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It is proved that if p is a prime, k and m<p are positive integers, and I' is a vertex
symmetric digraph of order p* or mp, then I' has an automorphism all of whose orbiis have
cardinality p. Vertex symmetric graphs of order 2p such that 2p —1 is not the square of a
composite irteger and vertex symmetric digraphs of order p* are characterised.

1. Introduction

In 1967 Turner [1€1 characterised vertex symmetric graphs of prime order and
gave a necessary and sufficient condition for two vertex symmetric graphs of
prime order to be isomorphic. His results were improved by Alspach [1]. Frucht,
Graver and Watkins [6] characterised the vertex symmetric generalised Petersen
graphs. ‘ '

In this paper we shall extend these results to other classes of vertex symmetric
graphs and digraphs. We shall investigate the properties of vertex symmetric
digraphs whose order is either a power of a prime or mp (in this paper p always
denotes a prime), where 1sm=< p

Throughout the paper I" will denote a finite digraph, and G will denote a finite

group.

2. Preliminarics

A digraph T consists of a finite set of vertices V(I') and a set of cdges
E(IN < V(I x V(I') which is an izreflexive relation. on V(I"). [V(I')| is called the
order of I'. A digraph T is a graph if E(I') is a symmetric relation.

Let u, ve V(D). If (4, v)e E(I'), we write u-—>v. If u—v and v > u, then we
say that u is adjacent to v, and that u is a neig hbour of v, und we write u~v. By
N(v) we denote the set of all neighbours of v. The complement of I' is a digraph
¢ such that V(I')= V(I"} and-

E(I*)=(V(Ix V(IMN\ TUEI)
where I is the identity relation on V{(I').
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If W, W'cV(D), then I'["W] wi'i denote the subgraph of I' induced by W,
E{(W, W) will denote E(I''N (W x W), and I'TW, W] wil denote the subgraph of
I’ with the vertex set WUW' and the edge set F(W, W) UE(W', W). If
E(W, W) =WXx W', then we shall write WI' W',

A digraph " is disconnected if there exists a ron-empty proper subset W of
V(I') such that E(W, V(IN\ W)UE(V(I)\ W, V/)=0. and is connected if it is
not disconnected. A digraph I' is totally disconnecied if E(I'V=§.

For all group-theoretic definitions not defined here we refer the reader to [12]
Let V be a finite set. The identity permutation on V will always be denoted by id.
A permutation g#id on V is called (m, n)-homogeneous if it has m orbits of
cardinality n and no other orbit. It is called homogeneous if it is (m, n)-
homogencous for some m, n. A transitive permutation group on V is r-
imprimitive if it has at least one non-trivial r-block. If 8 ={8,,B,...., B} i. a
complete block system of a transiiive permutation group G on V, then g will
denote the permutation on @B induced by ge GG (that means g: B; > g(B)), for
each i={1.2,..., kY). By [12, Proposition 7.2] G, the set of all § (ge G), is a
transitive permutation group on @B and the mapping (g -» g) is a homomorphism
of G onto G.

Let " be a digraph. A permutation f on V(I') induces a permutation on
V(I x V(I'). This induced permutation may also be denoted by f, when no
confusion will arise. The automorphism group Autl of I' is the group of all
permutations f on V(I') such that f(E(I") = EI').

A digraph I' is vertex symmetric if Aut I is transitive. A digraph I' is a Cayley
digraph if Aut contains a regular subgroup. A digreph I' is impriiitive (r-
imprimitive) if Aut I’ contains an imprimitive (r-imprimitive) subgroup. If % is a
complete non-trivial block system of some imprimitive subgroup of Autl, then
I'{AB) will denote a digraph such that V(I'(8)) = B and (B, B")e E(I'(®)) i, and
only if neither BI'B' nor BI* B'. A digraph I' is primitive if it is venax
symmetric and every transitive subgroup of Aut I is primitive.

In view of our definitions above, every vertex symmetric digraph is either
primitive or imprimitive. Furthermore, cvery vertex symmetric digraph of prime
order is by [12, Theorem 8.3] necessarily primitive. However, there exist primi-
tive digraph: whose order is not a prime, for example the odd graphs O, (defined
in [4]) are primitive for sufficiently large k (oral communication by T. Ito).
Anorher example of primitive digraphs of composite order was pointed out to the
author by C. ©50dsil in a personal correspondence. Namely, for each prime p=+1
(mod 16) there exists a primitive graph of order p(p®—1)/48 [4, p. :26] whose
automorphism group is primitive, is isomorphic to PSL{2, p), and has 10 transitive
proper subgroup. On the other hand, since the cartesran product of two vertex
symmetric digraphs of order =2 is imprimitive, it follows that there exists an
imprimitive digraph of order n for each composite integer n.

