

λ 1

∣∣∣∣∣∣ ,
which gives

D(λ) =

∫ 1

0
cm(x)cm−1(x)dx − λ

∫ 1

0
c2

m(x)dx . (36)

The characteristic value of the method IPA of type (m, 1) is calculated by solving (36) and thus we have

λ =

∫ 1

0
cm(x)cm−1(x)dx

/∫ 1

0
c2

m(x)dx .

(4) CPA [7,8]
From (27), the denominator polynomial of the methods of CPA [7,8], MPA [10], SPA [10] and FPTA [13] of type

(m, 1) can be expressed as

D(λ) =

∣∣∣∣µm µm+1
λ 1

∣∣∣∣ ,
which gives

D(λ) = µm − λµm+1. (37)

The characteristic value is calculated by solving (37) and we have

λ = µm/µm+1.
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For CPA, µi = ci (x), and

λ = cm(x)/cm+1(x).

Thus we must assign a particular value to x , and this is usually done using the principle of minimal sensitivity [1].
Because x = 1/2 is a turning point of each coefficient in (34), it is also a turning point of each CPA, and we take
x = 1/2 as the most natural value to take in this example, that is, the estimates of characteristic value of the method
CPA of type (m, 1) can be obtained by

λ = cm(x)/cm+1(x),

where x = 1/2.

(5) MPA [12]
For the method of MPA of type (m, 1), the elements in the denominator polynomial D(λ) of (37) µi are equal to∫ 1

0 ci (x)dx for i = m,m + 1, and thus we have

λ =

∫ 1

0
cm(x)dx

/∫ 1

0
cm+1(x)dx .

(6) SPA [10]
In the case of SPA, the elements in the denominator polynomial D(λ) of (37) µi are equal to

∫ 1
0 c2

i (x)dx for
i = m,m + 1. We take the square root of (37) as the estimate of the characteristic value

λ =
√

|µm/µm+1| =

√√√√∣∣∣∣∣
∫ 1

0
c2

m(x)dx

/∫ 1

0
c2

m+1(x)(x)dx

∣∣∣∣∣.
We refer the reader to [10] for a more detailed discussion of SPA.

(7) FPTA [13]
For the method of FPTA of type (m, 1), the elements in the denominator polynomial D(λ) of (37) µi are equal to∫ 1

0 cmci (x)dx , and thus we have

λ =

∫ 1

0
c2

m(x)dx

/∫ 1

0
cm+1cm(x)(x)dx .

(8) FPTAVOP
First we calculate the denominator of the FPTAVOP method of type (m, 1), i.e., formal orthogonal polynomials

associated with the function-valued power series (1) by Algorithm 4

q(m)1 (λ) = λ−

∫ 1
0 c2

m+1(x)dx∫ 1
0 cm(x)cm+1(x)dx

,

and then we obtain q̃(m)1 (λ) by Algorithm 8:

q̃(m)1 (λ) = −

∫ 1
0 c2

m+1(x)dx∫ 1
0 cm(x)cm+1(x)dx

λ+ 1. (38)

The characteristic value of the FPTAVOP method of type (m, 1) is calculated by solving (38) and thus we have

λ =

∫ 1

0
cm(x)cm+1(x)dx

/∫ 1

0
c2

m+1(x)dx .

We make a comparison of the estimates formed using the row sequence of the method of FPTAVOP of type (m, 1)
with corresponding estimates derived from the method of IPA of type (m, 1), the method of MPA of type (m, 1), the
method of CPA of type (m, 1), the SPA method of type (m, 1), the method of FPAT of type (m, 1), the method of GIPA
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Table 1
Estimates of the characteristic value λc; The exact value is λc = 0.747750255563845043 . . .

m λFPTAVOP
c λI

c = λG
c = λεc λFPTA

c λSPA
c λMPA

c λCPA
c

1 0.74775011 0.74766 0.747753 0.7488 0.75 0.8
2 0.7477502553 0.74775011 0.747750261 0.747752 0.74766 0.745
3 0.7477502555635 0.7477502553 0.747750259 0.7477502583 0.747754 0.7485
4 0.7477502555638444 0.7477502555635 0.747750256 0.747750255568 0.74775011 0.747746

of type (m, 2), and ε-algorithm of GIPA of type (m, 2). The results in Table 1 are the estimates of the characteristic
value for each of these eight iterative methods. We find that the estimates from FPTAVOP give the best approximation
among all these methods. In each case, the comparisons with other methods were made using a similar amount of
data, which is, using a similar number of terms of (34).

3.4. Precision of the approximate solution

In Fig. 1 we display the exact (analytic) solution and its approximations obtained using the method of FPTAVOP of
type (m, 1), the method of IPA of type (m, 1), the method of FPTA of type (m, 1), the method of GIPA of type (m, 2),
the ε-algorithm of GIPA of type (m, 2) and the method of MPA of type (m, 1). Also in Fig. 1 we see a remarkable
precision of the methods of FPTAVOP, IPA and FPTA, where graphically there is no significant difference between
the exact and these three methods. Accordingly, in Table 2, we show the errors incurred by the methods of FPTAVOP,
IPA, MPA, SPA, GIPA, ε-algorithm of GIPA and FPTA for x = 0(0.1)0.5 in the solution of (33). And it is clear to see
that the method of FPTAVOP gives the closest result to the exact solution. We list the appropriate rational functions
displayed.

