The non-symmetric operad pre-Lie is free

Nantel Bergeron ${ }^{\text {a,*,1 }}$, Muriel Livernet ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada
b Université Paris13, CNRS, UMR 7539 LAGA, 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

A R TICLE INFO

Article history:

Received 16 March 2009
Received in revised form 29 September 2009
Available online 8 November 2009
Communicated by C.A. Weibel

MSC:

18D
05E
17B

A B S T R A C T
We prove that the pre-Lie operad is a free non-symmetric operad.
© 2009 Elsevier B.V. All rights reserved.

0. Introduction

Operads are a specific tool for encoding type of algebras. For instance there are operads encoding associative algebras, commutative and associative algebras, Lie algebras, pre-Lie algebras, dendriform algebras, Poisson algebras and so on. A usual way of describing a type of algebras is by giving the generating operations and the relations among them. For instance a Lie algebra L is a vector space together with a bilinear product, the bracket (the generating operation) satisfying the relations $[x, y]=-[y, x]$ and $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ for all $x, y, z \in L$. The vector space of all operations one can perform on n distinct variables in a Lie algebra is $\mathcal{L i e}(n)$, the building block of the symmetric operad $\mathcal{L i e}$. Composition in the operad corresponds to composition of operations. The vector space $\mathscr{L i e}(n)$ has a natural action of the symmetric group, so it is a symmetric operad. The case of associative algebras can be considered in two different ways. An associative algebra A is a vector space together with a product satisfying the relation $(x y) z=x(y z)$. The vector space of all operations one can perform on n distinct variables in an associative algebra is $\mathcal{A} s(n)$, the building block of the symmetric operad $\mathcal{A} s$. The vector space $\mathcal{A} s(n)$ has for basis the symmetric group S_{n}. But, in view of the relation, one can look also at the vector space of all order-preserving operations one can perform on n distinct ordered variables in an associative algebra: this is a vector space of dimension 1 generated by the only operation $x_{1} \cdots x_{n}$. So the non-symmetric operad $\widetilde{A} s$ describing associative algebras is 1-dimensional for each n : this is the terminal object in the category of non-symmetric operads.

Here is the connection between symmetric and non-symmetric operads. A symmetric sequence \mathcal{P} (or an \mathbb{S}-module or a vector species) is a graded vector space $(\mathscr{P}(n))_{n \geq 0}$ together with an action of the symmetric group S_{n}. There is a forgetful functor from the category of vector species to the category of graded vector spaces, forgetting the action of the symmetric group. This functor has a left adjoint $\&$ which corresponds to tensoring by the regular representation of the symmetric group. A symmetric (resp. non-symmetric) operad is a symmetric sequence (resp. graded vector space) endowed with composition

[^0]maps (see Definition 1.1). Again there is a forgetful functor from the category of symmetric operads to the category of nonsymmetric operads admitting a left adjoint δ. The symmetric operad $\mathcal{A s}$ is the image of the non-symmetric operad $\widetilde{A} s$ by δ. It is clear that $\mathcal{L i e}$ is not in the image of $\&$ since the Jacobi relation does not respect the order of the variables $x<y<z$ nor the anti-symmetry relation. Still one can regard $\mathfrak{L i e}$ as a non-symmetric operad applying the forgetful functor. Salvatore and Tauraso proved in [6] that the operad Lie is a free non-symmetric operad.

A free non-symmetric operad describes type of algebras which have a set of generating operations and no relations between them. For instance, magmatic algebras are vector spaces together with a bilinear product. There is a well known free non-symmetric operad, the Stasheff operad, built on Stasheff polytopes, see e.g. [7]. An algebra over the Stasheff operad is a vector space V together with an n-linear product: $V^{\otimes n} \rightarrow V$ for each n. From the point of view of homotopy theory, the category of reduced operads, i.e. $\mathcal{P}(0)=0$, is a cofibrantly generated model category (see [1, Theorem 3.1] and the references therein for the model structures) and free operads play an essential role in the homotopy category. Namely, one replaces an operad \mathcal{P} by a quasi-free resolution, that is, a morphism of operads $\mathcal{Q} \rightarrow \mathcal{P}$ where \mathcal{Q} is a free operad endowed with a differential inducing an isomorphism in homology. For instance, a quasi-free resolution of $\widetilde{A} s$, in the category of nonsymmetric operads, is given by the Stasheff operad. Algebras over this operad are A_{∞}-algebras (associative algebras up to homotopy). This gives us the motivation for studying whether a given symmetric operad is free as a non-symmetric operad or not.

In this paper we prove that the operad pre-Lie is a free non-symmetric operad. Pre-Lie algebras are vector spaces together with a bilinear product satisfying the relation $(x * y) * z-x *(y * z)=(x * z) * y-x *(z * y)$. The operad pre-Lie is based on labelled rooted trees which are of combinatorial interest. In the process of proving the main result, we describe another operad denoted $\mathcal{T}_{\text {Max }}$ also based on rooted trees and having the advantage of being the linearization of an operad in the category of sets. We prove that it is a free non-symmetric operad. The link between the two operads is made via a gradation on labelled rooted trees.

1. The pre-Lie operad and rooted trees

We first recall the definition of the pre-Lie operad based on labelled rooted trees as in [3]. For $n \in \mathbb{N}^{*}$, the set $\{1, \ldots, n\}$ is denoted by $[n]$ and $[0]$ denotes the empty set. The symmetric group on k letters is denoted by S_{k}. There are many equivalent definitions of operads and we refer to [5] for basics on operads. We work over the ground field \mathbf{k} and vector spaces are considered over \mathbf{k}. Here are the definitions needed for the sequel.

