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Differential coefficients of orthogonal matrix polynomials

Antonio J. Durana,1, Mourad E.H. Ismailb,∗,2

aDepartamento de Análisis Matemático, Universidad de Sevilla, Apdo, P.O. Box 1160, 41080 Sevilla, Spain
bDepartment of Mathematics, University of Central Florida, Orlando, FL 32816, USA

Received 22 July 2004; received in revised form 15 December 2004

Dedicated to Rod Wong on his 60th birthday

Abstract

We find explicit formulas for raising and lowering first order differential operators for orthogonal matrix poly-
nomials. We derive recurrence relations for the coefficients in the raising and lowering operators. Some examples
are given.
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1. Introduction

A systematic study of second-order differential equations satisfied by polynomials orthogonal with
respect to a weight function was the subject of the recent papers [4–6,21,22]. See also [23,24]. This
recent approach is not only different from the method used by Shohat in his classic [25], or the later
approach used by Atkinson and Everitt [3] but it also applies to more general polynomials. The work
[6] also studied the Lie algebra generated by the creation and annihilation operators of the orthogonal
polynomials under consideration. The annihilation operators and the second-order differential equations
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played a crucial role in the evaluation of discriminants of general orthogonal polynomials [19] and in the
electrostatic interpretation of their zeros [20,18].

Orthogonal matrix polynomials are a more recent addition to the very rich subjects of orthogonal
polynomials [27] and moment problems [1,26]. The theory of matrix orthogonal polynomial is still far
from being complete although, many of the landmarks of the theory of scalar orthogonal polynomials,
like the spectral theorem for orthogonal polynomials (aka Favard’s theorem), quadrature formulae and
asymptotics properties (Markov’s theorem, ratio, weak and zero asymptotics), have been extended to
orthogonal matrix polynomials [2,7–16]. The theory of second-order differential equations, analogues
of discriminants and electrostatics of orthogonal polynomials have yet to be generalized to orthogonal
matrix polynomials.

This work is a contribution to the theory of first-order raising and lowering operators as well as the
second-order differential equations for orthogonal matrix polynomials. In Section 2, we record preliminary
results which will be used in later sections. Section 3 contains several examples of creation and annihilation
operators for orthogonal matrix polynomials. Closed form expressions for the differential coefficients in
the creation and annihilation operators are given in Section 4. In Section 4, we also combine these
operators to give a second-order differential equation which the polynomials satisfy.

2. Preliminaries

All the matrices considered in this work are square matrices and are of a fixed size, say N × N . Let
W be a positive definite matrix of C1 weight functions defined on a set E and assume that the moments∫
E

tnW(t) dt and
∫
E

tnW ′(t) dt exist for all orders, n= 0, 1, . . . . The matrix W induces an inner product
on matrix polynomials by

∫
E

P (t)W(t)Q∗(t) dt , for matrix polynomials P and Q. This inner product gives
rise to matrix polynomials {Pn, n�0} orthonormal with respect to the inner product. Let the orthogonality
relation be∫

E

Pm(t)W(t)P ∗
n (t) dt = �m,nId,

Id being the identity matrix. These polynomials satisfy a three term recurrence relation

zP n(z) = An+1Pn+1(z) + BnPn(z) + A∗
nPn−1(z), (2.1)

where for all n, n = 0, 1, 2, . . . , An are invertible matrices and Bn are Hermitian matrices, and we shall
assume that P0(z) is the identity matrix and P−1(z) = �, the zero matrix. The polynomials of the second
kind are defined by

Qn(z) =
∫

E

Pn(t) − Pn(z)

t − z
W(t) dt, n�0,

also satisfy the three term recurrence relation (2.1), n�1, but with initial conditions Q0(z) = �,
Q1(z) = A−1

1 . The Christoffel–Darboux formula for orthogonal matrix polynomials is

P ∗
n−1(z)AnPn(w) − P ∗

n (z)A∗
nPn−1(w) = (w − z)

n−1∑
k=0

P ∗
k (z)Pk(w); (2.2)
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[9, (2.1)], while the Liouville–Ostrogadski formula is

