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1. INTRODUCTION

In this note, we examine a property of pairs of skew-symmetric forms.
The main theorem is given in Sec. 2 below, with a matrix formulation in
Sec. 3. An application of the result to passive network synthesis appears
in [1] and [2}, and the matrix formulation also allows immediate rederiva-
tion of a result of [3] on the characteristic polynomial of the product of
two skew matrices.

2. MAIN RESULT

THEOREM 1. Let ¢; (1 = 1,2): X X X — R be bilinear skew-symmetric
forms on an n-dimensional real vector space X possessing a positive definite
inner product {-,-). Then there exists an orvthogonal direct decomposition
X, @ X, with dim Xy = [#/2] and with ¢; zero on X; X X; (1 =1, 2).
(Here, [n[2] is the greatest integer s for which s < n[2).

Proof. We use induction on #. For » = 1, the result is immediate.
First, observe there exist linear transformations U, ({1 =1,2): X - X
such that (U, v) = ¢,{x, y). Fordefine L,,: X — Rby L,(y) = ¢,(x,v).
Then L,, is a linear functional and since X is an inner product space, there
exists z; € X with L, (y) = (z;, ¥) by the canonical isomorphism between
X and its dual. Define the transformation U, by z; = U; it is easily
checked that U, is linear. The skew-symmetric property of ¢,(-,} also
shows that U, = — U;*, with U;* the adjoint of U,, for (U, y) =
$ulx, y) = — $i(y, %) = — Uy, 2) = — (y, U*x) = (= U*x, ).
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Now let w be an arbitrary nonzero vector in X, and let Y, be the
subspace generated by (U,Uj)*w, £ =0,1,2,.... Set Y, = U,(Y,).
Then the skew property of the U, shows that Y, and Y, are orthogonal.
Further, if Y=Y, ® Y, and m = dim Y, then dim Y, = [m/2]. To
see this, observe that dim Y, <{ dim Y; (from the definition of Y,) and
dim Y, << dim Yy + 1 (because Y is generated by UzY, and by w).
The two inequalities on dim Y, and dim Y, then imply dim Y, = [m/2].

Note further that Y, | Y, and Y, = U(Y;) imply that (-, ) is
identically zero on Y; x Y,;. Likewise, because UpY,C Yy, ¢y(-, ) is
identically zero on Y, X Y.

Provided that simultaneously,  is not odd and » is not even, apply
the induction hypothesis to Z, the orthogonal complement of Y in X, to
obtain Z = Z, ® Zy, Z, | Zs, dim Zy, = [(n — m)/2] and ¢,(+,-) zero
on Z; X Z, Then take X, =Y, ® Z, ({ =1, 2). It is readily checked
that dim X, = [m/2] + [(n — m)/2] = [»/2]. Further ¢,(-,) is zero on
X; x X, for it is obviously zeroon Y; X Y, Z; X Z;, while with y; € Y,
z;€ Z;, onehas vy, z,) = (Uyyy, ;) = Osince Uy, e Y, ;€ Zand Y | Z.

In case m is odd and # is even, minor adjustment is required to make
dim X, = [»/2]. Apply a variant of the induction hypothesis to Z, still
the orthogonal complement of Y in X, to obtain as above Z = Z; @ Z,,
Zy 1 Zy and ¢,(-,-) identically zero on Z; X Z; but now dim Z, =
[(n — m)/2]. Then proceed as before.

3. MATRIX STATEMENT AND MISCELLANEOUS POINTS

The matrix statement of the main result is immediately obtainable.
(The superscript prime denotes matrix transposition.)

THEOREM 2. Let S; (i = 1, 2) be n X n real skew-symmetric matrices.
Then there exists a real orthogonal matrix V such that

0 , Slb:| ’ VS,V = [ SQa/ Szb} ,
— S Sy, — S O

with the zero blocks of size n — [n|2] and [n|2] vespectively.

V'S,V = l (1)

There is an obvious generalization to skew-Hermitian matrices S;
transformed by a unitary matrices V, and indeed a corresponding gener-
alization of Theorem 1.
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From (1), there follows a quick proof of the result of [3], to the effect
that all nonzero eigenvalues of S5, have even multiplicity. For convenience,
assume # is even; then

pssw = |00
R 0 — S3iSap
and
{A(5152)} = (A= S1S)} U (A~ SyuSan)},
= (2~ SuSa)} U (A~ SuSu)},
= (= SuSu} U {Z:(— SuSa)}-
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