JOURNAL OF ALGEBRA 115, 340-341 (1988)

A Remark on Integral Representations of $GL_{\mathbb{Z}}(n)$

GEORGE R. KEMPF

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218

Communicated by David Buchsbaum

Received December 19, 1986

Let G be the general linear group $GL_{\mathbb{Z}}(n)$ with integral coefficients. A (integral) representation of G is an abelian group $\mathbb{W} \approx \mathbb{Z}^{\otimes g}$ with a G-action which is given by a polynomial with integral coefficients in the coordinates in G and the inverse of the determinant and the coordinates in \mathbb{W} .

We have the tautological representation of G on $\mathbb{V} = \mathbb{Z}^{\otimes n}$. Also we have the exterior powers $\Lambda^i \mathbb{V}$, the symmetric powers $S^i \mathbb{V}$, and the divided powers $\Gamma^i \mathbb{V} = \widehat{S^i}(\widehat{\mathbb{V}})$, where $\widehat{}$ denotes duality. Buchsbaum and Akin [1] have raised the question of writing any representation of G as the quotient of standard representations. I will prove a result in this direction.

THEOREM. Any representation \mathbb{W} is the quotient of direct sums of the diagonal representation of G on

$$\Gamma^{i_1}\mathbb{V}\otimes\cdots\otimes\Gamma^{i_n}\mathbb{V}\otimes(\Lambda^n\mathbb{V})^{\otimes j}.$$

This result is the best possible I think. I will show that $\Gamma^i \mathbb{V}$ is not the quotient of $\mathbb{V} \otimes \cdots \otimes \mathbb{V} \otimes (\Lambda^n \mathbb{V})^{\otimes j}$ when i = 2 and n = 2. For the general case one reduces to the case n = 2 and does a calculation similar to that of the case of binary quadratic forms.

To prove the theorem we will translate the problem geometrically, and then algebraically a representation \mathbb{W} of G can be thought of as the integral points of the scheme $\mathbb{W}' = \operatorname{Spec}(\operatorname{Sym}_{\mathbb{Z}} W)$, where W is the module of \mathbb{Z} -valued linear functions on \mathbb{W} . Thus we have a $GL_{\mathbb{Z}}(n)$ -action on \mathbb{W}' , which corresponds to a comodule structure $\alpha \colon W \to A \otimes_{\mathbb{Z}} W$, where A is the

Hopf algebra $\Gamma(GL_{\mathbb{Z}}(n)_1 \mathcal{O}_{GL_{\mathbb{Z}}(n)}) = \operatorname{Sym}_{\mathbb{Z}}(\operatorname{Hom}(\mathbb{V}, \mathbb{V}))_{det}$, where det as a subscript denotes localization by the determinant.

By the coassociative law α is an A-comodule homomorphism where A coacts on $A \otimes_{\mathbb{Z}} W$ through the factor $A(\text{i.e.}, \alpha'(a \otimes w) = \mu \alpha \otimes w$, where μ is the comultiplication in A). As coidentity $\times 1d_W$ is the inverse of α , α is an A-comodule injection $W \subseteq A \otimes \cdots \otimes A$. From the localization we have an

A-comodule injection $W \subseteq (\bigoplus \operatorname{Sym}_{\mathbb{Z}}(\operatorname{Hom}(\mathbb{V}, \mathbb{V})) \otimes L^{i}))$, where $L = \mathbb{Z}$ with the comodule structure $\alpha(1) = (\det)^{i} \otimes 1$. As a (left)-comodule $\operatorname{Sym}_{\mathbb{Z}}(\widehat{\operatorname{Hom}}(\mathbb{V}, \mathbb{V})) = \operatorname{Sym}_{\mathbb{Z}}(\bigoplus {}^{n}\mathbb{V}) = \bigoplus_{(i_{*})} \operatorname{Sym}^{i_{1}}(V) \otimes \cdots \otimes \operatorname{Sym}^{i_{n}}(V)$. Translating back to representations we get a homomorphism

$$\alpha^*: \left(\bigoplus_{(i_*)} \Gamma^{i_1} \mathbb{V} \otimes \cdots \otimes \Gamma^{i_n} \mathbb{V} \otimes (\Lambda^n \mathbb{V})^j \right) \to \mathbb{W}.$$

We only need to remark that α^* is surjective because $\alpha \otimes \mathbb{Z}/_{P\mathbb{Z}}$ is injective for any prime p for the same reason that α is injective. This proves the theorem.

Next we will see that $\Gamma^2 \mathbb{V}$ is not a quotient of $\mathbb{V}^{\otimes n} \otimes (\Lambda^n \mathbb{V})^{\otimes i}$ when n = 2. If such quotient exists then r + 2i = 2 which can be seen by the action of the diagonal of G. Dually we will show that if $S^2 \mathbb{V} \otimes (\Lambda^2 \mathbb{V})^{\otimes i}$ is contained in \mathbb{V}^n then the relative quotient has torsion.

First of all, $\mathbb{V}^{\otimes n}$ has a natural filtration with factors $S^k \mathbb{V} \otimes (\Lambda^2 \mathbb{V})^l$, where m = k + 2l. This filtration is defined by induction on *m*. By induction one needs to filter the factor $\mathbb{V} \otimes S^{k^1} \mathbb{V} \otimes (\Lambda^2 \mathbb{V})^{l^1}$ of $\mathbb{V} \otimes (\text{filtration of} \mathbb{V}^{\otimes m^{-1}})$ but we have the exact Kozul complex

$$0 \to \Lambda^2 \mathbb{V} \otimes S^{p-1} \mathbb{V} \to \mathbb{V} \otimes S^p \mathbb{V} \to S^{p+1} \mathbb{V} \to 0.$$

Thus we have the filtration.

Let e and f be a basis of \mathbb{V} . Let U_{λ} for integral λ be the unipotent transformation in G given by $U_{\lambda}(e) = e$ and $U_{\lambda}(f) = f + \lambda$. The interesting fact is the U_{λ} -invariants for all λ is exact on the filtration. In fact we can write the invariants in $\mathbb{V}^{\otimes n}$ which are compatible with the filtration.

Let V_{λ} be the opposite unipotent transformation $V_{\lambda}(f) = f$ and $V_{\lambda}(e) = e + \lambda f$. Consider

$$V_{\lambda}(\psi) = \psi + \lambda \psi_1 + \lambda^2 \psi_2$$
 for all λ .

If ψ is generating invariant of $S^2(\mathbb{V}) \otimes (\Lambda^2 \mathbb{V})^{\otimes i}$, then ψ_1 is divisible by 2 in $\mathbb{V}^{\otimes n}$, but this is clearly not true. Then the point is proven.

References

1. D. BUCHSBAUM AND AKIN, Characteristic-free representation theory of the general linear group, Adv. in Math. 58 (1985), 149–200.