Qn(z)P
∗
n−1 − Pn(z)Q

∗
n−1(z) = A−1

n ; (2.3)

[9, (2.6)]. Moreover the hermitian property [9, p. 1188],

Qn(z)P
∗
n (z) = Pn(z)Q

∗
n(z), (2.4)

holds.
Let

Pn(z) = zn�n + lower order terms. (2.5)

By equating coefficients of zn+1 in (2.1) we get

�n = An+1�n+1. (2.6)

Hence

�n = A−1
n A−1

n−1 · · · A−1
1 , n > 0, �0 = I . (2.7)

Finally, we include the following basic formula on integrating by parts which will be used later.

Lemma 2.1. Let all the weight functions be supported on E, a union of finitely many disjoint intervals
(finite or infinite intervals), and write � for the boundary of E, then for any polynomials P and any matrix
function F with C1 entries, we have∫

E

F(t)W ′(t)P ∗(t) dt = F(t)W(t)P ∗(t)|� −
∫

E

F ′(t)W(t)P ∗(t) dt −
∫

E

F(t)W(t)(P ∗)′(t) dt .

Proof. We first expand P as
∫
E

F(t)W ′(t)P ∗(t) dt as a linear combination of power of t with matrix
coefficients and joint the power of t to the function F to the left-hand side of W ′. It is now enough to
apply an integration by parts and then to recover the polynomial P and its derivative P ′ by moving the
powers of t to the right-hand side of W. �

3. Differential equations

Our first result provides lowering (annihilation) and raising (creation) operators for general weights.

Theorem 3.1. Let all the weight functions be supported on E, a union of finitely many disjoint intervals
(finite or infinite intervals), and write � for the boundary of E. Define An(z) and Bn(z) by

An(z) = Pn(t)W(t)P ∗
n (t)

t − z

∣∣∣∣
�

−
∫

E

Pn(t)W
′(t)P ∗

n (t)
dt

t − z
(3.1)

and

Bn(z) = Pn(t)W(t)P ∗
n−1(t)

t − z

∣∣∣∣
�

−
∫

E

Pn(t)W
′(t)P ∗

n−1(t)
dt

t − z
, (3.2)
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respectively, provided that all the functions on the right-hand sides of (3.1) and (3.2) exist for z /∈ E.
Then Pn(z) satisfies the following differential recurrence relations (lowering and raising operators,
respectively).

P ′
n(z) = An(z)A

∗
nPn−1(z) − Bn(z)AnPn(z), (3.3)

P ′
n(z) = [An(z)(z − Bn) − Bn(z)An]Pn(z) − An(z)An+1Pn+1(z). (3.4)

Proof. We first prove (3.3). Since {Pk(z), k�0} is a basis for the space of matrix polynomials we set

P ′
n(z) =

n−1∑
k=0

CkPk(z), Ck =
∫

E

P ′
n(t)W(t)P ∗

k (t) dt .

Thus,

P ′
n(z) =

∫
E

P ′
n(t)W(t)

[
n−1∑
k=0

P ∗
k (t)Pk(z)

]
dt . (3.5)

Integration by parts gives

P ′
n(z) = Pn(t)W(t)

n−1∑
k=0

P ∗
k (t)Pk(z)

∣∣∣∣∣
�

−
n−1∑
k=0

∫
E

Pn(t)[W ′(t)P ∗
k (t) + W(t)(P ∗

k (t))′]Pk(z) dt .

The integral
∫
E

Pn(t)W(t)(P ∗
k (t))′ dt vanishes due to the orthogonality of the Pk’s. The Christoffel–

Darboux formula (2.2) simplifies the above expression to (3.3).
To establish the raising differential relation, eliminate A∗

nPn−1(z) between (3.3) and (2.1). This com-
pletes the proof. �

It is clear that the lowering and raising operators are not unique. For example for a given function An,
one can define

Bn(z) = (An(z)A
∗
nPn−1(z) − P ′

n(z))P
−1
n (z)A−1

n

and then (3.3) will trivially hold.
We next derive a different pair of differential recurrence relations using the Christoffel–Darboux formula

(2.2).

