
Journal of Pure and Applied Algebra 214 (2010) 1165–1172

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

The non-symmetric operad pre-Lie is free
Nantel Bergeron a,∗,1, Muriel Livernet b
a Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada
b Université Paris13, CNRS, UMR 7539 LAGA, 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

a r t i c l e i n f o

Article history:
Received 16 March 2009
Received in revised form 29 September
2009
Available online 8 November 2009
Communicated by C.A. Weibel

MSC:
18D
05E
17B

a b s t r a c t

We prove that the pre-Lie operad is a free non-symmetric operad.
© 2009 Elsevier B.V. All rights reserved.

0. Introduction

Operads are a specific tool for encoding type of algebras. For instance there are operads encoding associative algebras,
commutative and associative algebras, Lie algebras, pre-Lie algebras, dendriform algebras, Poisson algebras and so on. A
usualway of describing a type of algebras is by giving the generating operations and the relations among them. For instance a
Lie algebra L is a vector space together with a bilinear product, the bracket (the generating operation) satisfying the relations
[x, y] = −[y, x] and [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. The vector space of all operations one can
perform on n distinct variables in a Lie algebra is Lie(n), the building block of the symmetric operad Lie. Composition in
the operad corresponds to composition of operations. The vector spaceLie(n) has a natural action of the symmetric group,
so it is a symmetric operad. The case of associative algebras can be considered in two different ways. An associative algebra
A is a vector space together with a product satisfying the relation (xy)z = x(yz). The vector space of all operations one can
perform on n distinct variables in an associative algebra isAs(n), the building block of the symmetric operadAs. The vector
space As(n) has for basis the symmetric group Sn. But, in view of the relation, one can look also at the vector space of all
order-preserving operations one can perform on n distinct ordered variables in an associative algebra: this is a vector space
of dimension 1 generated by the only operation x1 · · · xn. So the non-symmetric operad Ãs describing associative algebras
is 1-dimensional for each n: this is the terminal object in the category of non-symmetric operads.
Here is the connection between symmetric and non-symmetric operads. A symmetric sequence P (or an S-module or a

vector species) is a graded vector space (P (n))n≥0 together with an action of the symmetric group Sn. There is a forgetful
functor from the category of vector species to the category of graded vector spaces, forgetting the action of the symmetric
group. This functor has a left adjoint Swhich corresponds to tensoring by the regular representation of the symmetric group.
A symmetric (resp. non-symmetric) operad is a symmetric sequence (resp. graded vector space) endowedwith composition
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maps (see Definition 1.1). Again there is a forgetful functor from the category of symmetric operads to the category of non-
symmetric operads admitting a left adjoint S. The symmetric operadAs is the image of the non-symmetric operad Ãs by S.
It is clear thatLie is not in the image of S since the Jacobi relation does not respect the order of the variables x < y < z nor
the anti-symmetry relation. Still one can regard Lie as a non-symmetric operad applying the forgetful functor. Salvatore
and Tauraso proved in [6] that the operadLie is a free non-symmetric operad.
A free non-symmetric operad describes type of algebras which have a set of generating operations and no relations

between them. For instance, magmatic algebras are vector spaces together with a bilinear product. There is a well known
free non-symmetric operad, the Stasheff operad, built on Stasheff polytopes, see e.g. [7]. An algebra over the Stasheff operad
is a vector space V together with an n-linear product: V⊗n → V for each n. From the point of view of homotopy theory,
the category of reduced operads, i.e. P (0) = 0, is a cofibrantly generated model category (see [1, Theorem 3.1] and the
references therein for the model structures) and free operads play an essential role in the homotopy category. Namely, one
replaces an operad P by a quasi-free resolution, that is, a morphism of operadsQ→ P whereQ is a free operad endowed
with a differential inducing an isomorphism in homology. For instance, a quasi-free resolution of Ãs, in the category of non-
symmetric operads, is given by the Stasheff operad. Algebras over this operad are A∞-algebras (associative algebras up to
homotopy). This gives us the motivation for studying whether a given symmetric operad is free as a non-symmetric operad
or not.
In this paperwe prove that the operad pre-Lie is a free non-symmetric operad. Pre-Lie algebras are vector spaces together

with a bilinear product satisfying the relation (x ∗ y) ∗ z − x ∗ (y ∗ z) = (x ∗ z) ∗ y − x ∗ (z ∗ y). The operad pre-Lie is
based on labelled rooted trees which are of combinatorial interest. In the process of proving the main result, we describe
another operad denoted TMax also based on rooted trees and having the advantage of being the linearization of an operad
in the category of sets. We prove that it is a free non-symmetric operad. The link between the two operads is made via a
gradation on labelled rooted trees.

