Orthogonal Decomposition Defined by a Pair of Skew-Symmetric Forms

B. D. O. ANDERSON
University of Newcastle
New South Wales, Australia
Communicated by Hans Schneider

1. INTRODUCTION

In this note, we examine a property of pairs of skew-symmetric forms. The main theorem is given in Sec. 2 below, with a matrix formulation in Scc. 3. An application of the result to passive network synthesis appears in [1] and [2], and the matrix formulation also allows immediate rederivation of a result of [3] on the characteristic polynomial of the product of two skew matrices.

2. MAIN RESULT

Theorem 1. Let $\phi_{i}(i=1,2): X \times X \rightarrow R$ be bilinear skew-symmetric forms on an n-dimensional real vector space X possessing a positive definite inner product $\langle\cdot, \cdot\rangle$. Then there exists an orthogonal direct decomposition $X_{1} \oplus X_{2}$ with $\operatorname{dim} X_{2}=[n / 2]$ and with ϕ_{i} zero on $X_{i} \times X_{i}(i=1,2)$. (Here, $[n / 2]$ is the greatest integer s for which $s \leqslant n / 2$).

Proof. We use induction on n. For $n=1$, the result is immediate. First, observe there exist linear transformations $U_{i}(i=1,2): X \rightarrow X$ such that $\left\langle U_{i} x, y\right\rangle=\phi_{i}(x, y)$. For define $L_{i x}: X \rightarrow R$ by $L_{i x}(y)=\phi_{i}(x, y)$. Then $L_{i x}$ is a linear functional and since X is an inner product space, there exists $z_{i} \in X$ with $L_{i x}(y)=\left\langle z_{i}, y\right\rangle$ by the canonical isomorphism between X and its dual. Define the transformation U_{i} by $z_{i}=U_{i} x$; it is easily checked that U_{i} is linear. The skew-symmetric property of $\phi_{i}(\cdot, \cdot)$ also shows that $U_{i}=-U_{i}{ }^{*}$, with U_{i}^{*} the adjoint of U_{i}, for $\left\langle U_{i} x, y\right\rangle=$ $\phi_{i}(x, y)=-\phi_{i}(y, x)=-\left\langle U_{i} y, x\right\rangle=-\left\langle y, U_{i}^{*} x\right\rangle=\left\langle-U_{i}{ }^{*} x, y\right\rangle$.

Now let w be an arbitrary nonzero vector in X, and let Y_{1} be the subspace generated by $\left(U_{2} U_{1}\right)^{k_{w}}, k=0,1,2, \ldots$ Set $Y_{2}=U_{1}\left(Y_{1}\right)$. Then the skew property of the U_{i} shows that Y_{1} and Y_{2} are orthogonal. Further, if $Y=Y_{1} \oplus Y_{2}$ and $m=\operatorname{dim} Y$, then $\operatorname{dim} Y_{2}=[m / 2]$. To see this, observe that $\operatorname{dim} Y_{2} \leqslant \operatorname{dim} Y_{1}$ (from the definition of Y_{2}) and $\operatorname{dim} Y_{1} \leqslant \operatorname{dim} Y_{2}+1$ (because Y_{1} is generated by $U_{2} Y_{2}$ and by w). The two inequalities on $\operatorname{dim} Y_{1}$ and $\operatorname{dim} Y_{2}$ then imply $\operatorname{dim} Y_{2}=[m / 2]$.

Note further that $Y_{1} \perp Y_{2}$ and $Y_{2}=U_{1}\left(Y_{1}\right)$ imply that $\phi_{1}(\cdot, \cdot)$ is identically zero on $Y_{1} \times Y_{1}$. Likewise, because $U_{2} Y_{2} \subset Y_{1}, \phi_{2}(\cdot, \cdot)$ is identically zero on $Y_{2} \times Y_{2}$.