Definition 1.1. A (reduced) non-symmetric operad is a graded vector space $(\mathcal{P}(n))_{n \geq 1}$, with a unit $1 \in \mathcal{P}(1)=\mathbf{k}$, together with composition maps $\circ_{i}: \mathcal{P}(n) \otimes \mathcal{P}(m) \rightarrow \mathcal{P}(n+m-1)$ for $1 \leq i \leq n$ satisfying the following relations: for $a \in \mathscr{P}(n)$, $b \in \mathscr{P}(m)$ and $c \in \mathscr{P}(\ell)$

$$
\begin{array}{lll}
\left(a \circ_{i} b\right) \circ_{j+i-1} c & =a \circ_{i}\left(b \circ_{j} c\right), & \text { for } 1 \leq j \leq m, \\
\left(a \circ_{i} b\right) \circ_{j} c & =\left(a \circ_{j} c\right) \circ_{i+\ell-1} b, & \text { for } j<i, \\
1 \circ_{1} a & =a, & \\
a \circ_{i} 1 & =a &
\end{array}
$$

A non-trivial composition is a composition $a \circ_{i} b$ with $a \in \mathcal{P}(n), b \in \mathscr{P}(m)$ and $n, m>1$.
If in addition each $P(n)$ is acted on the right by the symmetric group S_{n} and the composition maps are equivariant with respect to this action, then the collection $(\mathscr{P}(n))_{n}$ forms a symmetric operad. An algebra over an operad \mathcal{P} is a vector space X endowed with evaluation maps

$$
\begin{array}{lccc}
e v_{n}: & \mathcal{P}(n) \otimes X^{\otimes n} & \rightarrow & X \\
p \otimes x_{1} \otimes \ldots \otimes x_{n} & \mapsto & p\left(x_{1}, \ldots, x_{n}\right)
\end{array}
$$

compatible with the composition maps \circ_{i} : for $p \in \mathcal{P}(n), q \in \mathcal{P}(m), x_{i}^{\prime} s \in X$ one has

$$
\left(p \circ_{i} q\right)\left(x_{1}, \ldots, x_{n+m-1}\right)=p\left(x_{1} \ldots, x_{i-1}, q\left(x_{i}, \ldots, x_{i+m-1}\right), x_{i+m}, \ldots, x_{n+m-1}\right) .
$$

If the operad is symmetric the evaluation maps are required to be equivariant with respect to the action of the symmetric group as follows:

$$
(p \cdot \sigma)\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right)
$$

In the sequel an operad will always mean a reduced operad.
Definition 1.2. In this paper we will consider two type of trees: planar rooted trees will represent the composition maps in a non-symmetric operad (see 1.3) and rooted trees will be the objects of our study (see 1.4). Here are the definitions we will use in the sequel.

By a (planar) tree we mean a non-empty finite connected contractible (planar) graph. All the trees considered are rooted.
In the planar case some edges (external edges or legs) will have only one adjacent vertex; the other edges are called internal edges. There is a distinguished leg called the root leg. The other legs are called the leaves. The choice of a root induces a natural orientation of the graph from the leaves to the root. Any vertex has incoming edges and only one outgoing edge. The arity of a vertex is the number of incoming edges. A tree with no vertices of arity one is called reduced. A planar rooted tree induces
a structure of poset on the vertices, where $x<y$ if and only if there is an oriented path in the tree from y to x. Let x be a vertex of a planar rooted tree T. The full subtree $T^{(x)}$ of T at x is the subtree of T containing all the vertices $y>x$ and all their adjacent edges. The root leg of $T^{(x)}$ is the half edge with adjacent vertex x induced by the unique outgoing edge of x. One represents a planar rooted tree like this:

In the abstract case (non-planar trees) every edge is an internal edge. The root vertex will be a distinguished vertex. The choice of a root induces a natural orientation of the graph towards the root. Any vertex has incoming edges and at most one outgoing edge. The other extremity of an incoming (outgoing) edge of the vertex v is called an incoming (outgoing) vertex of the vertex v. The root vertex has no outgoing vertex. A rooted tree induces a structure of poset on the vertices, where $x<y$ if and only if there is an oriented path in the tree from y to x. A leaf is a maximal vertex for this order. The root is the only minimal vertex for this order. Let x be a vertex of a rooted tree T. The full subtree $T^{(x)}$ of T derived from the vertex x is the subtree of T containing all the vertices $y>x$. The root of $T^{(x)}$ is x. One represents a rooted tree like this:

Remark 1.3. Reduced planar tree of operations: A convenient way to uniquely represent composition of operations in a nonsymmetric operad \mathcal{P} is to use a planar rooted tree as in Definition 1.2. An element $a \in \mathcal{P}(n)$ is represented by a planar rooted tree with a single vertex labelled by a with n incoming legs and a single outgoing leg:

The n leaves are counted from left to right as $1,2, \ldots, n$. Now if we have $a \in \mathcal{P}(n), b \in \mathcal{P}(m)$ and $1 \leq i \leq n$ we represent the composition $a \circ_{i} b$ by the planar tree

The resulting tree has $n+m-1$ leaves (counted from left to right) and represents an element of $\mathcal{P}(n+m-1)$. The two first relations in Definition 1.1 correspond to the following two trees: for $a \in \mathcal{P}(n), b \in \mathcal{P}(m)$ and $c \in \mathcal{P}(\ell)$ we can have

or

Each relation is obtained by writing down the two ways of interpreting the tree as a composition of operations. Let \mathbb{T} be a planar rooted tree. One can enumerate its k vertices starting from the root and following the edges from left to right. Let a_{i} be in $\mathcal{P}\left(n_{i}\right)$ where n_{i} is the number of incoming edges at the i-th vertex. The planar tree $\mathbb{T}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the tree \mathbb{T} whose i-th vertex is labelled by a_{i}. It corresponds to a unique composition of operations in \mathcal{P} independent of any relations.