1. The pre-Lie operad and rooted trees

We first recall the definition of the pre-Lie operad based on labelled rooted trees as in [3]. For n ∈ N∗, the set {1, . . . , n} is
denoted by [n] and [0] denotes the empty set. The symmetric group on k letters is denoted by Sk. There are many equivalent
definitions of operads and we refer to [5] for basics on operads. We work over the ground field k and vector spaces are
considered over k. Here are the definitions needed for the sequel.

Definition 1.1. A (reduced) non-symmetric operad is a graded vector space (P (n))n≥1, with a unit 1 ∈ P (1) = k, together
with composition maps ◦i : P (n)⊗ P (m)→ P (n+m− 1) for 1 ≤ i ≤ n satisfying the following relations: for a ∈ P (n),
b ∈ P (m) and c ∈ P (`)

(a ◦i b) ◦j+i−1 c = a ◦i (b ◦j c), for 1 ≤ j ≤ m,
(a ◦i b) ◦j c = (a ◦j c) ◦i+`−1 b, for j < i,
1 ◦1 a = a,
a ◦i 1 = a.

A non-trivial composition is a composition a ◦i bwith a ∈ P (n), b ∈ P (m) and n,m > 1.
If in addition each P(n) is acted on the right by the symmetric group Sn and the composition maps are equivariant with

respect to this action, then the collection (P (n))n forms a symmetric operad. An algebra over an operad P is a vector space
X endowed with evaluation maps

evn : P (n)⊗ X⊗n → X
p⊗ x1 ⊗ . . .⊗ xn 7→ p(x1, . . . , xn)

compatible with the composition maps ◦i: for p ∈ P (n), q ∈ P (m), x′is ∈ X one has

(p ◦i q)(x1, . . . , xn+m−1) = p(x1 . . . , xi−1, q(xi, . . . , xi+m−1), xi+m, . . . , xn+m−1).

If the operad is symmetric the evaluation maps are required to be equivariant with respect to the action of the symmetric
group as follows:

(p · σ)(x1, . . . , xn) = p(xσ−1(1), . . . , xσ−1(n)).

In the sequel an operad will always mean a reduced operad.

Definition 1.2. In this paper we will consider two type of trees: planar rooted trees will represent the composition maps
in a non-symmetric operad (see 1.3) and rooted trees will be the objects of our study (see 1.4). Here are the definitions we
will use in the sequel.
By a (planar) tree wemean a non-empty finite connected contractible (planar) graph. All the trees considered are rooted.
In the planar case some edges (external edges or legs)will have only one adjacent vertex; the other edges are called internal

edges. There is a distinguished leg called the root leg. The other legs are called the leaves. The choice of a root induces a natural
orientation of the graph from the leaves to the root. Any vertex has incoming edges and only one outgoing edge. The arity of
a vertex is the number of incoming edges. A tree with no vertices of arity one is called reduced. A planar rooted tree induces
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a structure of poset on the vertices, where x < y if and only if there is an oriented path in the tree from y to x. Let x be a
vertex of a planar rooted tree T . The full subtree T (x) of T at x is the subtree of T containing all the vertices y > x and all their
adjacent edges. The root leg of T (x) is the half edge with adjacent vertex x induced by the unique outgoing edge of x. One
represents a planar rooted tree like this:

..

.. ..

....