Provided that simultaneously, m is not odd and n is not even, apply the induction hypothesis to Z, the orthogonal complement of Y in X, to obtain $Z=Z_{1} \oplus Z_{2}, Z_{1} \mid Z_{2}, \operatorname{dim} Z_{2}=[(n-m) / 2]$ and $\phi_{i}(\cdot, \cdot)$ zero on $Z_{i} \times Z_{i}$. Then take $X_{i}=Y_{i} \oplus Z_{i}(i=1,2)$. It is readily checked that $\operatorname{dim} X_{2}=[m / 2]+[(n-m) / 2]=[n / 2]$. Further $\phi_{i}(\cdot, \cdot)$ is zero on $X_{i} \times X_{i}$, for it is obviously zero on $Y_{i} \times Y_{i}, Z_{i} \times Z_{i}$, while with $y_{i} \in Y_{i}$, $z_{i} \in Z_{i}$, one has $\phi_{i}\left(y_{i}, z_{i}\right)=\left\langle U_{i} y_{i}, z_{i}\right\rangle=0$ since $U_{i} y_{i} \in Y, z_{i} \in Z$ and $Y \perp Z$.

In case m is odd and n is even, minor adjustment is required to make $\operatorname{dim} X_{2}=[n / 2]$. Apply a variant of the induction hypothesis to Z, still the orthogonal complement of Y in X, to obtain as above $Z=Z_{1} \oplus Z_{2}$, $Z_{1} \perp Z_{2}$ and $\phi_{i}(\cdot, \cdot)$ identically zero on $Z_{i} \times Z_{i}$, but now $\operatorname{dim} Z_{1}=$ $[(n-m) / 2]$. Then proceed as before.

3. MATRIX STATEMENT AND MISCELLANEOUS POINTS

The matrix statement of the main result is immediately obtainable. (The superscript prime denotes matrix transposition.)

Theorem 2. Let $S_{i}(i=1,2)$ be $n \times n$ real skew-symmetric matrices. Then there exists a real orthogonal matrix V such that

$$
V^{\prime} S_{1} V=\left[\begin{array}{cc}
0 & S_{1 b} \tag{1}\\
-S_{1 b}^{\prime} & S_{1 c}
\end{array}\right], \quad V^{\prime} S_{2} V=\left[\begin{array}{cc}
S_{2 a} & S_{2_{b}} \\
-S_{2 b}^{\prime} & 0
\end{array}\right]
$$

with the zero blocks of size $n-[n / 2]$ and $[n / 2]$ respectively.

There is an obvious generalization to skew-Hermitian matrices S_{i} transformed by a unitary matrices V, and indeed a corresponding generalization of Theorem 1.

From (1), there follows a quick proof of the result of [3], to the effect that all nonzero eigenvalues of $S_{1} S_{2}$ have even multiplicity. For convenience, assume n is even; then

$$
V^{\prime} S_{1} S_{2} V=\left[\begin{array}{cc}
-S_{1 b} S_{2 b}^{\prime} & 0 \\
0 & -S_{1 b}^{\prime} S_{2 b}
\end{array}\right]
$$

and

$$
\begin{aligned}
\left\{\lambda_{i}\left(S_{1} S_{2}\right)\right\} & =\left\{\lambda_{i}\left(-S_{1 b} S_{2 b}^{\prime}\right)\right\} \cup\left\{\lambda_{i}\left(-S_{1 b}^{\prime} S_{2 b}\right)\right\} \\
& =\left\{\lambda_{i}\left(-S_{1 b} S_{2 b}^{\prime}\right)\right\} \cup\left\{\lambda_{i}\left(-S_{2 b} S_{1 b}^{\prime}\right)\right\} \\
& =\left\{\lambda_{i}\left(-S_{1 b} S_{2 b}^{\prime}\right)\right\} \cup\left\{\lambda_{i}\left(-S_{1 b} S_{2 b}^{\prime}\right)\right\}
\end{aligned}
$$

This work was supported by the Australian Research Grants Committee. The suggestion of the referee for a simplification in the proof is also acknowledged.

REFERENCES

1 B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis-A Modern Systems Theory Approach, Prentice-Hall, Englewood Cliffs, N.J. (1972).
2 B. D. O. Anderson, Minimal gyrator lossless synthesis, IEEE Trans. Circuit Theory, Vol. CT-20, January 1973, 11-15.
3 M. P. Drazin, A note on skew-symmetric matrices, Math. Gaz. 36(1952), 253-255.
Received May, 1972; revised February, 1973