Example 1. By using the Christoffel–Darboux formula in (3.5) above, we get again the lowering differ-
ential operator (3.3)

P ′
n(z) = Cn(z)A

∗
nPn−1(z) − Dn(z)AnPn(z) (3.6)

but now the differential coefficients are given by

Cn(z) =
∫

E

P ′
n(t)W(t)P ∗

n (t)
dt

t − z
(3.7)
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and

Dn(z) =
∫

E

P ′
n(t)W(t)P ∗

n−1(t)
dt

t − z
. (3.8)

Example 2. This example is the case of scalar polynomials and is taken from [6]. One writes the weight
function w(t)=e−v(t), where v is a twice continuously differentiable function on an interval (a, b) (finite
or infinite). The lowering operator is [6, Theorem 2.1].

p′
n(z) = En(z)pn−1(z) − Fn(z)pn(z) (3.9)

and the coefficients are given by

En(z) = an

w(t)

t − z
p2

n(t)

∣∣∣∣
�

+ an

∫
E

v′(t) − v′(z)
t − z

p2
n(t)w(t) dt (3.10)

and

Fn(z) = an

w(t)

t − z
pn(t)pn−1(t)

∣∣∣∣
�

+ an

∫
E

v′(t) − v′(z)
t − z

pn(t)pn−1(t)w(t) dt . (3.11)

A straightforward calculation gives the following relationships among An, Bn and En, Fn:

En(z) = an

(
An(z) − v′(z)

∫
E

p2
n(t)

t − z
w(t) dt

)
,

Fn(z) = an

(
Bn(z) − v′(z)

∫
E

pn(t)pn−1(t)

t − z
w(t) dt

)
. (3.12)

The representations (3.12) of the coefficients En and Fn do not extend to the matrix case since, in
general V ′(t)e−V (t) �= e−V (t)V ′(t). The reason is that the derivative of the matrix exponential e−V (t) is
−V ′(t)e−V (t) when V (t)V (s) = V (s)V (t), which is not true in general. Indeed when W = U∗DU with
U unitary, and D diagonal, then W = e−V and [V (s), V (t)] = 0, but this is essentially the scalar case.

In Section 4, we will establish closed expressions for all these differential coefficients (that for Example
2 being new).

Both lowering and raising differential operators can be combined to give a second-order differential
equation which the polynomials satisfy. Just differentiate (3.3), then substitute P ′

n−1 from (3.4), with
n → n − 1, and Pn−1 again from (3.3).

Observe that (3.1) implies

(An(z))
∗ = An(z).

We now derive two recursion relations involving An and Bn (the second is an extension of a result due
to Ismail and Wimp [21]).

Theorem 3.2. The recurrence relations

An+1Bn+1(z) + A∗
nB

∗
n(z) = (z − Bn)An(z) (3.13)
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and

An+1An+1(z)A
∗
n+1 − A∗

nAn(z)An = 1 + (z − Bn)Bn+1(z)A
∗
n+1 − A∗

nB
∗
n(z)(z − Bn) (3.14)

hold for n = 0, 1, . . . .

Proof. The left-hand side of (3.13) is

[An+1Pn+1(t) + A∗
nPn−1(t)] W(t)P ∗

n (t)

t − z

∣∣∣∣
�

+
∫

E

[An+1Pn+1(t) + A∗
nPn−1(t)]W

′(t)
z − t

P ∗
n (t) dt

= (t − Bn)

t − z
Pn(t)W(t)P ∗

n (t)

∣∣∣∣
�

− (z − Bn)
Pn(t)W(t)P ∗

n (t)

t − z

∣∣∣∣
�

+ (z − Bn)An(z) −
∫

E

Pn(t)W
′(t)P ∗

n (t) dt .