The two last relations in Definition 1.1 say that one can consider reduced trees (no vertices of arity 1) for reduced operads to represent non-trivial composition maps.

Any full subtree of $\mathbb{T}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is completely determined by the position of its leaves; they form an interval $[p, q]$ where $1 \leq p \leq q \leq n_{1}+n_{2}+\cdots n_{k}-k+1$. A tree in position $[p, q]$ will mean the full subtree determined by the
position $[p, q]$ of its leaves. For a maximal vertex of the planar tree \mathbb{T}, the full subtree it determines has a single vertex in position $[p, q]$ labelled by $a \in \mathcal{P}(n)$. We identify this single vertex subtree with the element $a \in \mathcal{P}(n)$. It is clear that $n=q-p+1$. Moreover, if the j-th vertex is maximal then there exists a planar rooted tree \mathbb{T}^{\prime} and an integer l such that $\mathbb{T}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\mathbb{T}^{\prime}\left(a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{k}\right) \circ_{l} a_{j}$. Namely \mathbb{T}^{\prime} is obtained from \mathbb{T} by taking off the j-th vertex and its incoming edges. Its outgoing edge becomes a leaf, the l-th leaf of the tree \mathbb{T}^{\prime}.

Two trees of operations $\mathbb{T}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $\mathbb{Y}\left(b_{1}, b_{2}, \ldots, b_{s}\right)$ are distinct if and only if $\mathbb{T} \neq \mathbb{Y}$ or there exists i such that $a_{i} \neq b_{i}$.

Definition 1.4. Let S be a set. An S-labelled rooted tree is a non-planar rooted tree as in Definition 1.2 whose vertices are in bijection with S. If $S=[n]$, then we talk about n-labelled rooted trees and denote by $\mathcal{T}(n)$ the set of those trees. It is acted on by the symmetric group by permuting the labels.

The set \mathcal{T} (3) has for elements:

In general $\mathcal{T}(n)$ has n^{n-1} elements (see [2] for more details).
We denote by $\mathbf{k} \mathcal{T}(n)$ the \mathbf{k}-vector space spanned by $\mathcal{T}(n)$.
Theorem 1.5 ([3, Theorem 1.9]). The collection $(\mathbf{k T}(n))_{n \geq 1}$ forms a symmetric operad, the operad pre-Lie denoted by $\mathcal{P} \mathcal{L}$. Algebras over this operad are pre-Lie algebras, that is, vector spaces L together with a product $*$ satisfying the relation

$$
(x * y) * z-x *(y * z)=(x * z) * y-x *(z * y), \quad \forall x, y, z \in L
$$

We recall the operad structure of $\mathcal{P} \mathcal{L}$ as explained in [3]. A rooted tree is naturally oriented from the leaves to the root. The set $\operatorname{In}(T, i)$ of incoming vertices of a vertex i is the set of all vertices j such that (j, i) is an edge oriented from j to i. There is also at most one outgoing vertex of a vertex i, i.e. a vertex r such that (i, r) is an oriented edge from i to r, depending whether i is the root of T or not. For $T \in \mathcal{T}(n)$ and $S \in \mathcal{T}(m)$, we define

$$
T \circ_{i} S=\sum_{f: \operatorname{In}(T, i) \rightarrow[m]} T \circ_{i}^{f} S
$$

where $T o_{i}^{f} S$ is the rooted tree obtained by substituting the tree S for the vertex i in T. The outgoing vertex of i, if it exists, becomes the outgoing vertex of the root of S, whereas the incoming vertices of i are grafted on the vertices of S according to the map f. The root of $T \circ_{i}^{f} S$ is the root of T if i is not the root of T, and it is the root of S if i is the root of T. There is also a relabelling of the vertices of T and S in $T \circ_{i}^{f} S$: we add $i-1$ to the labels of S and $m-1$ to the ones of T which are greater than i. Here is an example:

2. A gradation on labelled rooted trees

We introduce a gradation on labelled rooted trees. We prove that in the expansion of the composition of two rooted trees in the operad pre-Lie there is a unique rooted tree of maximal degree and a unique tree of minimal degree, yielding new non-symmetric operad structures on labelled rooted trees.

Definition 2.1. Let T be an n-labelled rooted tree. Let $\{a, b\}$ denote a pair of two adjacent vertices labelled by a and b. The degree of $\{a, b\}$ is $|a-b|$. The degree of T denoted by $\operatorname{deg}(T)$ is the sum of the degrees of its pairs of adjacent vertices. For instance

$$
\operatorname{deg}(\underbrace{1}_{2} \int_{0}^{3})=2, \quad \operatorname{deg}\left({ }_{0}^{1} \int_{3}^{4}\right)=4, \quad \operatorname{deg}\left(\begin{array}{l}
4 \\
2 \\
2 \\
0 \\
3
\end{array}\right)=5, \quad \operatorname{deg}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array} 0_{0}^{4} 0_{3}^{4}\right)=3 .
$$

Proposition 2.2. In the expansion of $T o_{i} S$ in the operad pre-Lie, there is a unique tree of minimal degree and a unique tree of maximal degree.