Turner [10] called a gvaph a p-starred polygon if it has a (1, p)-homogeneous
avtaaorphism. As an extension of this idea, we shall call a digraph I' galactic
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((m, n)-gala tic) if AutI" contains a homogeneous ((m, n)-homogeneous) au-
tomorphisry. If f is a homogeneous automorphism of I, then [] wul denote the
subgroup of all automorphisms g of I' such that g(X) is an orbit of f for every
orbit X of f.

A digraph I' is uniformly galactic ((m, n)-uniformly galactic) if Aut I' contains
homogeneous ((m, n)-homcgeneous) automorphism f such that [f] is transitive.

Proposition 2.1. If m, ;i =2, then every (m, n'-uniforaly galactic digraph T is
n-imprimitive.

Proof. Let f be an (m, n)>-homogeneous automorphism of I' such that [f] is
transitive. The set of all orbits of f is a complete n-bloc« system of [f]. Therefore
I' is n-imprimitive.

We shall abbreviate “uniformly” to U, *‘galactic graph” to GG, and “galactic
digraph™ to GD. Thus, for example, (m, n)-UGD will mean *‘(m, n)-uniformly
galactic digraph™.

Propesition 2.2. Let I” be a vertex symmetr:: digraph, G be a transitive subgroup of
Aut I, and p be a prime dividinig |V(i")|. Then G contains an element of order p.

Prooi. Clearly, {V(I')| divides |G| and therefore p divides |G|. The Sylow
theorems imply that G contains an element of order p.

A straightforward consequence of Proposition 2.2 is:

Corollary 2.3. (Turner [10], Alspach [1]). Every vertex symmetric digraph of order
pis a (1. p)-GD (and therefore a (1, p)-UGD).

We propose the following problem:

Problem 2.4. We have seen that every vertex symmetric digraph of prime order is
galactic. Does there exist a vertex symmetric digraph which is not gaiactic?

We remark that any Cayley digraph C is galactic because its automorphism
group Aut C has a regular subgroup and every non-identity element of this
subgroup is homogencous.

The aim of this paper is to find some other classes of vertex symmetric digraphs
which are necessarily galactic. A group-theoretic result {12, Theorem 3.4'] implies
that a digraph of order p, (k is a positive integer) is vertex syminetric if and only if
icis (p" ', p)-UG (Theorem 3.3) thus giving a characterisation of vertex symmet-
ric digraphs of prime power order. Furthermore, we shall prove (Theorem 3.4)
that if 1sm<p, then every vertex symmetric digraph of order mp is (m, p)-
galactic. In addition we shall prove some further results about galactic graphs. In
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Section 5, we shall find a necessary and sufficient condition for two (2, p)-galactic
graphs to be isomorphic (Theorem 5.4). This may be compared with the result of
Turner [10, Theorem 3] which gives a necessary and sufficient conditicn for two
(1, p)-galactic graphs to be isomorphic and with the result of Alspach and Sutcliffe
[2, Theorem 10] which gives a necessary and suffizient condition for two (2, p)-
uniformly galactic graphs to be isomorphic. Alspach and Sutcliffe [2] and Toida
[11] have independently conjectured that every vertex symmetric graph of order
2p is (2, p)-UG. We shall prove this to be the case for imprimitive graphs of order
2p (Theorem 6.2). This result does not generalise to imprimitive graphs of order
mp (3=m=<p) as we shall see in Section 4. A group-theoretic result shcws that
primitive graphs of order 2p cannot exist unless p=313 and 2p—1 is the square
of a composite integer. Thus for all other primes, Theoiem 6.2 leads to a
characterisation of vertex symmetric graphs of order 2p; this result may be
compared with the characterisation of vertex symmetric graphs of order p
obtained by Turner [10].

3. Galactic and vertex symmetric digraphs

Proposition 3.1[12, Theorem 3.4'). Let W be an orbit of a permutation group G. If
p’ is the highest power of a prime p dividing |W| and P is a Sylow p-subgroup of G,
then every shortest orbit of P in W has cardinality p*.

Proposition 3.2. Let I" be a cortex symmetric digraph of order p*, where k is a
positive integer, and P by a Sylow p-subgroup of Aut I'. Then Z(P), the centre of P,
contains a (p* ', p)-homogeneous element f such that P < [f] and [f] is transitive.