Solution of (33) based on the method of IPA of type (2, 1) is

r(x, λ) =
1 + (x2

− x +
4399

27045 )λ+ ( 1
6 x4

−
1
3 x3

+
4399
27045 x2

+
217

54090 x −
217

36060 )λ
2

1 −
72337
54090λ

.

Solution of (33) based on the method of FPTAVOP of type (2, 1) is

r(x, λ) =
1 + [

5
4 + (x −

1
2 )

2
]λ+ [

161
96 +

5
4 (x −

1
2 )

2
+

1
6 (x −

1
2 )

4
]λ2

−
2220059599
1660050132 (λ+ [

5
4 + (x −

1
2 )

2
]λ2)

1 −
2220059599
1660050132λ

.

Solution of (33) based on the method of GIPA of type (2, 2) is

r(x, λ) =
1 + [−1.425 + (x −

1
2 )

2
]λ+ [0.122 − 1.425(x −

1
2 )

2
+ 0.167(x −

1
2 )

4
]λ2

1 − 2.675λ+ 1.788λ2 .

Solution of (33) based on the method of SPA of type (2, 1) is

r(x, λ) =
1 + (x2

− x +
2917

101115 )λ+ ( 1
6 x4

−
1
3 x3

−
2917

101115 x2
+

18409
40446 x −

18409
36964 )λ

2

1 −
72337
40446λ

.

Solution of (33) based on the method of MPA of type (2, 1) is

r(x, λ) =
1 + (x2

− x +
13
80 )λ+ ( 1

6 x4
−

1
3 x3

+
13
80 x2

+
1
15 x −

1
10 )λ

2

1 −
107
80 λ

.

Solution of (33) based on the method of FPTA of type (2, 1) is

r(x, λ) =
1 + [

5
4 + (x −

1
2 )

2
−

10641347
7957070 ]λ+ [

161
96 +

5
4 (x −

1
2 )

2
+

1
6 (x −

1
2 )

4
−

10641347
7957070 (

5
4 + (x −

1
2 )

2)]λ2

1 −
10641347
7957070 λ

.
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Fig. 1. The analytic solution (exact) of (33) for λ. The curves of FPTAVOP, IPA, FPTA, are indistinguishable from the exact curve, whereas the
curves of GIPA, ε-algorithm, and MPA are perceptibly different and SPA is beyond the exact curve.

Table 2
Errors occurring in the solution of (33) using the different methods for the case of λ = 1

x FPAVFOP IPA MPA SPA FPTA GIPA and ε-algorithm

0 −0.000872 −0.000877 −0.281 −2.661 −0.000873 0.0997
0.1 −0.000655 −0.000659 −0.264 −2.459 −0.000656 0.0777
0.2 −0.000202 −0.000206 −0.243 −2.306 −0.000205 0.0388
0.3 0.000307 0.000311 −0.224 −2.197 0.000311 −0.000621

Solution of (33) based on the method of ε-algorithm of type (2, 2) is

r(x, λ) =
1 + [−1.425 + (x −

1
2 )

2
]λ+ [0.122 − 1.425(x −

1
2 )

2
+ 0.167(x −

1
2 )

4
]λ2

1 − 2.675λ+ 1.788λ2 .

Remark 9. In this example, the functional defined in (14) used in the method of FPTAVOP

ĉ(m−n+1)
j (λi ) =

∫ a

b
c j (x)cm−n+i+1(x)dx, i = 0, 1, . . .

has two choices: ĉ(2)2 and ĉ(2)3 because here m = 2, n = 1 and m − n + 1 = 2. The solution we have obtained was

computed by using the functional of ĉ(2)3 . If we choose ĉ(2)2 , we obtain

q(2)1 (λ) = λ−
l1
l0

= λ−

∫ a
b c2(x) · c2(x)dx∫ a
b c2(x) · c3(x)dx

= λ−
72337/22680

10641347/2494800

and the estimate of the characteristic value is
10641347/2494800

72337/22680
= 0.747753,

which is equal to the result from FPTA, but not good comparing with the estimate obtained by using the functional
of ĉ(2)3 .

4. Conclusion

A new method of producing a sequence of rational approximations to the solution of a linear integral equation
has been described, and its effectiveness has been investigated in many examples. The method is essentially for
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accelerating the convergence of a sequence of functions. In the context of a familiar linear integral equation, the
method of FPTAVOP is shown to be much more efficient in accelerating the characteristic value and more accurate for
calculating the approximate solution than other similar techniques. The second advantage of the method of FPTAVOP
is that we can obtain the denominator of the approximants without computing the determinant which is always an
impractical method when the order of the denominator required is high. The third superiority of this new method is
that we have given an analytic investigation, and an algorithm was obtained too. Finally, the choice of the functional
in (13) is an open question, and the corresponding theoretical analysis is a subject of further research.

Acknowledgements

The authors would like to thank the referees for their corrections and many valuable suggestions.

References
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[9] P.R. Graves-Morris, A review of Padé methods for the acceleration of convergence of a sequence of vectors, Appl. Numer. Math. 15 (1994)

153–174.
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