In the abstract case (non-planar trees) every edge is an internal edge. The root vertex will be a distinguished vertex. The
choice of a root induces a natural orientation of the graph towards the root. Any vertex has incoming edges and at most one
outgoing edge. The other extremity of an incoming (outgoing) edge of the vertex v is called an incoming (outgoing) vertex of
the vertex v. The root vertex has no outgoing vertex. A rooted tree induces a structure of poset on the vertices, where x < y
if and only if there is an oriented path in the tree from y to x. A leaf is a maximal vertex for this order. The root is the only
minimal vertex for this order. Let x be a vertex of a rooted tree T . The full subtree T (x) of T derived from the vertex x is the
subtree of T containing all the vertices y > x. The root of T (x) is x. One represents a rooted tree like this:

br r
@�

x

y z

Remark 1.3. Reduced planar tree of operations: A convenient way to uniquely represent composition of operations in a non-
symmetric operad P is to use a planar rooted tree as in Definition 1.2. An element a ∈ P (n) is represented by a planar
rooted tree with a single vertex labelled by awith n incoming legs and a single outgoing leg:

a

..

The n leaves are counted from left to right as 1, 2, . . . , n. Now if we have a ∈ P (n), b ∈ P (m) and 1 ≤ i ≤ n we represent
the composition a ◦i b by the planar tree

a

b

....

..

i

The resulting tree has n + m − 1 leaves (counted from left to right) and represents an element of P (n + m − 1). The two
first relations in Definition 1.1 correspond to the following two trees: for a ∈ P (n), b ∈ P (m) and c ∈ P (`)we can have

a

b

c

....

..

i

..

j

or

a

c b

..

.. ..

....

j i

Each relation is obtained by writing down the two ways of interpreting the tree as a composition of operations. Let T be a
planar rooted tree. One can enumerate its k vertices starting from the root and following the edges from left to right. Let ai
be inP (ni)where ni is the number of incoming edges at the i-th vertex. The planar tree T(a1, a2, . . . , ak) is the tree Twhose
i-th vertex is labelled by ai. It corresponds to a unique composition of operations in P independent of any relations.
The two last relations in Definition 1.1 say that one can consider reduced trees (no vertices of arity 1) for reduced operads

to represent non-trivial composition maps.
Any full subtree of T(a1, a2, . . . , ak) is completely determined by the position of its leaves; they form an interval [p, q]

where 1 ≤ p ≤ q ≤ n1 + n2 + · · · nk − k + 1. A tree in position [p, q] will mean the full subtree determined by the
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position [p, q] of its leaves. For a maximal vertex of the planar tree T, the full subtree it determines has a single vertex in
position [p, q] labelled by a ∈ P (n). We identify this single vertex subtree with the element a ∈ P (n). It is clear that
n = q − p + 1. Moreover, if the j-th vertex is maximal then there exists a planar rooted tree T′ and an integer l such that
T(a1, a2, . . . , ak) = T′(a1, . . . , aj−1, aj+1, . . . , ak) ◦l aj. Namely T′ is obtained from T by taking off the j-th vertex and its
incoming edges. Its outgoing edge becomes a leaf, the l-th leaf of the tree T′.
Two trees of operations T(a1, a2, . . . , ak) andY(b1, b2, . . . , bs) are distinct if and only if T 6= Y or there exists i such that

ai 6= bi.

Definition 1.4. Let S be a set. An S-labelled rooted tree is a non-planar rooted tree as in Definition 1.2 whose vertices are in
bijection with S. If S = [n], then we talk about n-labelled rooted trees and denote by T (n) the set of those trees. It is acted
on by the symmetric group by permuting the labels.
The set T (3) has for elements:

br r
@�

1

2 3 br r
@�

2

1 3 br r
@�

3

1 2 brr12
3

brr13
2

brr23
1

brr21
3

brr31
2

brr32
1

(1.1)

In general T (n) has nn−1 elements (see [2] for more details).

We denote by kT (n) the k-vector space spanned by T (n).

Theorem 1.5 ([3, Theorem 1.9]). The collection (kT (n))n≥1 forms a symmetric operad, the operad pre-Lie denoted by PL.
Algebras over this operad are pre-Lie algebras, that is, vector spaces L together with a product ∗ satisfying the relation

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (x ∗ z) ∗ y− x ∗ (z ∗ y), ∀x, y, z ∈ L.