Proof. Since every finite p-group has a non-trivial centre [7, Theorem 4.3.1] we
can select an element f of Z(P) of order p. Since f# id, ther« is v e V(I") such that
flv)# v. If we V(I), then g{v)=w for some ge P (since P 1 by Propoesition 3.1
transitive) and so f(w) == fg(v) = gf(v) # g(v) = w. Hence f has no fixed vertex and
so it is (p* "', p)-homogeneous. Since e Z(P), it follows *hat P<| ] and so [f] is
transitive,

A straightforviard consequence of Proposition 3.2 is

Theorem 3.3. A digraph of order p*, where k is a positive int- ger, is vertex
symmetric if and only if it is a (p* ™', p)-UGD.

Theorem 3.3 can be thought of being a characterisation of vertex symmetric
digraphs of piime power order and thus a generalisation of Turner's result [10,
Theorem 3). The situation is not quite so nice in the case of vertex symmetric

digraphs of order mp (1=m=<p). In general we can only orove the following
result
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Theorem 3.4. Every vertex synunetric digrapn of order mp (1sm=<p) is an
(m, p)-GD.

Proof. Let I' be a vertex symmetric digraph of order mp and P be a Sylow
p-subgroup of Aut " If m =p, then I' is an (m, p)-GD in view of Tueorem 3.3.
We may therefore assume that m <p. The carcinality of each orbit of P divides
|P| and so is a power of p, and hence must be either 1 or p since |V(I)|<p>.
However, the shortest orbits of P have cardinality p by Proposition 3.1 with
G=AutI" and W= V(I'). Hence P has m orbits of cardinality p and no other
orvit. If fe P and X is an orbit of F, then the restriction f* of f on X is either id
or is (1, p)-homogeneous. Let #(f) and #(f) be the sets of orbits X of P for which
f* =id and fX is (1, p)-homogeneous, respectively. Select g € P for which {#(g)| is
as large as possible. Suppose if possible that #(g) # . Select Y e.#(g). Since Y is
an ortit of P, Y € #(h) for some h & P. For each X € #(g) there is clearly at most
one se{l,2,...,p—1} such that (g% =h* Moreover, |#H(g)l<m=<p-1.
Therefore there is re{1,2,..., p—1} such that, for each Xe #(g), (%) #h*.
There’ore, for each X e #(g), (g7"h)*#id and so X € #(g™"h). Moreover, g¥ =id
and so (g7"h)Y =hY which is (1, p)-homogeneous and therefore Y e (g "h).
Hence #(g)U{Y}< #(g "h), contradicting the definition of g. This contradiction
shows that $(g) =% and so g is (m, p)-homogeneous and I is an (m, p)-GD.

It can be seen that the Coxeter graph (of order 4 - 7) [5], the odd graph O, (of
order 5-7) and ine so called H-graph (of order 6 - 17) [5] are all primitive and
therefore by Proposition 2.1 they canrmt be uniformly galactic. Furthermore, not
all imprimitive digraphs of order mp (1<m<p) are uniformly galactic (as we
shall see in the next section). In fact, the reiationship between imprimitive and
uniformly galactic digraphs of order mp (1s<m=p) is given in Theorem 3.6
below.

Lemma 3.5. Let I be a digraph and B be a complete p-block sysiem of a transitive
subgroup G of Aut I such that I'(B) is connected. If g € Ker(G — G) has order p
and g® is (1, p)-homogeneous for some B e ®B, then g* ic (1, p)-homogeneous for
all Be 3.

Proof. Suppose that there exists Be% such that g° =id. Then there exist
X, Ye B such that g*¥ is (1, p)-homogeneous and g~ =id, and either X — Y or
Y — X or X~ Y in I'(B). Without loss of generality we may assume that X — Y.
Since G is transitive on @&, there exists he G such that h(X)=Y. There is an
integer n such that h*(X)=X and X, h(X), .., h"~1(X) are all distinct vertices
of I'(B). Since X — Y, it follows that neither XI' Y nor X I° Y. Therefore there
are v,€X and v,€Y such that v,— v,. Since g* is (1, p)-homogeneous and
gV =id, it follows that XI{v,}. Let v,=h""'v,). Then p,eX and
A YX) T {o,}. Since gX is (1. p)-homogencous, it follows that h" '(X) ["{v} for
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each ve X and thzrefore h" (X)) I X. This implies h" (X)) I' h(X), is equivalent
XTY, contradicting the fact that X — Y in I'(8). Hencs, for each Be &, g° is
not id and so is ((, p)-homogeneous since g has order p.