After applying integration by parts to the last integral and using the orthogonality relation one realizes
that the boundary terms cancel and the above expression reduces to the right-hand side of (3.13).

We next prove that An’s and Bn’s satisfy the recurrence relation (3.14).
Denote the left-hand side of (3.14) by Q(z). Eliminate An+1Pn+1(t) from the terms involving An+1

in Q using (2.1) then replace t − Bn by (t − z) + (z − Bn). The result is

Q(z) = (z − Bn)Bn+1(z)A
∗
n+1 −

∫
E

Pn(t)W
′(t)P ∗

n+1(t)A
∗
n+1 dt

+ A∗
n

∫
E

Pn−1(t)
W ′(t)
t − z

[P ∗
n+1(t)A

∗
n+1 + P ∗

n−1(t)An] dt

+
{
Pn(t) − A∗

nPn−1(t)

t − z

}
W(t)P ∗

n+1(t)A
∗
n+1

∣∣∣∣
�

− A∗
n

Pn−1(t)W(t)P ∗
n−1(t)

t − z
An

∣∣∣∣
�

.

Now we have∫
E

Pn(t)W
′(t)P ∗

n+1(t)A
∗
n+1 dt = Pn(t)W(t)P ∗

n+1(t)A
∗
n+1|� −

∫
E

Pn(t)W(t)(P ∗
n+1(t))

′A∗
n+1 dt ,

due to the orthogonality of the Pn’s. In the notation of (2.5)–(2.7), we find

(P ∗
n+1(t))

′ = (n + 1)tn�∗
n+1 + · · · = (n + 1)P ∗

n (t)(�∗
n)

−1�∗
n+1 + · · ·

= (n + 1)P ∗
n (t)(A∗

n+1)
−1 + · · · .
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Therefore

Q(z) − (z − Bn)Bn+1(z)A
∗
n+1

= (n + 1)Id + A∗
n

∫
E

Pn−1(t)
W ′(t)
t − z

P ∗
n (t)(t − B∗

n) dt

− A∗
n Pn−1(t)

W(t)

t − z
{P ∗

n−1(t)An + P ∗
n−1(t)A

∗
n+1}

∣∣∣∣
�

= (n + 1)Id + A∗
n

∫
E

Pn−1(t)W
′(t)P ∗

n (t) dt

+ A∗
n

∫
E

Pn−1(t)
W ′(t)
t − z

P ∗
n (t)(z − B∗

n) dt − A∗
n Pn−1(t)

W(t)

t − z
P ∗

n (t)(t − B∗
n)

∣∣∣∣
�

= (n + 1)Id + A∗
nPn−1(t)W

′(t)P ∗
n (t)|�

− A∗
n

∫
E

Pn−1(t)W(t)nP ∗
n−1(t)(A

∗
n)

−1 dt

+ A∗
n

∫
E

Pn−1(t)
W ′(t)
t − z

P ∗
n (t)(z − B∗

n) dt

− A∗
nPn−1(t)

W(t)

t − z
P ∗

n (t)(t − B∗
n)

∣∣∣∣
�

.

It is easy now to simplify the above equality to (3.14). �

4. Differential coefficients of orthogonal matrix polynomials

We now give closed expressions for the differential coefficients An’s and Bn’s. Note that these closed
expressions are also new for the scalar case.

Theorem 4.1. Define a matrix function Fw by

FW(z) =
∫

E

dW(t)

t − z
, z /∈ E.