For instance, in the Eq. (1.2) the rooted tree of minimal degree 3 is $\int_{3}^{1} 0_{0}^{4}$ and the one of maximal degree 5 is $2 \int_{3}^{4}$. The other ones are of degree 4.

Proof. Any tree in the expansion of $T \circ_{i} S$ writes $U_{f}:=T \circ_{i}^{f} S$ for some $f: \operatorname{In}(T, i) \rightarrow[m]$. To compute the degree of U_{f}, we compute the degree of a pair of two adjacent vertices $\{a, b\}$ in U_{f}. There are 4 cases to consider: (a) the pair was previously in S or (b) it was previously in T and each vertex was different from i, or (c) it was in T of the form $\{i, j\}$ for $j \in \operatorname{In}(T, i)$ or (d) if i is not the root of T it was of the form $\{i, k\}$ where k is the outgoing vertex of i.

In case (a) the degree of the pair in U_{f} is the same as it was in S.
In case (b), let $\left\{a^{\prime}, b^{\prime}\right\}$ be the corresponding pair in T before relabelling. The degree d of the pair $\{a, b\}$ in U_{f} is the same as the degree d^{\prime} of $\left\{a^{\prime}, b^{\prime}\right\}$ except if $a^{\prime}<i<b^{\prime}$ or $b^{\prime}<i<a^{\prime}$, where $d=d^{\prime}+m-1$. Let gap (T, i) be the number of adjacent pairs of vertices in T satisfying the latter condition.

In case (c), let $\{i, j\}$ be the pair in T which gives the pair $\{a, b\}$ in U_{f}. Let d^{\prime} be the degree of $\{i, j\}$. If $j<i$ then $\{a, b\}=\{f(j)+i-1, j\}$. Its degree d is minimal and equals d^{\prime} if $f(j)=1$. It is maximal and equals $d^{\prime}+m-1$ if $f(j)=m$. If $j>i$ then $\{a, b\}=\{f(j)+i-1, j+m-1\}$. Its degree d is minimal and equals d^{\prime} if $f(j)=m$. It is maximal and equals $d^{\prime}+m-1$ if $f(j)=1$.

In case (d), let d^{\prime} be the degree of $\{i, k\}$. If $k<i$ then $\{a, b\}=\{s+i-1, k\}$ where s is the label of the root of S. It has degree $d^{\prime}+s-1$. If $k>i$, then $\{a, b\}=\{s+i-1, k+m-1\}$ and has degree $(m-s)+d^{\prime}$. Let $\epsilon(T, i, s)$ be $0, s-1, m-s$ according to the different situations, 0 corresponding to the one where i is the root of T.

As a conclusion

$$
\begin{align*}
& \operatorname{deg}(T)+\operatorname{deg}(S)+\operatorname{gap}(T, i)(m-1)+\epsilon(T, i, s) \leq \operatorname{deg}\left(U_{f}\right) \leq \\
& \quad \operatorname{deg}(T)+\operatorname{deg}(S)+\operatorname{gap}(T, i)(m-1)+\epsilon(T, i, s)+|\operatorname{In}(T, i)|(m-1) \tag{2.1}
\end{align*}
$$

There is a unique $f_{\text {Min }}$ such that $\operatorname{deg}\left(U_{f_{\text {Min }}}\right)$ is minimal and there is a unique $f_{\text {Max }}$ such that $\operatorname{deg}\left(U_{f_{\text {Max }}}\right)$ is maximal:

$$
\begin{align*}
& f_{\mathrm{Min}}(k)= \begin{cases}1 & \text { if } k<i, \\
m & \text { if } k>i,\end{cases} \tag{2.2}\\
& f_{\mathrm{Max}}(k)= \begin{cases}m & \text { if } k<i, \\
1 & \text { if } k>i,\end{cases} \tag{2.3}
\end{align*}
$$

which ends the proof.
Theorem 2.3. There are two different non-symmetric operad structures on the collection $(\mathbf{k \mathcal { T }}(n))_{n \geq 1}$ given by the composition maps $T o_{i}^{f_{\text {Min }}} S$ on the one hand and $T o_{i}^{f_{\text {Max }}} S$ on the other hand where $f_{\text {Min }}$ and $f_{\text {Max }}$ were defined in Eqs. (2.2) and (2.3).
Proof. A rooted tree T is naturally oriented from its leaves to its root. Any edge is oriented and we denote by (a, b) an edge oriented from the vertex a to the vertex b. Let E_{T} be the set of the oriented edges of the tree T. For an integer $a \neq i$ we denote by \tilde{a}_{i}^{m} the integer a if $a<i$ or $a+m-1$ if $a>i$. Given a map $f: \operatorname{In}(T, i) \rightarrow[m]$, the set $E_{T o_{i}{ }_{S} S}$ has different type of elements:

- $(a+i-1, b+i-1)$ for $(a, b) \in E_{S}$;
- $\left(\tilde{a}_{i}^{m}, \tilde{b}_{i}^{m}\right)$ for $(a, b) \in E_{T}$ and $a, b \neq i$;
- ($\left.\tilde{a}_{i}^{m}, f(a)+i-1\right)$ for $(a, i) \in E_{T}$;
- $\left(i+s-1, \tilde{b}_{i}^{m}\right)$ for $(i, b) \in E_{T}$.