Theorem 3.6. Le: 2<m<pn. A digraph of order mp is p-imprimitive if anc only if
it is an (m, p)-UGD.

Proof. In view of Proposition 2.1 we oanly have to show that a p-imprimitive
digraph I" of order mp is an (i, p)-UGD. Let & be a complete p-block system of
a p-imprimiuve subgroup G of Aut!l. Let I',,I,,..., I, be the compcnents of
F(RB) and let &,=V{;) (j=1,2,....r).

Since G is imprimitive and B is a block of cardinality p there exists f; = G such
that f;(B)=E and f} is (1, p)-homogeneous. Since |V(IN| < p* and the order of f
is the least common multiple of the cardinalities of its orbits, f; has order kp for
some integer k prime to p. Let g =f;. Then the order of g is p and g is
(1, p)-homogenzous. Clearly, g(B\{B})=%3\{B} and since |B\{B}=
m —1<p and the order of g civides that of g, it foliows that Y = g(Y)=g(Y)
for cach Y e 3B\{B}. Therefore, g(Y)=Y for each Y e ®. Let U, be the union
of all Ye®, It is not hard to see that {U;: j=1,2,...,r} is a complete block
system of G and so the constituent G% of G on U, is transitive for eacl: j.
Therefore by Lemma 3.5 with I', G, B replaced by I'lU,}, GY,, &, it follows th.t
g is (1, p)-homogeneous for ~ach Ye @,

The permutation g on V(I') such that g% =g for each je{1,2,...,r} hes m
orbits of cardinality p, name'y the blocks B € 3. It is not difficult to see that ¢ is
an automorphism of I". Since it fixes every elemen: of & it follows that G <:[g]
and so [g] is transitive. Therefore I' is an (m, p)-UGD.

4. The line graph of the Petersen graph

In Section 6 we shall show that every 2-imprimitive graph of order Zp is ilso
p-imprimitive. which by Theorem 3.6 implies that every imprimitive graph of
crder 2p is a UGG. Unfortunately this does not 2eneralise to graphs of order
mp. where 3ssm <{p, since the line graph of thc Petersen graph will be shown
t0 be a counterexample (of order 15).

Let T=1{1,2,3.4.5}. Then the set of vertices of tne line graph L(Q);) of the
Petersen graph is the set of all 2-sets {x, y} where x and y are disjoirt 2-subse:s of
T. Two vertices {x. y} and {u, v} of L(O,) are adjacent if and only if {x, /}N
{u. v} = 1. If ie T, then E, will denote the set {{x, y}e V(L(O2): x Uy =T\ {1}

By [3, Theorem 12.5] and [4, §17A] it follows that a permutation { on
VULLO5) is an automorphism of L(O;) if and oaly if it is induced by some
permutation [ on T
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The proof of the following lemma is left to the reader:

Lemma 4.1. A permutation on T is (1, 5)-homogeneous if and only if it induces a
(3, 5)-homcgeneous automorphism of L(Os). A permutation on T has one 3-orbit

and two 1-orbits if and only if it induces a (5, 3)-homogeneous automorphism of
L(Os).

Proposition 4.2. L(O,) is a 3-imprimitive (3, 5)-GG and (5, 3)-GG, but is not a
UGG.

Proof. Let {x,, ,}. {x,. y2} be distinct vertices of L(,), and fe $; be such that
f(x,)=x, and f(y,)=y,. Clearly, f takes {x,,y,} tc {x,, y,} which proves that
Aut L(O;) is trensitive.

For every fe Aut L(O), it is clear that f(E,)=E, if f(i)=i and f(E)NE, = if
f(i)# i. Hence E, is a block of Aut L(0,) and L(O,) is 3-imprimitive. Further-
morc, in view of Lemma 4.1, L(O5) is a (3, 5}-GG and a (5, 3)-GG.

Let f be an arbitrary (3, 5)-homogeneous automorphism of L(O;). Then f is
{1, 5)-homogeneous by Lemma 4.1. Let ie T, x={i, f()}, y={f2(), PG}, z=
{20, f(i)}, A be the orbit of f contzining {x,y}, and B be the orbit of f
containing {x, z}. Then L{Os)[A] is a 5 circvit and L(O,)[B] is totally discon-
nected. Therefore [f] is not transitive and L{(;) is not a (3, 5)-UGG.