Then we have

An(z) = −Pn(z) [FW(z) + P −1
n (z)Qn(z)]′P ∗

n (z), (4.1)

Bn(z) = − Pn(z)[FW(z) + P −1
n−1(z)Qn−1(z)]′P ∗

n−1(z)

+ Pn(z)[P −1
n (z)Qn(z) − P −1

n−1(z)Qn−1(z)](P ∗
n−1)

′(z). (4.2)

Proof. Performing integrating by parts in (3.1) and in view of Lemma 2.1, we find that

An(z) =
∫

E

Pn(t)

t − z
W(t)(P ∗

n (t))′ dt +
∫

E

(
Pn(t)

t − z

)′
W(t)P ∗

n (t) dt . (4.3)
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From the orthogonality of the polynomials (Pn)n, it follows that the first integral in the right-hand side
of (4.3) is given by

∫
E

Pn(t)

t − z
W(t)(P ∗

n (t))′ dt =
∫

E

Pn(t)W(t)
(P ∗

n )′(t) − (P ∗
n )′(z)

t − z
dt +

∫
E

Pn(t)W(t)
(P ∗

n )′(z)
t − z

dt

=
∫

E

Pn(t)W(t)
(P ∗

n )′(z)
t − z

dt

=
∫

E

Pn(t) − Pn(z)

t − z
W(t)dt (P ∗

n )′(z) +
∫

E

Pn(z)

t − z
W(t) dt (P ∗

n )′(z)

= Qn(z)(P
∗
n )′(z) + Pn(z)FW(z)(P ∗

n )′(z).

Similarly we see that the second integral in the right-hand side of (4.3) is equal to

∫
E

(
Pn(t)

t − z

)′
WP ∗

n(t) dt

=
∫

E

d

dt

(
Pn(t) − Pn(z)

t − z

)
W(t)P ∗

n (t) dt +
∫

E

d

dt

(
Pn(z)

t − z

)
W(t)P ∗

n (t) dt

=
∫

E

d

dt

(
Pn(z)

t − z

)
W(t)P ∗

n (t) dt

= −Pn(z)

∫
E

1

(t − z)2 W(t)P ∗
n (t) dt

= −Pn(z)
d

dz

(∫
E

W(t)
P ∗

n (t)

t − z
dt

)

= −Pn(z)
d

dz

(∫
E

W(t)
P ∗

n (t) − P ∗
n (z)

t − z
dt +

∫
E

W(t)

t − z
P ∗

n (z) dt

)
= −Pn(z)[Q∗

n)
′(z) − Pn(z)(FW(z)P ∗

n (z)]′.

The above calculations show that An(z) is of the form

An(z) = Qn(z)(P
∗
n )′(z) + Pn(z)FW(z)(P ∗

n (z))′

− Pn(z)(Q
∗
n)

′(z) − Pn(z)(FW(z)P ∗
n (z))′

= − Pn(z)F
′
W(z)P ∗

n (z) − Pn(z)(Q
∗
n)

′(z) + Qn(z)(P
∗
n )′(z). (4.4)

Taking into account the fact that Pn(z)Q
∗
n(z) = Qn(z)P

∗
n (z), see (2.4), we find that

(Q∗
n)

′(z) = (P −1
n (z)Qn(z))

′P ∗
n (z) + P −1

n (z)Qn(z)(P
∗
n )′(z).

Using the above expression, we simplify (4.4) and establish (4.1).
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The proof of the formula (4.2) is similar. First observe that the integral

∫
E

d

dt

(
Pn(t) − Pn(z)

t − z

)
W(t)P ∗

n−1(t) dt

again vanishes because the degree of the polynomial

d

dt

(
Pn(t) − Pn(z)

t − z

)

is only n − 2. �

Note that proceeding in the same way we can find the following closed expression for the differential
coefficients Cn, Dn, En and Fn given by (3.7), (3.8), (3.10) and (3.11). Indeed the first two have the form

Cn(z) = P ′
n(z)Q

∗
n(z) + P ′

n(z)FW(z)P ∗
n (z),

Dn(z) = P ′
n(z)Q

∗
n−1(z) + P ′

n(z)FW(z)P ∗
n−1(z); (4.5)

while the remaining two functions take the from (3.12):

En(z) = −anp
2
n(z)

[(
FW(z) + qn(z)

pn(z)

)′
+ v′(z)

(
FW(z) + qn(z)

pn(z)