Let $T \in \mathcal{T}(n), S \in \mathcal{T}(m)$ and $U \in \mathcal{T}(p)$. In order to avoid confusion, we denote by $f_{\text {Max }}^{i, p}$ the map sending $k<i$ to p and $l>i$ to 1 . We would like to compare the trees

$$
V_{1}=\left(T \circ_{i}^{f_{\text {Max }}^{i, m}} S\right) \circ_{j+i-1}^{f_{\operatorname{Max}}^{j+i-1, p}} U \quad \text { and } \quad V_{2}=T \circ_{i}^{f_{\text {Max }}^{i, m+p-1}}\left(S \circ_{j}^{f_{\operatorname{Max}}^{j, p}} U\right):
$$

- In V_{1} and V_{2}, any $(a, b) \in E_{U}$ converts to $(a+j+i-2, b+j+i-2)$.
- In V_{1} and V_{2}, any $(a, b) \in E_{S}$ converts to $\left(\tilde{a}_{j}^{p}+i-1, \tilde{b}_{j}^{p}+i-1\right)$ if $a, b \neq j$, or converts to $\left(\tilde{a}_{j}^{p}+i-1, f_{\text {Max }}^{j, p}(a)+i+j-2\right)$ if $b=j$ or converts to $\left(j+i-1+u-1, \tilde{b}_{j}^{p}+i-1\right)$ if $a=j$.
- In V_{1} and V_{2}, any $(a, b) \in E_{T}$ with $a, b \neq i$ converts to $\left(\tilde{a}_{i}^{p+m-1}, \tilde{b}_{i}^{p+m-1}\right)$.
- In V_{1} and V_{2}, any $(a, i) \in E_{T}$ converts to ($\left.\tilde{a}_{i}^{p+m-1}, f_{\operatorname{Max}}^{i, m+p-1}(a)+i-1\right)$.
- In V_{1} and V_{2}, any $(i, b) \in E_{T}$ converts to $\left(i-1+\operatorname{root}\left(S \circ_{j} U\right), \tilde{b}_{i}^{m+p-1}\right)$, where $\operatorname{root}\left(S \circ_{j} U\right)$ is the root of $S \circ_{j} U$. More precisely

$$
\operatorname{root}\left(S \circ_{j} U\right)= \begin{cases}s & \text { if } s<j \\ u+j-1 & \text { if } s=j \\ s+p-1 & \text { if } s>j\end{cases}
$$

The proof of

$$
\left(T \circ_{i}^{f_{\text {Max }}^{i, m}} S\right) \circ_{j}^{f_{\mathrm{Max}}^{j, p}} U=\left(T \circ_{j}^{f_{\text {Max }}^{j, p}} U\right) \circ_{i+p-1}^{f_{\text {Max }}^{i+p-1, m}} \quad S, \quad \text { for } j<i
$$

is similar and left to the reader. So is the proof with $f_{\text {Min }}$ instead of $f_{\text {Max }}$.

The two operads defined by the theorem are denoted by $\mathcal{T}_{\text {Max }}$ and $\mathcal{T}_{\text {Min }}$. They are non-symmetric operads in the category of vector spaces that are linearizations of non-symmetric operads in the category of sets. Namely the composition maps are defined at the level of the sets $\mathcal{T}(n)$ and not only at the level of the vector spaces $\mathbf{k} \mathcal{T}(n)$. There is another operad built on rooted trees which has this property: the operad NAP encoding non-associative permutative algebras in [4], in which $f_{\text {NAP }}$ is the constant map with value the root of S. This operad has the advantage of being a symmetric operad.

3. The operad pre-Lie is free as a non-symmetric operad

We show that $\mathcal{T}_{\text {Max }}$ is a free non-symmetric operad. Using Proposition 2.2, we conclude that the operad pre-Lie is free as a non-symmetric operad. To this end we need to introduce some notation on rooted trees.

Definition 3.1. Given two ordered sets S and T, an order-preserving bijection $\phi: S \rightarrow T$ induces a natural bijection between the set of S-labelled rooted trees and the set of T-labelled rooted trees also denoted by ϕ. A T-labelled rooted tree X is isomorphic to an S-labelled rooted tree Y if $X=\phi(Y)$.

Given a rooted tree $T \in \mathcal{T}(n)$ and a subset $K \subseteq[n]$, we denote by $\left.T\right|_{K}$ the graph obtained from T by keeping only the vertices of T that are labelled by elements of K and only the edges of T that have two vertices labelled in K. Remark that each connected component of $\left.T\right|_{K}$ is a rooted tree itself where the root is given by the unique vertex closest to the root of T in the component. Also, for $c \in[n]$ we denote by $T^{(c)}$ the full subtree of T derived from the vertex labelled by c (see Definition 1.2). For example if $K=\{2,3,4,5,6\} \subset[7]$ and

we have

and $T^{(1)}=$

For $1 \leq a<b \leq n, T \in \mathcal{T}_{\operatorname{Max}}(n-b+a)$ and $S \in \mathcal{T}_{\operatorname{Max}}(b-a+1)$, let $X=T \circ_{a} S$. Consider the interval $[a, b]=\{a, a+1, \ldots, b\}$, clearly $\left.X\right|_{[a, b]}$ is isomorphic to S under the unique order-preserving bijection $[1, b-a+1] \rightarrow[a, b]$. Let $a \leq c \leq b$ be the label of the root of $\left.X\right|_{[a, b]}$. Remark that $X^{(c)}$ is obtained from $\left.X\right|_{[a, b]}$ by grafting subtrees of X at the vertices a and b only. We can then characterize trees X that are obtained from a non-trivial composition $T \circ_{a} S$ as follows:

Proposition 3.2. A tree $X \in \mathcal{T}_{\text {Max }}(n)$ is obtained from a non-trivial composition and is called decomposable if and only if there exist $1 \leq a<b \leq n$ with $(a, b) \neq(1, n)$ such that
(i) $\left.X\right|_{[a, b]}$ is a rooted tree. Let c be the label of its root. One has $a \leq c \leq b$.
(ii) One has $\left.X^{(c)}\right|_{[a, b]}=\left.X\right|_{[a, b]}$ and $X^{(c)}$ is obtained from $\left.X\right|_{[a, b]}$ by grafting subtrees of X at the vertices a and b only.
(iii) All subtrees in $X^{(c)}-\left.X\right|_{[a, b]}$ attached at a have their root labelled in $[b+1, n]$.
(iv) All subtrees in $X^{(c)}-\left.X\right|_{[a, b]}$ attached at b have their root labelled in [1, $\left.a-1\right]$.

For example let

and

This tree X is decomposable since for $1 \leq 3<5 \leq 8$ we have that $\left.X\right|_{[3,5]}$ is a single tree and the subtrees of $X^{(5)}-\left.X\right|_{[3,5]}$ are attached at 3 and 5 only. Moreover, the subtree attached at 3 has root labelled by $7 \in[6,8]$ and the subtrees attached at 5 have roots labelled by $1,2 \in[1,2]$. Indeed, in $\mathcal{T}_{\text {Max }}$ we have

We say that X is indecomposable if it is not decomposable. That is there is no $1 \leq a<b \leq n$ such that (i)-(iv) are satisfied. The reader may check that the following are all the indecomposable trees of $\mathcal{T}_{\text {Max }}$ up to arity 3:

$$
\dot{o}_{1}^{2}, \quad \int_{2}^{1} \text { and } \int_{2}^{3} \text {. }
$$

Theorem 3.3. The non-symmetric operad $\mathcal{T}_{\text {Max }}$ is a free non-symmetric operad.

Proof. If $\mathcal{T}_{\text {Max }}$ is not free, then for some n there is a tree $X \in \mathcal{T}_{\text {Max }}(n)$ with two distinct constructions from indecomposables. In Remark 1.3, a non-trivial composition of operations is completely determined by a unique reduced planar rooted tree. We then have that $X=\mathbb{T}\left(T_{1}, T_{2}, \ldots, T_{r}\right)=\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ where $T_{1}, \ldots, T_{r}, S_{1}, \ldots, S_{k}$ are indecomposables and $\mathbb{T}\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ and $\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ are two distinct trees of operations in $\mathcal{T}_{\text {Max }}$ with $r, k>1$.

The tree $X=\mathbb{T}\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ is decomposable (by assumption $r \geq 2$). Let i be a maximal vertex of the tree \mathbb{T} and $[a, b]$ be the position of the full subtree it determines as in Remark 1.3. By construction $\left.X\right|_{[a, b]}$ is isomorphic to T_{i}. Moreover $\left.X\right|_{[a, b]}$ satisfies (i)-(iv) of Proposition 3.2. Consequently there exists \mathbb{T}^{\prime} such that $X=\mathbb{T}^{\prime}\left(T_{1}, \ldots, T_{i-1}, T_{i+1}, \ldots, T_{r}\right) \circ_{a} T_{i}$ and $\mathbb{T}^{\prime}\left(T_{1}, \ldots, T_{i-1}, T_{i+1}, \ldots, T_{r}\right)$ is obtained from X by shrinking $\left.X\right|_{[a, b]}$ to its root and relabelling the vertices (see Proposition 3.2).

Assume $\left.X\right|_{[a, b]}$ is also isomorphic to a tree S_{j} in position $[a, b]$ in $\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$, that is, the j-th vertex of the tree \mathbb{Y} is maximal, the full subtree it determines is at position $[a, b]$ and it is a single vertex tree identified with S_{j}. Hence, there exists \mathbb{Y}^{\prime} such that $X=\mathbb{Y}^{\prime}\left(S_{1}, \ldots, S_{j-1}, S_{j+1}, \ldots, S_{k}\right) \circ_{a} S_{j}$ and $\mathbb{Y}^{\prime}\left(S_{1}, \ldots, S_{j-1}, S_{j+1}, \ldots, S_{k}\right)$ is obtained from X by shrinking $\left.X\right|_{[a, b]}$ to its root and relabelling the vertices. As a consequence one has $\mathbb{T}^{\prime}\left(T_{1}, \ldots, T_{i-1}, T_{i+1}, \ldots, T_{r}\right)=$ $\mathbb{Y}^{\prime}\left(S_{1}, \ldots, S_{j-1}, S_{j+1}, \ldots, S_{k}\right)$ and one replaces X by the smaller tree defined by the latter tree of compositions. Clearly, this new smaller X has two distinct constructions from indecomposables. We can thus assume that there is no j such that $\left.X\right|_{[a, b]}$ is isomorphic to a single S_{j} in position $[a, b]$ in $\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$.