Let f be an arbitrary (5, 3)-homogenecus automorphism of L(O;). By Lemma
4.1 there exist distinct i,j, ke T such tiat fii)=i fk)=k F()=j#f(j). Let
A =i k), {j, f(O}}, and C be the orbit of f containing A. Then L{O)[C] is a
3-circuit. Furthermore, E; is an orbit of ¥ and, since L(O;)E] is totally discon-
nected, it follows that L(O;) is not a (5, 3)-UGG.

5. (2, p)-gelactic graphs

Lei Z, be the ring of i.itegers mod p. and Z¥ be the set of non-zero elements of
Z, faeZ, and ScZ, let aS={as:s€S}and a+S={a+s:5¢ S}

Let I' be a (1, p)-GG, and fe Aut I" be (1, p)-homogeneous. i.et xe V(1) and
x; = f'{x) (i€Z,). There exists S € Z¥ such that x; ~x; if and orly if j—ie S We
call § the symbol of I' relative to f. Clecrly, & =-S5,

A set SSZ¥ is a symbol of I' if it is the symbol of I' relative to some
(1, pi-hoinogeneous automorphism of I'. Turnier [10, Theorem 3] proved.

Proposition 5.1. Let S and S' be symbols of (1, p)-galactic graphs I' and T
respective'y. Then I is isomorphic 10 T' if and only if S’ = a$ for some a7}

Let I' ne a (2, p)-GG. fe AvtT be (2. pi-homogeneous. X and Y be the WO
orbits of f, and S and § be the symbols of I{X] and [{Y] relative to f~ and £,
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respectively. Let xe X, ye Y, and x; =f'(2), y, = f'(y) ({€Z,). There exists Tg 7
such that x; ~vy; if and only if j—ie T. We say that the ordered triple (S, S’
arises from the ordered quadruple (I, f, x, y) and we write ([, f, x, y) — (S, §', T,
the notation of this paragraph will be used in the statements and proofg of
Lemmnas 5.2 and 5.3.

b

Lemra 5.2. If he Aut [, ge h{Hk ', uc h(X), ve h(Y), then there exist a = 7%
beZ, such that ([, g u,v)—(uS, aS', aT +b). .

Proof. There exist ceZy, and d,e€Z, such that g=hf*h™", u=~hf'(x) apq
v=hf(y). Let a=c¢ ' and b=c"(d—e). Then (I, g u, v) = (aS, aS’. aT+b)

Lemma 5.3. If p>2, T¢{),Z,} and g is a (2, p)-homogeneous automorphism of p~
then {2) is conjugate to {f) in AutT. ’

Preof. Let P be the Sylow p-subgroup of Aut I containing f. Then

k(X)= X, K(Y)=Y foreverykeP (1
because otherwise P would be transitive and so |V(I')j=2p would divide | P|
which is impossible since p>2. Let {'e P. By (1), f(x)=x, for some i. Sincé
f*=f'f "€ P, each orbit of f* has cardinality 1 or p and is by (1) a subset of X or
Y. Since f¥*(x)=x, X is not an orbit of f*. Since T¢{0,Z,}, it follows thay
N(x)NY is not @ or 7 and so, since f*(x)=x, Y cannot be an orbit of f*
Therefore every orbit of f* has cardinality 1, i.e. f*=id and so f'=f «{f). Hence'
P ={f}. The p-subgroup (g of AutI" must be contained in a Sylow p-subgriup I8
of Aut [’ Since all Sylow p-subgroups of AutI" are isomorphic, it follow: thay
H =(f) and therefore H ={(g). Since all Sylow p-subgroups of Aut I are CInjy.

gatc m Aut I, there exists h € Aut I such that {g) = h(f)h~'. This proves Lemm,
5.3.

By [S, S, T] we shall denote the isomorphism class of all (2, p)-galactic graph,
" such that (I'.f, x, y) = (§, §', T) for some (2, p)-hormogeneous automorphisy, ;
of I'" and some pair x, y of vertices of I" belonging to different orbits ¢f f.

