A Remark on Integral Representations of $G L_{\mathbb{Z}}(n)$

George R. Kempf
Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218
Communicated by David Buchsbaum

Received December 19, 1986

Let G be the general linear group $G L_{\mathbb{Z}}(n)$ with integral coefficients. A (integral) representation of G is an abelian group $\mathbb{W} \approx \mathbb{Z}^{\otimes g}$ with a G-action which is given by a polynomial with integral coefficients in the coordinates in G and the inverse of the determinant and the coordinates in \mathbb{W}.

We have the tautological representation of G on $\mathbb{V}=\mathbb{Z}^{\otimes n}$. Also we have the exterior powers $\Lambda^{i} \mathbb{V}$, the symmetric powers $S^{i} \mathbb{V}$, and the divided powers $\Gamma^{i} V=\widehat{S^{i}(\mathbb{V})}$, where ${ }^{\wedge}$ denotes duality. Buchsbaum and Akin [1] have raised the question of writing any representation of G as the quotient of standard representations. I will prove a result in this direction.

THEOREM. Any representation \mathbb{W} is the quotient of direct sums of the diagonal representation of G on

$$
\Gamma^{n_{1}} \mathbb{V} \otimes \cdots \otimes \Gamma^{i_{n} \mathbb{V} \otimes}\left(\Lambda^{n} \mathbb{V}\right)^{\otimes j}
$$

This result is the best possible I think. I will show that $\Gamma^{i} V$ is not the quotient of $\mathbb{V} \otimes \cdots \otimes \mathbb{V} \otimes\left(A^{n} \mathbb{V}\right)^{\otimes i}$ when $i=2$ and $n=2$. For the general case one reduces to the case $n=2$ and does a calculation similar to that of the case of binary quadratic forms.

To prove the theorem we will translate the problem geometrically, and then algebraically a representation \mathbb{W} of G can be thought of as the integral points of the scheme $\mathbb{W}^{\prime}=\operatorname{Spec}\left(\operatorname{Sym}_{\mathbb{Z}} W\right)$, where W is the module of \mathbb{Z}-valued linear functions on \mathbb{W}. Thus we have a $G L_{\mathbb{Z}}(n)$-action on \mathbb{W}^{\prime}, which corresponds to a comodule structure $\alpha: W \rightarrow A \otimes_{\mathbb{Z}} W$, where A is the Hopf algebra $\Gamma\left(G L_{\mathbb{Z}}(n)_{1} \mathcal{O}_{G L_{\mathbb{Z}}(n)}\right)=\operatorname{Sym}_{\mathbb{Z}}(\widehat{\operatorname{Hom}(\mathbb{V}, \mathbb{V})})_{\text {det }}$, where det as a subscript denotes localization by the determinant.

By the coassociative law α is an A-comodule homomorphism where A coacts on $A \otimes_{\mathbb{Z}} W$ through the factor $A\left(\right.$ i.e., $\alpha^{\prime}(a \otimes w)=\mu \alpha \otimes w$, where μ is the comultiplication in A). As coidentity $\times 1 d_{W}$ is the inverse of α, α is an A-comodule injection $W G A \otimes \cdots \otimes A$. From the localization we have an
A-comodule injection $W \subseteq\left(\oplus \operatorname{Sym}_{\mathbb{Z}}(\operatorname{Hom}(\mathbb{V}, \mathbb{V})) \otimes L^{i}\right)$), where $L=\mathbb{Z}$ with the comodule structure $\alpha(1)=(\operatorname{det})^{i} \otimes 1$. As a (left)-comodule $\operatorname{Sym}_{\mathbb{Z}}(\widehat{\operatorname{Hom}(\mathbb{V}, \mathbb{V})})=\operatorname{Sym}_{\mathbb{Z}}\left(\oplus^{n} \mathbb{V}\right)=\oplus_{(i *)} \operatorname{Sym}^{i_{1}}(V) \otimes \cdots \otimes \operatorname{Sym}^{i_{n}(V)}$. Translating back to representations we get a homomorphism

$$
\alpha^{*}:\left(\underset{\left(i_{*}\right)}{\oplus} \Gamma^{i} \mathbb{V} \otimes \cdots \otimes \Gamma^{i n} \mathbb{V} \otimes\left(\Lambda^{n} \mathbb{V}\right)^{j}\right) \rightarrow \mathbb{W}
$$

We only need to remark that α^{*} is surjective because $\alpha \otimes \mathbb{Z} /_{P \mathbb{Z}}$ is injective for any prime p for the same reason that α is injective. This proves the theorem.
Next we will see that $\Gamma^{2} \mathbb{V}$ is not a quotient of $\mathbb{V}^{\otimes n} \otimes\left(\Lambda^{n} \mathbb{V}\right)^{\otimes i}$ when $n=2$. If such quotient exists then $r+2 i=2$ which can be seen by the action of the diagonal of G. Dually we will show that if $S^{2} \mathbb{V} \otimes\left(\Lambda^{2} \mathbb{V}\right)^{\otimes i}$ is contained in \mathbb{V}^{n} then the relative quotient has torsion.

First of all, $\mathbb{V}^{\otimes n}$ has a natural filtration with factors $S^{k} \mathbb{V} \otimes\left(\Lambda^{2} \mathbb{V}\right)^{\prime}$, where $m=k+2 l$. This filtration is defined by induction on m. By induction one needs to filter the factor $\mathbb{V} \otimes S^{k^{2}} \mathbb{V} \otimes\left(\Lambda^{2} \mathbb{V}\right)^{l^{1}}$ of $\mathbb{V} \otimes$ (filtration of $\mathbb{V}^{\otimes m-1}$) but we have the exact Kozul complex

$$
0 \rightarrow A^{2} \mathbb{V} \otimes S^{p-1} \mathbb{V} \rightarrow \mathbb{V} \otimes S^{p} \mathbb{V} \rightarrow S^{p+1} \mathbb{V} \rightarrow 0
$$

Thus we have the filtration.
Let e and f be a basis of \mathbb{V}. Let U_{λ} for integral λ be the unipotent transformation in G given by $U_{\lambda}(e)=e$ and $U_{\lambda}(f)=f+\lambda$. The interesting fact is the U_{λ}-invariants for all λ is exact on the filtration. In fact we can write the invariants in $\mathbb{V}^{\otimes n}$ which are compatible with the filtration.

Let V_{λ} be the opposite unipotent transformation $V_{\lambda}(f)=f$ and $V_{\lambda}(e)=$ $e+\lambda f$. Consider

$$
V_{\lambda}(\psi)=\psi+\lambda \psi_{1}+\lambda^{2} \psi_{2} \quad \text { for all } \lambda .
$$

If ψ is generating invariant of $S^{2}(\mathbb{V}) \otimes\left(\Lambda^{2} \mathbb{V}\right)^{\otimes i}$, then ψ_{1} is divisible by 2 in $\mathbb{V}^{\otimes n}$, but this is clearly not true. Then the point is proven.

References

1. D. Buchsbaum and Akin, Characteristic-free representation theory of the general linear group, Adv. in Math. 58 (1985), 149-200.