)]
,

Fn(z) = − anpn(z)pn−1(z)

[(
FW(z) + qn−1(z)

pn−1(z)

)′
+ v′(z)

(
FW(z) + qn(z)

pn(z)

)]

+ anpn(z)p
′
n−1(z)

(
qn(z)

pn(z)
− qn−1(z)

pn−1(z)

)
. (4.6)

In deriving (4.6) we used (3.12).
The formula (4.1) and Markov’s theorem for orthogonal matrix polynomials [9, Theorem 1.1] provide

information about the size of the differential coefficient An. To see this write �n for the set of zeros of
Pn and put

� =
⋂

N �0

MN, where MN =
⋃

n�N

�n.

The information alluded to above is contained in the following corollary.

Corollary 4.2. Assume that the matrix weight W is determinate, i.e., there is no other matrix weight with
the same moments. Then we have the limiting relation

lim
n→∞ P −1

n (z)An(z)(P
∗
n )−1(z) = −2F ′

W(z) = 0

holds uniformly on compact subsets of C\�.
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The analogous result for Bn is more difficult to derive. To motivate the result we first consider the
scalar case. The expression for Bn as given by (4.2) can be simplified as follows:

Bn(z) = − pn(z)pn−1(z)

(
FW(z) + qn−1(z)

pn−1(z)

)′
+ pn(z)p

′
n−1(z)

(
qn(z)

pn(z)
− qn−1(z)

pn−1(z)

)

= − pn(z)pn−1(z)

(
FW(z) + qn−1(z)

pn−1(z)

)′
+ pn(z)p

′
n−1(z)

qn(z)pn−1(z) − qn−1pn(z)

pn(z)pn−1(z)

= − pn(z)pn−1(z)

(
FW(z) + qn−1(z)

pn−1(z)

)′
+ p′

n−1(z)
1

anpn−1(z)
.

From this we obtain

Bn(z)

pn(z)pn−1(z)
= −

(
FW(z) + qn−1(z)

pn−1(z)

)′
+ p′

n−1(z)

npn−1(z)

n

anpn(z)pn−1(z)
.

As before, Markov’s theorem implies that the first term on the right-hand side of that formula converges
to 0 uniformly in compact subsets of C\�. As for the second term

p′
n−1(z)

npn−1(z)

n

anpn(z)pn−1(z)

we expand the first factor into partial fractions

p′
n−1(z)

npn−1(z)
= 1

n

n∑
k=1

1

z − xk

and it easily follows that the above expression is uniformly bounded on compact subsets of C\�. The
second factor however may not be to be bounded. Indeed, we have

n

anpn(z)pn−1(z)
= n

(
qn(z)

pn(z)
− qn−1(z)

pn−1(z)

)
. (4.7)

Markov’s theorem guarantees that

qn(z)

pn(z)
− qn−1(z)

pn−1(z)

converges to zero uniformly on compact subsets of C\�, but with the only assumption of the determinacy
of the measure the convergence can be as slow as one wants (slower, for instance, than 1/n). But assuming
further hypothesis, we can prove that this second factor (4.7) also tends to zero uniformly in compact
subsets of C\�. For instance, if the polynomials {pn : n�0} are in the Nevai class, that is, {an : n�0} and
{bn : n�0} are convergent sequences. Assume first that limn→∞ an = a > 0, in which case we can put
a = 1

2 . Then, the sequence of orthonormal polynomials (pn)n satisfies the following n-root asymptotic
behavior

lim
n→∞

1
n
√|pn(z)| =

∣∣∣z −
√

z2 − 1
∣∣∣ = �(z)
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uniformly in compact subsets of C\�. This means that 1/|pn(z)| ∼ �n(z); but �(z) < 1, which implies
that (4.7) tends to zero as n tends to infinity. If limn an = 0, we can proceed as follows:

n

anpn(z)pn−1(z)
= n

an�n�n−1p̂n(z)p̂n−1(z)
,

where �n is the leading coefficient of pn and p̂n stands for the monic orthogonal polynomials. Taking into
account (2.6) and (2.7), we can write:

n

anpn(z)pn−1(z)
= n

a2
n−1a

2
n−2 · · · a2

1

(z − xn,1) · · · (z − xn,n)(z − xn−1,1) · · · (z − xn−1,n−1)
, (4.8)

where xm,k , k = 1, . . . , m, are the zeros of pk . Given a compact set K, K ⊂ C\�, we write c = d(K, �).
Then (4.8) gives that∣∣∣∣ n

anpn(z)pn−1(z)