Theorem 5.4. Let p>2, and S, S\,cZ%, T,cZ, for i=1,2. Then [8,,S", T,
[S., 84, T,} if and only if either

{ = T,e{P,Z,} and there exist a, a’' € Z}
such that {S,, St} =1{a$,, a’'S}} )

=

or

jthere exist aeZ}¥, b, sucn that either

((S.. 85, Ty or (84, 8., —T5) cquals (a8, a7, aT. +b). <)
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Proof. (I) If the condition (1) is satisfied, then [S,, S%, T,]=[S,, $% T>]in view of
Proposition 5.1. Suppose now that the condition (2) is. satisfied. Let I'e
(81, 8%, Tyl and (I, f, x, y) — (8;, 84, Ty). Let c =a™%, g=f° and ' = f*(x). Then
(Ig, x',y)— (aS,,aS;,aT,+b) and therefore (S,, 5;, T;) arises either from
(I, g x', y) or from (I, g, y, x"). This implies [S,, S5, T1]1=[S,, S5, T,1.

(IT) Suppose that [S,, %, T1]=[S,, S5, T.]. Ii T, e{d, Z,}, then clearly 7, =T,
and therefore the condition (1) must be satisfied in view of Proposition 5.1. We
may therefore assume that T, is a non-empty proper subset of Z, Let I'e
[Sls '1’ Tl]a (F9 f’ X, Y) - (sls 19 Tl) and (I-'; 8 U, U) —'>(S2v sé: TZ) In view of
Lemma 5.3 there exists h = Aut I" such that g€ h{f)h~'. By Lemma 5.2 there exist
aelf and beZ, such that (aS,, aS}, aT,+b) arises either from (I, g u, v) or
from (I, g, v, u). Since (8., S5, T>), (85, S5, —T>) arise from (I', g, u, »), (I, g, v, u)
respectively, it follows that either (S,, 8% T>) «r (85,5, —T,) equals
(08,, aS4, aT, +b) and therefore the condition (2) is satistied.

The next theorem is due to Alspach and Sutcliffe [2, Theorem 3] although we
state it in our own notation. The proof can be carried out using Lemmas 5.2 and
5.3 and a result of Alspach who explicitly determined the automorphism group of
a given (1, p)-GD [1, Theorem 2].

Theorem 5.5 (Alspach, Sutcliffe [2]). A (2, p)-GG I'e[S, S, T} is a (2, p)-UGG
if and only if either

Tel{p.Z,} and S'=aS forsomeacl® (1)
or

(8,8, -T)=(aS, aS', aT+b) forsomeacZ¥ bel, ?)

5. A characterisation of imprimitive graphs of order 2p

Let I' and I be graphs, and m and n be positive integers. By I"+I" we shall
denote the union of disjoint copies of I" and I, and by nI” the union of n disjoint
copies of I'. By K,, P,. K{(m. rn) we shall denote the complete graph of orde: n, the
path of length n, and the graph (K, + K,,)° respectively. If v e V(I'), then |i I(v), is
called the valency of v. I' is said to be m-valent if every vertex of I' has valency
n.. In this section an edge of I' will be a 2-set Ty, v]={(u, v), (v, u)} such that u
aud v are adjacent vertices of I, and E(I") will denote the sei of edges of I. A
subset Q of E(I' is an edge orbit of a subgroup G of Aut [ if it is an orbit of the
permutation group on E(I) induced by G. The subgraph of I induced by O will
he denoted by T'(Q). If E(I") is an edge orbit of Aut I', then I' will be callzd edge

syinetric.
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Lemma 6.1. Let ', x,y,x,y,X. Y, S, S, T have the meaning described after the
statement of Proposition S.1. If p>2, S=8' and T=7¥\ 8, then Autl is
p-imprimitive with a complete block syst:m {X, Y}.

Proof. Let i,re Z,. Since S=-S, T=--T it follows that
HT+NS|=(T-rNS|=|TN(S+r)| (1)

Moreover, x,, € N(x)NN(x,,,) if and only if xeSN(S+r) and v, €
Nix;)NN(x;.,,) if and only if ke TNO(T +r). Therefore, if r# 0, then

INOGO) NN )|

=ISN(S+r) +|TN(T+r)|

=S5 +0) =S N(T+r|+|TN(ZE +1)|- TN(S+r)
=\ZE N (ZE+n|-2ITNS+n=p-2-2|TN(S+7)]

and so (N(x; 1 N(x..,)| i5 odd for every two distinct vertices x,, x;,, € X.

Moreover, (since T=—T) x,,,. € N(y,)NN(x;,,) if and only if ke (S—-r)N T and
Vi-x € N(y )N N(x;.,) if and oniy if k€ SN(T+r). Therefore |Niy)NN(x,.,,)|=
(S+r)NT|{+|SN(T+r)|, which is even by (1). Hence IN(y,) N N(x,,,) is even for
every two vertices y,€ Y, x;,, € X

If X, Y are not blocks of Aut[l, ther there exist ge Autl, y,eY and
Xy Xpo X, 2 & such that g(x,)=x,, g(x.)=y, which implies that |N‘x,) N N(x)|=
IN(x,)\N-y4)|, and this is impossible since |N(x,)NN(x. )| is odd and |N(x,) N
N(y,)| is e en.