We now study how $\left.X\right|_{[a, b]}$ overlaps in the position $[a, b]$ of $\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$. Remark first that since all S_{j} are indecomposables, the interval [a, b] cannot be part of a single S_{j} of $\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$. Indeed, that would imply that S_{j} would contain a subtree satisfying Proposition 3.2 which would be a contradiction.

We may assume that $a>1$. To see this, assume that the only sub-interval $[a, b] \subset[1, n]$ such that $\left.X\right|_{[a, b]}$ is isomorphic to a single T_{i} in position $[a, b]$ in $\mathbb{T}\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ is such that $a=1$. Assume moreover that the only sub-interval $\left[a^{\prime}, b^{\prime}\right] \subset[1, n]$ such that $\left.X\right|_{\left[a^{\prime}, b^{\prime}\right]}$ is isomorphic to a single S_{j} in position $\left[a^{\prime}, b^{\prime}\right]$ in $\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ is such that $a^{\prime}=1$. Since S_{j} is indecomposable, we must have $b>b^{\prime}$. Similarly, since T_{i} is indecomposable, we must have $b<b^{\prime}$. This implies that $b=b^{\prime}$ and $T_{i}=S_{j}$. This possibility was excluded above. So we must have $a>1$ or $a^{\prime}>1$. In the case where $a=1$ and $a^{\prime}>1$ we could just interchange the role of $\mathbb{T}\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ and $\mathbb{Y}\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ and assume that we have $a>1$.

Now, since T_{i} is indecomposable, there is no sub-interval $[c, d] \subseteq[a, b]$ such that $\left.X\right|_{[c, d]}$ is isomorphic to a full subtree of operations $\mathbb{Y}^{\prime}\left(S_{j_{1}}, S_{j_{2}}, \ldots, S_{j_{\ell}}\right)$. Assume we can find $c<a \leq d<b$ such that $\left.X\right|_{[c, d]} \cong \mathbb{Y}^{\prime}\left(S_{j_{1}}, S_{j_{2}}, \ldots, S_{j_{\ell}}\right)$ satisfies the Proposition 3.2.

The graph $\left.X\right|_{[a, d]}$ is contained in the trees $\left.X\right|_{[a, b]}$ and $\left.X\right|_{[c, d]}$. Let e be the label of the root of $\left.X\right|_{[a, b]}$ and f be the label of the root of $\left.X\right|_{[c, d]}$. The two full subtrees $X^{(e)}$ and $X^{(f)}$ both contain $\left.X\right|_{[a, d]}$. This implies that either $X^{(f)}$ is fully contained in $X^{(e)}$, or $X^{(e)}$ is fully contained in $X^{(f)}$.

Let us assume that $X^{(f)}$ is fully contained in $X^{(e)}$, that means $\left.X\right|_{[a, b]}$ and $\left.X\right|_{[c, d]}$ are both subtrees of $X^{(e)}$. From Proposition 3.2, we know that $X^{(e)}$ is obtained from $\left.X\right|_{[a, b]}$ by grafting subtrees of X at the vertices a and b only. The vertex c is in $X^{(e)}$ but not in $\left.X\right|_{[a, b]}$. It is part of a subtree attached to a or b. Since c is part of a subtree with root f one has $\left.f \notin\right] a, b[$. The vertex f is a (cannot be b since $f \leq d$) or is attached to a or b. If f is attached to b then there is a path $c \rightarrow f \rightarrow b$. The tree $\left.X\right|_{[c, d]}$ has its root labelled by f so there is a path $d \rightarrow f$. The tree $\left.X\right|_{[a, b]}$ contains the vertices b and d and any path from d to b so there is a path $d \rightarrow f \rightarrow b$ in $\left.X\right|_{[a, b]}$. Hence $f=a$ for $\left.\left.f \notin\right] a, b\right]$. As a conclusion c is part of a subtree attached to a. By (iii) of Proposition 3.2 applied to the tree $\left.X\right|_{[a, b]}$, the subtree must have a root $r \in[b+1, n]$. This is a contradiction, the root r is part of any path joining a and c and $r \notin[c, d]$, hence not in $\left.X\right|_{[c, d]}$. The case where $X^{(e)}$ is fully contained in $X^{(f)}$ is argued similarly, using condition (iv) of Proposition 3.2, and leads to a contradiction as well.

The same argument holds in case we can find $a<c \leq b<d$.
The only case remaining is that the interval $[p, q]$ associated to any full subtree $\mathbb{Y}\left(S_{1}, \ldots, S_{k}\right)^{\left(S_{j}\right)}$ of $\mathbb{Y}\left(S_{1}, \ldots, S_{k}\right)$, satisfies $[a, b] \cap[p, q]=\emptyset$ or $[a, b] \subset[p, q]$. There is at least one interval satisfying $[a, b] \subset[p, q]$ (take the full tree $\mathbb{Y}\left(S_{1}, \ldots, S_{k}\right)$ and $[p, q]=[1, n])$. Let $[p, q]$ be the smallest interval such that $[a, b] \subset[p, q]$ and let $\mathbb{Y}\left(S_{1}, \ldots, S_{k}\right)^{\left(S_{j}\right)}=\mathbb{Y}^{\prime}\left(S_{i_{1}}, \ldots, S_{i_{l}}\right)$ be the full subtree it determines. Its root is labelled by S_{j}. The interval $[u, v]$ associated to any proper full subtree of $\mathbb{Y}^{\prime}\left(S_{i_{1}}, \ldots, S_{i_{l}}\right)$ satisfies $[a, b] \cap[u, v]=\emptyset$. Consequently $\left.X\right|_{[a, b]}$ is isomorphic to $\left.S_{j}\right|_{[\alpha, \beta]}$ for some interval $[\alpha, \beta]$ isomorphic to $[a, b]$. This is impossible since X satisfies the conditions of Proposition 3.2 and S_{j} is indecomposable.