We recall the operad structure of PL as explained in [3]. A rooted tree is naturally oriented from the leaves to the root.
The set In(T , i) of incoming vertices of a vertex i is the set of all vertices j such that (j, i) is an edge oriented from j to i. There
is also at most one outgoing vertex of a vertex i, i.e. a vertex r such that (i, r) is an oriented edge from i to r , depending
whether i is the root of T or not. For T ∈ T (n) and S ∈ T (m), we define

T ◦i S =
∑

f :In(T ,i)→[m]

T ◦fi S,

where T ◦fi S is the rooted tree obtained by substituting the tree S for the vertex i in T . The outgoing vertex of i, if it exists,
becomes the outgoing vertex of the root of S, whereas the incoming vertices of i are grafted on the vertices of S according
to the map f . The root of T ◦fi S is the root of T if i is not the root of T , and it is the root of S if i is the root of T . There is also a
relabelling of the vertices of T and S in T ◦fi S: we add i − 1 to the labels of S and m − 1 to the ones of T which are greater
than i. Here is an example:

r rb@�1 3

2

◦2
rb1
2

=
r rb@�1 4

2

◦2
rb2
3

=
rr rb@�2

1 4

3

+
rr rb�2
1

4

3

+
rr rb�2
4

1

3

+
r r rb@�21 4

3

(1.2)

2. A gradation on labelled rooted trees

We introduce a gradation on labelled rooted trees.We prove that in the expansion of the composition of two rooted trees
in the operad pre-Lie there is a unique rooted tree of maximal degree and a unique tree of minimal degree, yielding new
non-symmetric operad structures on labelled rooted trees.

Definition 2.1. Let T be an n-labelled rooted tree. Let {a, b} denote a pair of two adjacent vertices labelled by a and b. The
degree of {a, b} is |a − b|. The degree of T denoted by deg(T ) is the sum of the degrees of its pairs of adjacent vertices. For
instance

deg

 r rb@�1 3

2

 = 2, deg

 rr rb@�2
1 4

3

 = 4, deg

 rr rb�2
4

1

3

 = 5, deg

 rr rb�2
1

4

3

 = 3.
Proposition 2.2. In the expansion of T ◦i S in the operad pre-Lie, there is a unique tree of minimal degree and a unique tree of
maximal degree.

For instance, in the Eq. (1.2) the rooted tree of minimal degree 3 is
rr rb�2
1

4

3

and the one of maximal degree 5 is
rr rb�2
4

1

3

. The

other ones are of degree 4.
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Proof. Any tree in the expansion of T ◦i S writes Uf := T ◦
f
i S for some f : In(T , i)→ [m]. To compute the degree of Uf , we

compute the degree of a pair of two adjacent vertices {a, b} in Uf . There are 4 cases to consider: (a) the pair was previously
in S or (b) it was previously in T and each vertex was different from i, or (c) it was in T of the form {i, j} for j ∈ In(T , i) or (d)
if i is not the root of T it was of the form {i, k}where k is the outgoing vertex of i.
In case (a) the degree of the pair in Uf is the same as it was in S.
In case (b), let {a′, b′} be the corresponding pair in T before relabelling. The degree d of the pair {a, b} in Uf is the same as

the degree d′ of {a′, b′} except if a′ < i < b′ or b′ < i < a′, where d = d′ + m− 1. Let gap(T , i) be the number of adjacent
pairs of vertices in T satisfying the latter condition.
In case (c), let {i, j} be the pair in T which gives the pair {a, b} in Uf . Let d′ be the degree of {i, j}. If j < i then

{a, b} = {f (j) + i − 1, j}. Its degree d is minimal and equals d′ if f (j) = 1. It is maximal and equals d′ + m − 1 if f (j) = m.
If j > i then {a, b} = {f (j) + i − 1, j + m − 1}. Its degree d is minimal and equals d′ if f (j) = m. It is maximal and equals
d′ +m− 1 if f (j) = 1.
In case (d), let d′ be the degree of {i, k}. If k < i then {a, b} = {s + i − 1, k} where s is the label of the root of S. It has

degree d′ + s− 1. If k > i, then {a, b} = {s+ i− 1, k+m− 1} and has degree (m− s)+ d′. Let ε(T , i, s) be 0, s− 1,m− s
according to the different situations, 0 corresponding to the one where i is the root of T .
As a conclusion

deg(T )+ deg(S)+ gap(T , i)(m− 1)+ ε(T , i, s) ≤ deg(Uf ) ≤
deg(T )+ deg(S)+ gap(T , i)(m− 1)+ ε(T , i, s)+ |In(T , i)|(m− 1). (2.1)