Theorem 6.2. A graph of order 2p is imprimitive if and only if it is a {2, p)-UGG.

Proof. Ir vi-w of Theorem 3.6 we only have to prove that a 2-imprimitive graph
I' of order 25, where p>2, is a (2, p)-UGG (and thus also p-imprimitive). Let G
be a 2-impr.mitive subgroup of Aut[l. It is easily seen that G has a (2, p)-
homogeneous element f. (In fact every element of G of order p is (2, p)-
homogeneous.) Let X and Y be the orbits of f. Then there exist x¢.){ and ye Y
such that {x, y; is a block of G. Let (I, f, x, y) = (S, S, T), and «x, == fi(x), y.=
fiivi, B, =ix. v} (i €Z,). Then B ={B;: i€Z,} is a complete 2-block system of G.
With the no.ation of Section 2 we shall distinguish two different cases.

Case 1: Ler(G — G) is non-trivial.

To prove that I' is a (2, p)-UGG it suffices to show that [f] is transitive. If I'(B)
is connected, then (by Lemma 3.5) Ker(G — G) contains a (p, 2)-homogeneous
element which clearly belongs to [f] and thus {f] is transitive. If I"(®) is not
connected, then ii must be totally disconnected (since it is vertex symiretric and of
oraer p). Therefore the permutation on V(I') which interchanges x; and y, for
every i€ Z,, belongs to [f] and so [f] is transitive.

Case 2: Ker(G — G) is trivial.
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Suppose first that G is solvable. Since |G|=|G|=2p, G cannot be regular and
so it is by [12, Theorem 11.6] a Frobenius group. By [12, Theorem 5.1] the
elements of G of degree p together with id form a regular normal subgroup H of
G. Since H is regular, |H|=p and therefore H = (f). Hence {f) is normal in G
and therefore (f) is normal in G. Hence G <[f] and therefore [f] is transitive, i.e.
I'is a (2, p)-UGG.

If G is nonsoivable, then by [12, Theorem 11.7] it is 2-transitive on B.
Therefore the subgraphs B(i, j)=ITB, B,], i#j are all isomorphic bipartite
graphs. Consider any two distinct i, je Z,. Since G is 2-transitive, there is an
element of G which interchangzs B, and B; and therefore B{i, j)#K(1, 2)+K,.
Furthermore, B(i, j) also cannot be isomorphic to K(2, 2) or 2K, or K§ because in
all these cases the permutation on V(I') which interchanges x; and y,, for every
i€Z, would be a non-identity element of Ker(G — G). Therefore B(i, I is
isomorphic either to K,+2K; or to P,. Suppose that B(i, j)=P,, and m, keZ,
are distinct. Since G is 2-transitive, it follows that each end-edge of the path
B(i, j) can be mapp:.1 by an clement of G to each end-edge of the path B(m, k),
and cannot be mapped by an element of G to the central edge of the path
B(m, k). Tuis means that there exists an edge orbit Q of G such that I'(Q)N
B(i, j)=2K, for any two distinct i, j € Z,. Therefore there exists § < Z* such that
r(Qye[S, §,z*\ §)]. By Lemma 6.1, Aut I'(Q) is p-imprimitive. Since Q is an
edge orbit of G, it follows that G € Aut I'(Q) and therefore G is p-imprimitive.
By Theorem 3.6, I' is a (2, p)-UGG. If B(i, j)=K,+2K,, then a similar argument
shows that I* is a (2, p)-UGG and therefore I' is a (2, p)-UGG.

Remark 6.3. Toida [11] has independentlv proved that a 2-imprimitive graph I’
of order 2p with 2 blocks B; (i€ Z,, is a (2, p)-UGG unless the graphs B, j),
i #j, are all isomorgphic to P, or to K, +2K,.

Combining Theorems 5.5 and 6.2 we obtain:

Theorem 6.4. A graph I of order 2p is imprimitive if and only if there exist S < Z',
TcZ,. acZ¥ bel, such that I'e[S, aS, T] and cither

(1) Te{d, Z,} or

(2) a’S=S and aT+b=-T.