∣∣∣∣ �n
|an−1an−2 · · · a1|2

c2n−1 ; (4.9)

Since limn an = 0, we can take N �0 such that if k�N then |ak|�c/2; from (4.9), we get that∣∣∣∣ n

anpn(z)pn−1(z)

∣∣∣∣ �C
n

4n
,

where C > 0 is a constant which does not depend on n. This shows that also for a = 0, (4.7) tends to zero
as n tends to infinity uniformly in compact subsets of C\�.

Actually, this result (for any compact set K, K ⊂ C\�, there exist constants � > 0, 0 < c < 1 for which∣∣∣∣
∫

dw(t)

t − z
− qn(z)

pn(z)

∣∣∣∣ ��cn,

is also true for measures with compact support (see [17]); hence we have proved that

Corollary 4.3. If we assume that the function w has compact support, then we have that

lim
n

Bn(z)

pn(z)pn−1(z)
= −2F ′

W(z) = 0

uniformly in compact subset of C\�.

In the matrix case, to estimate the size of Bn is more involved, mainly because then the sequence
P ′

n(z)P
−1
n (z)/ndoes not need to be bounded. Indeed, if we expand the rational matrix functionP ′

n(z)P
−1
n (z)

in simple fractions (it is always possible: see [9, p. 1186]), we find

P ′
n(z)P

−1
n (z) =

m∑
k=1

Ck

z − xk

,

where xk , k = 1, . . . , m, are the zeros of the matrix polynomial Pn, xk with multiplicity lk �N and

Ck = 1

(det(Pn(t)))
(lk)

P ′
n(xk)(Adj(Pn(t)))

(lk−1)(xk).
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In the scalar case lk = 1 and then Ck = 1, but in the matrix case this is, in general, no longer true. In
other words, in the scalar case the rational function p′

n(z)/npn(z) is the Hilbert transform of the counting
measure �n = (1/n)

∑n
k=1�xn for the zeros of pn: since �n is a probability measure its Hilbert transform is

bounded on compact subsets of C\�. In the matrix case neither (1/n)P ′
n(z)P

−1
n (z) nor (1/n)P −1

n (z)P ′
n(z)

is the Hilbert transform of the corresponding counting measure for the set of zeros of Pn (see [14, p. 40]).
Using Markov’s theorem we can also estimate the size for the differential coefficients Cn and Dn (see

(3.7) and (3.8)); indeed from (4.5), we get

(P ′
n(z))

−1Cn(z)(P
∗
n )−1(z) = Q∗

n(z)(P
∗
n )−1(z) + FW(z),

(P ′
n(z))

−1Dn(z)(P
∗
n−1)

−1(z) = Q∗
n−1(z)(P

∗
n−1)

−1(z) + FW(z);

Markov’s theorem then gives that if W is determinate then

lim
n

(P ′
n(z))

−1Cn(z)(P
∗
n )−1(z) = 0,

lim
n

(P ′
n(z))

−1Dn(z)(P
∗
n−1)

−1(z) = 0,

uniformly in compact sets of C\�.
Finally, for the differential coefficients En and Fn (see (3.10) and (3.11)), using (4.6) and proceeding

as before, we have that if w is determinate then

lim
n

En(z)

anp2
n(z)

= 0

and if, in addition, we assume that w has compact support then

lim
n

Fn

anpn(z)pn−1(z)
= 0

uniformly in compact sets of C\�.
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