There is a unique fMin such that deg(UfMin) is minimal and there is a unique fMax such that deg(UfMax) is maximal:

fMin(k) =
{
1 if k < i,
m if k > i, (2.2)

fMax(k) =
{
m if k < i,
1 if k > i, (2.3)

which ends the proof. �

Theorem 2.3. There are two different non-symmetric operad structures on the collection (kT (n))n≥1 given by the composition
maps T ◦fMini S on the one hand and T ◦fMaxi S on the other hand where fMin and fMax were defined in Eqs. (2.2) and (2.3).

Proof. A rooted tree T is naturally oriented from its leaves to its root. Any edge is oriented and we denote by (a, b) an edge
oriented from the vertex a to the vertex b. Let ET be the set of the oriented edges of the tree T . For an integer a 6= iwe denote
by ãmi the integer a if a < i or a+m− 1 if a > i. Given a map f : In(T , i)→ [m], the set ET◦fi S

has different type of elements:

• (a+ i− 1, b+ i− 1) for (a, b) ∈ ES ;
• (ãmi , b̃

m
i ) for (a, b) ∈ ET and a, b 6= i;

• (ãmi , f (a)+ i− 1) for (a, i) ∈ ET ;
• (i+ s− 1, b̃mi ) for (i, b) ∈ ET .

Let T ∈ T (n), S ∈ T (m) and U ∈ T (p). In order to avoid confusion, we denote by f i,pMax the map sending k < i to p and
l > i to 1. We would like to compare the trees

V1 = (T ◦
f i,mMax
i S) ◦

f j+i−1,pMax
j+i−1 U and V2 = T ◦

f i,m+p−1Max
i (S ◦

f j,pMax
j U) :

• In V1 and V2, any (a, b) ∈ EU converts to (a+ j+ i− 2, b+ j+ i− 2).
• In V1 and V2, any (a, b) ∈ ES converts to (ã

p
j + i− 1, b̃

p
j + i− 1) if a, b 6= j, or converts to (ã

p
j + i− 1, f

j,p
Max(a)+ i+ j− 2)

if b = j or converts to (j+ i− 1+ u− 1, b̃pj + i− 1) if a = j.
• In V1 and V2, any (a, b) ∈ ET with a, b 6= i converts to (ã

p+m−1
i , b̃p+m−1i ).

• In V1 and V2, any (a, i) ∈ ET converts to (ã
p+m−1
i , f i,m+p−1Max (a)+ i− 1).

• In V1 and V2, any (i, b) ∈ ET converts to (i − 1 + root(S ◦j U), b̃
m+p−1
i ), where root(S ◦j U) is the root of S ◦j U . More

precisely

root(S ◦j U) =

{s if s < j
u+ j− 1 if s = j
s+ p− 1 if s > j.

The proof of

(T ◦
f i,mMax
i S) ◦

f j,pMax
j U = (T ◦

f j,pMax
j U) ◦

f i+p−1,mMax
i+p−1 S, for j < i

is similar and left to the reader. So is the proof with fMin instead of fMax. �
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The two operads defined by the theorem are denoted by TMax and TMin. They are non-symmetric operads in the category
of vector spaces that are linearizations of non-symmetric operads in the category of sets. Namely the composition maps are
defined at the level of the sets T (n) and not only at the level of the vector spaces kT (n). There is another operad built on
rooted trees which has this property: the operad NAP encoding non-associative permutative algebras in [4], in which fNAP
is the constant map with value the root of S. This operad has the advantage of being a symmetric operad.

3. The operad pre-Lie is free as a non-symmetric operad

We show that TMax is a free non-symmetric operad. Using Proposition 2.2, we conclude that the operad pre-Lie is free as
a non-symmetric operad. To this end we need to introduce some notation on rooted trees.

Definition 3.1. Given twoordered sets S and T , an order-preserving bijectionφ : S → T induces a natural bijection between
the set of S-labelled rooted trees and the set of T -labelled rooted trees also denoted by φ. A T -labelled rooted tree X is
isomorphic to an S-labelled rooted tree Y if X = φ(Y ).