We must conclude that $\mathcal{T}_{\text {Max }}$ is free.
Remark 3.4. The non-symmetric operads $\mathcal{T}_{\text {Min }}$ and NAP are not free. Indeed, in the operad $\mathcal{T}_{\text {Min }}$ one has the following relation:
$0_{1}^{2} o_{1} 0_{1}^{2}=0_{1}^{2} o_{2} 0_{1}^{2}=0_{0}^{2}$

And in the operad NAP one has the following relation

Remark 3.5. Let $\mathbf{k} \mathcal{T}_{\text {Max }}^{0}(n)$ denote the \mathbf{k}-vector space spanned by the indecomposables of $\mathcal{T}_{\text {Max }}(n)(n>1)$ and let β_{n} be its dimension. Let $\alpha(x)=\sum_{n \geq 1} \alpha_{n} x^{n}$ be the Hilbert series associated to the free non-symmetric operad generated by the vector spaces $\mathbf{k} \mathcal{T}_{\text {Max }}^{0}(n)$. It is well known (see e.g. [6]) that one has the identity

$$
\beta(\alpha(x))+x=\alpha(x)
$$

where $\beta(x)=\sum_{n \geq 2} \beta_{n} x^{n}$. Theorem 3.3 implies that $\alpha_{n}=n^{n-1}$. As a consequence, we get that the Hilbert series for indecomposable of $\mathcal{T}_{\text {Max }}^{2}$ is

$$
\begin{aligned}
\mathscr{H}_{\mathcal{T}_{\operatorname{Max}}^{0}}(x)= & \sum_{n \geq 2} \operatorname{dim}\left(\mathbf{k} \mathcal{T}_{\operatorname{Max}}^{0}(n)\right) x^{n}=2 x^{2}+x^{3}+14 x^{4}+146 x^{5} \\
& +1994 x^{6}+32853 x^{7}+630320 x^{8}+13759430 x^{9}+\cdots .
\end{aligned}
$$

Corollary 3.6. The non-symmetric operad pre-Lie is a free non-symmetric operad.
Proof. Let \mathcal{F} be the free non-symmetric operad on indecomposable trees. By the universal property of \mathcal{F}, there is a unique morphism of operads

$$
\phi: \mathcal{F} \rightarrow \mathcal{P} \mathcal{L}
$$

extending the inclusion of indecomposable trees in $\mathcal{P} \mathcal{L}$. We prove that this map is surjective by induction on the degree of a tree. Trees of degree 1 are indecomposables (see Proposition 3.2). Let $t \in \mathscr{P} \mathscr{L}(n)$ be a tree of degree $k>1$. If t is indecomposable then $t=\phi(t)$. If t is decomposable there are trees $u \in \mathscr{P} \mathcal{L}(r), v \in \mathscr{P} \mathcal{L}(s)$, with $r, s<n$ such that $t=u 0_{i}^{f_{\text {Max }}} v$ in $\mathcal{T}_{\text {Max }}$. By Proposition 2.2 one has in $\mathcal{P} \mathcal{L}$

$$
u \circ_{i} v=t+\sum_{j} t_{j}
$$

where $t_{j} \in \mathcal{P} \mathcal{L}(n)$ has degree $k_{j}<k$. From Eq. (2.1) we deduce that the degrees of u and v are also lower than k. By induction, the trees u, v and t_{j}^{\prime} s are in the image of ϕ, so is t. Thus, the operad morphism ϕ is surjective. Theorem 3.3 implies that the vector spaces $\mathcal{F}(n)$ and $\mathcal{P} \mathcal{L}(n)$ have the same dimension, thus the operad morphism ϕ is an isomorphism.

Remark 3.7. The Hilbert series for the free non-symmetric operad on indecomposables and the operad $\mathcal{P} \mathcal{L}$ are the same as in Remark 3.5.

Acknowledgement

Livernet was supported by the Clay Mathematical Institute and hosted by MIT.

References

[1] Clemens Berger, Ieke Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (4) (2003) 805-831.
[2] François Bergeron, Gilbert Labelle, Pierre Leroux, Combinatorial Species and Tree-Like Structures, in: Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, Cambridge, 1998. Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.
[3] Frédéric Chapoton, Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 8 (2001) 395-408.
[4] Muriel Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (1) (2006) 1-18.
[5] Martin Markl, Steve Shnider, Jim Stasheff, Operads in Algebra, Topology and Physics, in: Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, RI, 2002.
[6] Paolo Salvatore, Roberto Tauraso, The operad Lie is free. 2008. arXiv:0802.3010.
[7] James Dillon Stasheff, Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963) 275-292; Trans. Amer. Math. Soc. 108 (1963) 293-312.

[^0]: * Corresponding author.

 E-mail addresses: bergeron@mathstat.yorku.ca (N. Bergeron), livernet@math.univ-paris13.fr (M. Livernet). URLs: http://www.math.yorku.ca/bergeron (N. Bergeron), http://www.math.univ-paris13.fr/~livernet (M. Livernet).
 1 Bergeron is supported by CRC and NSERC.