If G is a permutation group on V and v € V, then G, will denuie ine subgroup
of all permutations g€ G such that g(v)=v.

Combining the results of Wielandt [12, Theorem 31.2], Feit (umpublished, see
[9, ». 56]), Wielandt (unpublished, see [9, p. 56]) and Scott [9, Theorem 1] we
obtain.

Theorem 6.5. Let |V'|=2p, ve V and G be a primitive but not 2-iransitive permu-
tation group on V. Then 2p = m> =1 for some integer m and either m is not prime
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and p=313 or p=>5. Furthermore, C,, has orbits of cardinalities 1,3m(m—1),
L -
smim + 1),

Corollary 6.6. If I' is a primitive graph of order 2p, then p =313, 2p==m?+1 for
some composite integer m, I is either 3m(m — 1)-valent or sm(m+ 1)-valent, and
both I and I'° are edge symmetric.

Proof. Since I is primitive, it is clearly not isomorphic to K,, or K3, aad so there
exist [u;, u,Je E(I'), [us, uy]e E(I'*). Since I" has no automorphism which maps
u,, u, into us;, u, respectively, Autl’ is not 2-transitive. By Theorem 6.5,
2p=m?+1 for some integer m. if ve V(I"), then (Aut 1), has by Th2orem 6.5
three orbits of cardinalities 1, 3m(m—1), im(m+1) and since an element of
(Aut '), cannot map a vertex ad:acent to v to a vertex not adjacent 1¢ v or vice
versa, it follows that the orbits of (AutI'), are {v}, N(v), VID\(N{v)u{v}.
Thus I" is either m{m — 1)-valeit or sm(m -1)-valent. If p =35, then [ is either
3-valent or 6-valent. If I' is 3-valent, then, by Theorems 3.4 and 5.4, either
Ief!i, -1}, {1, -1}, {0} or Te[{1,-1}, {2,-2}, {0}] or T'e[P, B, T] for som.
svoset T of Zs of cardinality 3. By Theorem 5.5, I' is a (2, 5)-UGG aad so by
Theorem 6.2 is not primitive, If T' is 6-valent, then I'V 1s 3-valent and the
argument above shows that I is not primitive and thus I' is not primitive.
Therefore p# 5 and by Theorem 6.5, p=313 and m is a composite intcger.

Consider any two edges [, y], [z, w] of I. Since I is vertex symmetr:c, there
exists fe AutI' such thet f(x)=z. Clearly f(y)e N(z). Since N(z) is an <rbit of
(Aut I'j,, it follows that g{f(;))=w for some ge(Autl), Then gf maps [x, y]
into [z, w]. This proves that I' is edge symmetric. A similar argument shows that
I'“ is edge symmetric.

For integers n and r with 2=<2r <n, the generalised Petersen graph G{n, r) [6]
is defined by

V(G(na r));: {x()a x.a LRI ’xn—l’ Ym yla DY yn—-l}

E(G(n’ r)) :{l.xiv .,‘.'.'.*]]: i: 0, 1, PPN 1}
Uiy, vie 1i=0,1,...,n—1}
Uilx, vil:i=0.1,...,n—1}

where the addition is taken mod n. If n is a prime p, then by Theorem 5.4,
G(p.nelS, 8, T] if and only if S ={s, —s}, 8’ ={rs, —1s}, T ={¢} for some seZ¥%,
t=Z ,. From this and the fact that (by Corollary 6.6) no G(p, r) is primitive we can
deduce by Theorem 6.4 that G(p,r) is vertex symmetric if and onlv if r’=+1
tmod p). Thus the special case in which #n is prime of the result of Fruzht, Graver
and Watkins [6, §1, p. 212], is also a special case of Thecrem 6.4.
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Combining Theorem 6.4 and Corollary 6.6 we obtain:

Theorem 6.7. Suppose that either p <313 or 2p — 1 is not the square of a composite
integer. Then a graph I" of order 2p is vertex symmetric if and only if there exist
ScZ¥, TcZ, acZf, be Z, such that I"'€[S, aS, T] and cither

(1) Te{d, Z,} or

(2) a’S=S, aT+b=~T.

"

Conjecture 6.8. The only two graphs of order 2p with a primitive automorphism
group that are known to the author, are O; and O3, but they are both
imprimitive. This makes us believe that ¢very vertex symmetric graph of order 2p
is imprimitive. If this is so, the hypothesis that either p<<313 or 2p—1 is not the
square of a composite integer can be omitted from Theorem 6.7.
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