Given a rooted tree T ∈ T (n) and a subset K ⊆ [n], we denote by T
∣∣
K the graph obtained from T by keeping only the

vertices of T that are labelled by elements of K and only the edges of T that have two vertices labelled in K . Remark that each
connected component of T

∣∣
K is a rooted tree itself where the root is given by the unique vertex closest to the root of T in the

component. Also, for c ∈ [n]we denote by T (c) the full subtree of T derived from the vertex labelled by c (see Definition 1.2).
For example if K = {2, 3, 4, 5, 6} ⊂ [7] and

T =
rr rbrr r
�@

�@
1

6

4

3

5

72

, we have T
∣∣
K =

b rbrr
�@

@6
4

3

5

2

and T (1) =
brr r
�@
1

6

72

.

For 1 ≤ a < b ≤ n, T ∈ TMax(n − b + a) and S ∈ TMax(b − a + 1), let X = T ◦a S. Consider the interval
[a, b] = {a, a+1, . . . , b}, clearlyX

∣∣
[a,b] is isomorphic to S under the unique order-preserving bijection [1, b−a+1] → [a, b].

Let a ≤ c ≤ b be the label of the root of X
∣∣
[a,b]. Remark that X

(c) is obtained from X
∣∣
[a,b] by grafting subtrees of X at the

vertices a and b only. We can then characterize trees X that are obtained from a non-trivial composition T ◦a S as follows:

Proposition 3.2. A tree X ∈ TMax(n) is obtained from a non-trivial composition and is called decomposable if and only if there
exist 1 ≤ a < b ≤ n with (a, b) 6= (1, n) such that

(i) X
∣∣
[a,b] is a rooted tree. Let c be the label of its root. One has a ≤ c ≤ b.

(ii) One has X (c)|[a,b] = X
∣∣
[a,b] and X

(c) is obtained from X
∣∣
[a,b] by grafting subtrees of X at the vertices a and b only.

(iii) All subtrees in X (c) − X
∣∣
[a,b] attached at a have their root labelled in [b+ 1, n].

(iv) All subtrees in X (c) − X
∣∣
[a,b] attached at b have their root labelled in [1, a− 1].

For example let

X =
rr rbrr rr

@

1

�
@

�@

5

3 2

6

8

47

, X
∣∣
[3,5] =

br r
�

5

3

4

and X (5) =
br rr r
�
�@r

@

1

5

3 2

47

,

This tree X is decomposable since for 1 ≤ 3 < 5 ≤ 8 we have that X
∣∣
[3,5] is a single tree and the subtrees of X

(5)
− X

∣∣
[3,5]

are attached at 3 and 5 only. Moreover, the subtree attached at 3 has root labelled by 7 ∈ [6, 8] and the subtrees attached
at 5 have roots labelled by 1, 2 ∈ [1, 2]. Indeed, in TMax we have

X =
rr rbrr@1 �

@
3

5 2

4

6

◦3
rrb 1
2

3

.

We say that X is indecomposable if it is not decomposable. That is there is no 1 ≤ a < b ≤ n such that (i)–(iv) are satisfied.
The reader may check that the following are all the indecomposable trees of TMax up to arity 3:rb 2

1

,
rb 1
2

and
rr b@�1 3

2

.

Theorem 3.3. The non-symmetric operad TMax is a free non-symmetric operad.
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Proof. If TMax is not free, then for some n there is a tree X ∈ TMax(n)with two distinct constructions from indecomposables.
In Remark 1.3, a non-trivial composition of operations is completely determined by a unique reduced planar rooted tree.
We then have that X = T(T1, T2, . . . , Tr) = Y(S1, S2, . . . , Sk) where T1, . . . , Tr , S1, . . . , Sk are indecomposables and
T(T1, T2, . . . , Tr) and Y(S1, S2, . . . , Sk) are two distinct trees of operations in TMax with r, k > 1.
The tree X = T(T1, T2, . . . , Tr) is decomposable (by assumption r ≥ 2). Let i be a maximal vertex of the tree T and

[a, b] be the position of the full subtree it determines as in Remark 1.3. By construction X
∣∣
[a,b] is isomorphic to Ti. Moreover

X
∣∣
[a,b] satisfies (i)–(iv) of Proposition 3.2. Consequently there exists T′ such that X = T′(T1, . . . , Ti−1, Ti+1, . . . , Tr) ◦a Ti

and T′(T1, . . . , Ti−1, Ti+1, . . . , Tr) is obtained from X by shrinking X
∣∣
[a,b] to its root and relabelling the vertices (see

Proposition 3.2).
Assume X

∣∣
[a,b] is also isomorphic to a tree Sj in position [a, b] in Y(S1, S2, . . . , Sk), that is, the j-th vertex of the tree

Y is maximal, the full subtree it determines is at position [a, b] and it is a single vertex tree identified with Sj. Hence,
there exists Y′ such that X = Y′(S1, . . . , Sj−1, Sj+1, . . . , Sk) ◦a Sj and Y′(S1, . . . , Sj−1, Sj+1, . . . , Sk) is obtained from X
by shrinking X

∣∣
[a,b] to its root and relabelling the vertices. As a consequence one has T′(T1, . . . , Ti−1, Ti+1, . . . , Tr) =

Y′(S1, . . . , Sj−1, Sj+1, . . . , Sk) and one replaces X by the smaller tree defined by the latter tree of compositions. Clearly, this
new smaller X has two distinct constructions from indecomposables. We can thus assume that there is no j such that X

∣∣
[a,b]

is isomorphic to a single Sj in position [a, b] in Y(S1, S2, . . . , Sk).
We now study how X

∣∣
[a,b] overlaps in the position [a, b] of Y(S1, S2, . . . , Sk). Remark first that since all Sj are

indecomposables, the interval [a, b] cannot be part of a single Sj of Y(S1, S2, . . . , Sk). Indeed, that would imply that Sj would
contain a subtree satisfying Proposition 3.2 which would be a contradiction.
We may assume that a > 1. To see this, assume that the only sub-interval [a, b] ⊂ [1, n] such that X

∣∣
[a,b] is isomorphic

to a single Ti in position [a, b] in T(T1, T2, . . . , Tr) is such that a = 1. Assume moreover that the only sub-interval
[a′, b′] ⊂ [1, n] such that X

∣∣
[a′,b′] is isomorphic to a single Sj in position [a

′, b′] in Y(S1, S2, . . . , Sk) is such that a′ = 1.
Since Sj is indecomposable, we must have b > b′. Similarly, since Ti is indecomposable, we must have b < b′. This implies
that b = b′ and Ti = Sj. This possibility was excluded above. So we must have a > 1 or a′ > 1. In the case where a = 1 and
a′ > 1 we could just interchange the role of T(T1, T2, . . . , Tr) and Y(S1, S2, . . . , Sk) and assume that we have a > 1.
Now, since Ti is indecomposable, there is no sub-interval [c, d] ⊆ [a, b] such that X

∣∣
[c,d] is isomorphic to a full subtree

of operations Y′(Sj1 , Sj2 , . . . , Sj`). Assume we can find c < a ≤ d < b such that X
∣∣
[c,d]
∼= Y′(Sj1 , Sj2 , . . . , Sj`) satisfies the

Proposition 3.2.
The graph X

∣∣
[a,d] is contained in the trees X

∣∣
[a,b] and X

∣∣
[c,d]. Let e be the label of the root of X

∣∣
[a,b] and f be the label of the

root of X
∣∣
[c,d]. The two full subtrees X

(e) and X (f ) both contain X
∣∣
[a,d]. This implies that either X

(f ) is fully contained in X (e),
or X (e) is fully contained in X (f ).
Let us assume that X (f ) is fully contained in X (e), that means X

∣∣
[a,b] and X

∣∣
[c,d] are both subtrees of X

(e). From
Proposition 3.2, we know that X (e) is obtained from X

∣∣
[a,b] by grafting subtrees of X at the vertices a and b only. The vertex

c is in X (e) but not in X
∣∣
[a,b]. It is part of a subtree attached to a or b. Since c is part of a subtree with root f one has f 6∈]a, b[.

The vertex f is a (cannot be b since f ≤ d) or is attached to a or b. If f is attached to b then there is a path c → f → b. The
tree X |[c,d] has its root labelled by f so there is a path d→ f . The tree X |[a,b] contains the vertices b and d and any path from
d to b so there is a path d→ f → b in X |[a,b]. Hence f = a for f 6∈ ]a, b]. As a conclusion c is part of a subtree attached to a.
By (iii) of Proposition 3.2 applied to the tree X

∣∣
[a,b], the subtree must have a root r ∈ [b + 1, n]. This is a contradiction, the

root r is part of any path joining a and c and r 6∈ [c, d], hence not in X
∣∣
[c,d]. The case where X

(e) is fully contained in X (f ) is
argued similarly, using condition (iv) of Proposition 3.2, and leads to a contradiction as well.
The same argument holds in case we can find a < c ≤ b < d.
The only case remaining is that the interval [p, q] associated to any full subtreeY(S1, . . . , Sk)(Sj) ofY(S1, . . . , Sk), satisfies

[a, b]∩[p, q] = ∅ or [a, b] ⊂ [p, q]. There is at least one interval satisfying [a, b] ⊂ [p, q] (take the full treeY(S1, . . . , Sk) and
[p, q] = [1, n]). Let [p, q] be the smallest interval such that [a, b] ⊂ [p, q] and let Y(S1, . . . , Sk)(Sj) = Y′(Si1 , . . . , Sil) be the
full subtree it determines. Its root is labelled by Sj. The interval [u, v] associated to any proper full subtree of Y′(Si1 , . . . , Sil)
satisfies [a, b] ∩ [u, v] = ∅. Consequently X |[a,b] is isomorphic to Sj|[α,β] for some interval [α, β] isomorphic to [a, b]. This is
impossible since X satisfies the conditions of Proposition 3.2 and Sj is indecomposable.
We must conclude that TMax is free. �

Remark 3.4. The non-symmetric operads TMin and NAP are not free. Indeed, in the operad TMin one has the following
relation:

rb2
1

◦1
rb2
1

=
rb2
1

◦2
rb2
1

=
rrb2

3

1
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And in the operad NAP one has the following relation

rb2
1

◦1
rb1
2

=
rb1
2

◦2
rb2
1

=
r rb@�1 3

2

Remark 3.5. Let kT 0Max(n) denote the k-vector space spanned by the indecomposables of TMax(n) (n > 1) and let βn be its
dimension. Let α(x) =

∑
n≥1 αnx

n be the Hilbert series associated to the free non-symmetric operad generated by the vector
spaces kT 0Max(n). It is well known (see e.g. [6]) that one has the identity

β(α(x))+ x = α(x),

where β(x) =
∑
n≥2 βnx

n. Theorem 3.3 implies that αn = nn−1. As a consequence, we get that the Hilbert series for
indecomposable of TMax is

HT 0Max
(x) =

∑
n≥2

dim
(
kT 0Max(n)

)
xn = 2x2 + x3 + 14x4 + 146x5

+ 1994x6 + 32853x7 + 630320x8 + 13759430x9 + · · · .

Corollary 3.6. The non-symmetric operad pre-Lie is a free non-symmetric operad.

Proof. Let F be the free non-symmetric operad on indecomposable trees. By the universal property of F , there is a unique
morphism of operads

φ : F → PL

extending the inclusion of indecomposable trees in PL. We prove that this map is surjective by induction on the degree
of a tree. Trees of degree 1 are indecomposables (see Proposition 3.2). Let t ∈ PL(n) be a tree of degree k > 1. If t is
indecomposable then t = φ(t). If t is decomposable there are trees u ∈ PL(r), v ∈ PL(s), with r, s < n such that
t = u ◦fMaxi v in TMax. By Proposition 2.2 one has in PL

u ◦i v = t +
∑
j

tj

where tj ∈ PL(n) has degree kj < k. FromEq. (2.1)we deduce that the degrees of u and v are also lower than k. By induction,
the trees u, v and t ′j s are in the image of φ, so is t . Thus, the operad morphism φ is surjective. Theorem 3.3 implies that the
vector spaces F (n) and PL(n) have the same dimension, thus the operad morphism φ is an isomorphism. �

Remark 3.7. The Hilbert series for the free non-symmetric operad on indecomposables and the operad PL are the same
as in Remark 3.5.
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